Properties

Label 31.2.g.a.20.2
Level 31
Weight 2
Character 31.20
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 20.2
Root \(-0.333129i\)
Character \(\chi\) = 31.20
Dual form 31.2.g.a.14.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.640321 + 1.97070i) q^{2}\) \(+(-1.43153 - 1.58988i) q^{3}\) \(+(-1.85563 + 1.34820i) q^{4}\) \(+(-1.17396 - 2.03335i) q^{5}\) \(+(2.21654 - 3.83916i) q^{6}\) \(+(0.384094 + 3.65441i) q^{7}\) \(+(-0.492333 - 0.357701i) q^{8}\) \(+(-0.164841 + 1.56836i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.640321 + 1.97070i) q^{2}\) \(+(-1.43153 - 1.58988i) q^{3}\) \(+(-1.85563 + 1.34820i) q^{4}\) \(+(-1.17396 - 2.03335i) q^{5}\) \(+(2.21654 - 3.83916i) q^{6}\) \(+(0.384094 + 3.65441i) q^{7}\) \(+(-0.492333 - 0.357701i) q^{8}\) \(+(-0.164841 + 1.56836i) q^{9}\) \(+(3.25543 - 3.61552i) q^{10}\) \(+(-3.91056 - 1.74109i) q^{11}\) \(+(4.79986 + 1.02024i) q^{12}\) \(+(2.04159 - 0.433953i) q^{13}\) \(+(-6.95582 + 3.09693i) q^{14}\) \(+(-1.55222 + 4.77725i) q^{15}\) \(+(-1.02791 + 3.16357i) q^{16}\) \(+(1.94411 - 0.865573i) q^{17}\) \(+(-3.19632 + 0.679399i) q^{18}\) \(+(0.606466 + 0.128908i) q^{19}\) \(+(4.91979 + 2.19043i) q^{20}\) \(+(5.26022 - 5.84207i) q^{21}\) \(+(0.927168 - 8.82142i) q^{22}\) \(+(2.71334 + 1.97136i) q^{23}\) \(+(0.136090 + 1.29481i) q^{24}\) \(+(-0.256344 + 0.444001i) q^{25}\) \(+(2.16247 + 3.74550i) q^{26}\) \(+(-2.46294 + 1.78943i) q^{27}\) \(+(-5.63960 - 6.26341i) q^{28}\) \(+(-0.425645 - 1.31000i) q^{29}\) \(-10.4085 q^{30}\) \(+(-1.44334 - 5.37743i) q^{31}\) \(-8.10976 q^{32}\) \(+(2.82997 + 8.70975i) q^{33}\) \(+(2.95064 + 3.27702i) q^{34}\) \(+(6.97979 - 5.07112i) q^{35}\) \(+(-1.80857 - 3.13253i) q^{36}\) \(+(-0.137239 + 0.237704i) q^{37}\) \(+(0.134293 + 1.27771i) q^{38}\) \(+(-3.61253 - 2.62466i) q^{39}\) \(+(-0.149354 + 1.42101i) q^{40}\) \(+(-2.86248 + 3.17911i) q^{41}\) \(+(14.8812 + 6.62555i) q^{42}\) \(+(-0.263799 - 0.0560722i) q^{43}\) \(+(9.60390 - 2.04137i) q^{44}\) \(+(3.38254 - 1.50600i) q^{45}\) \(+(-2.14756 + 6.60950i) q^{46}\) \(+(1.66225 - 5.11589i) q^{47}\) \(+(6.50117 - 2.89451i) q^{48}\) \(+(-6.36016 + 1.35189i) q^{49}\) \(+(-1.03914 - 0.220875i) q^{50}\) \(+(-4.15921 - 1.85180i) q^{51}\) \(+(-3.20338 + 3.55772i) q^{52}\) \(+(-0.993928 + 9.45659i) q^{53}\) \(+(-5.10351 - 3.70792i) q^{54}\) \(+(1.05057 + 9.99551i) q^{55}\) \(+(1.11808 - 1.93658i) q^{56}\) \(+(-0.663228 - 1.14874i) q^{57}\) \(+(2.30908 - 1.67764i) q^{58}\) \(+(-3.89932 - 4.33063i) q^{59}\) \(+(-3.56032 - 10.9575i) q^{60}\) \(+2.22719 q^{61}\) \(+(9.67313 - 6.28768i) q^{62}\) \(-5.79474 q^{63}\) \(+(-3.13704 - 9.65481i) q^{64}\) \(+(-3.27911 - 3.64182i) q^{65}\) \(+(-15.3522 + 11.1541i) q^{66}\) \(+(6.80719 + 11.7904i) q^{67}\) \(+(-2.44059 + 4.22722i) q^{68}\) \(+(-0.750018 - 7.13595i) q^{69}\) \(+(14.4630 + 10.5080i) q^{70}\) \(+(0.139642 - 1.32861i) q^{71}\) \(+(0.642159 - 0.713189i) q^{72}\) \(+(-12.9413 - 5.76184i) q^{73}\) \(+(-0.556321 - 0.118250i) q^{74}\) \(+(1.07287 - 0.228046i) q^{75}\) \(+(-1.29917 + 0.578429i) q^{76}\) \(+(4.86065 - 14.9595i) q^{77}\) \(+(2.85925 - 8.79986i) q^{78}\) \(+(7.92648 - 3.52910i) q^{79}\) \(+(7.63936 - 1.62380i) q^{80}\) \(+(10.9984 + 2.33777i) q^{81}\) \(+(-8.09799 - 3.60546i) q^{82}\) \(+(-3.46976 + 3.85356i) q^{83}\) \(+(-1.88479 + 17.9325i) q^{84}\) \(+(-4.04231 - 2.93691i) q^{85}\) \(+(-0.0584142 - 0.555774i) q^{86}\) \(+(-1.47342 + 2.55203i) q^{87}\) \(+(1.30251 + 2.25601i) q^{88}\) \(+(-4.05526 + 2.94632i) q^{89}\) \(+(5.13379 + 5.70166i) q^{90}\) \(+(2.37001 + 7.29413i) q^{91}\) \(-7.69274 q^{92}\) \(+(-6.48327 + 9.99270i) q^{93}\) \(+11.1463 q^{94}\) \(+(-0.449849 - 1.38449i) q^{95}\) \(+(11.6094 + 12.8935i) q^{96}\) \(+(-5.43173 + 3.94638i) q^{97}\) \(+(-6.73673 - 11.6684i) q^{98}\) \(+(3.37528 - 5.84615i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.640321 + 1.97070i 0.452775 + 1.39350i 0.873727 + 0.486416i \(0.161696\pi\)
−0.420952 + 0.907083i \(0.638304\pi\)
\(3\) −1.43153 1.58988i −0.826496 0.917916i 0.171236 0.985230i \(-0.445224\pi\)
−0.997732 + 0.0673137i \(0.978557\pi\)
\(4\) −1.85563 + 1.34820i −0.927816 + 0.674098i
\(5\) −1.17396 2.03335i −0.525009 0.909342i −0.999576 0.0291228i \(-0.990729\pi\)
0.474567 0.880219i \(-0.342605\pi\)
\(6\) 2.21654 3.83916i 0.904898 1.56733i
\(7\) 0.384094 + 3.65441i 0.145174 + 1.38124i 0.788212 + 0.615404i \(0.211007\pi\)
−0.643038 + 0.765834i \(0.722326\pi\)
\(8\) −0.492333 0.357701i −0.174066 0.126466i
\(9\) −0.164841 + 1.56836i −0.0549470 + 0.522786i
\(10\) 3.25543 3.61552i 1.02946 1.14333i
\(11\) −3.91056 1.74109i −1.17908 0.524960i −0.278832 0.960340i \(-0.589947\pi\)
−0.900247 + 0.435380i \(0.856614\pi\)
\(12\) 4.79986 + 1.02024i 1.38560 + 0.294519i
\(13\) 2.04159 0.433953i 0.566235 0.120357i 0.0841053 0.996457i \(-0.473197\pi\)
0.482130 + 0.876100i \(0.339863\pi\)
\(14\) −6.95582 + 3.09693i −1.85902 + 0.827690i
\(15\) −1.55222 + 4.77725i −0.400782 + 1.23348i
\(16\) −1.02791 + 3.16357i −0.256976 + 0.790892i
\(17\) 1.94411 0.865573i 0.471516 0.209932i −0.157201 0.987567i \(-0.550247\pi\)
0.628717 + 0.777634i \(0.283580\pi\)
\(18\) −3.19632 + 0.679399i −0.753380 + 0.160136i
\(19\) 0.606466 + 0.128908i 0.139133 + 0.0295736i 0.276952 0.960884i \(-0.410676\pi\)
−0.137819 + 0.990457i \(0.544009\pi\)
\(20\) 4.91979 + 2.19043i 1.10010 + 0.489795i
\(21\) 5.26022 5.84207i 1.14788 1.27484i
\(22\) 0.927168 8.82142i 0.197673 1.88073i
\(23\) 2.71334 + 1.97136i 0.565771 + 0.411057i 0.833567 0.552419i \(-0.186295\pi\)
−0.267796 + 0.963476i \(0.586295\pi\)
\(24\) 0.136090 + 1.29481i 0.0277792 + 0.264302i
\(25\) −0.256344 + 0.444001i −0.0512688 + 0.0888002i
\(26\) 2.16247 + 3.74550i 0.424094 + 0.734553i
\(27\) −2.46294 + 1.78943i −0.473993 + 0.344376i
\(28\) −5.63960 6.26341i −1.06578 1.18367i
\(29\) −0.425645 1.31000i −0.0790403 0.243261i 0.903727 0.428110i \(-0.140820\pi\)
−0.982767 + 0.184849i \(0.940820\pi\)
\(30\) −10.4085 −1.90032
\(31\) −1.44334 5.37743i −0.259231 0.965815i
\(32\) −8.10976 −1.43362
\(33\) 2.82997 + 8.70975i 0.492634 + 1.51617i
\(34\) 2.95064 + 3.27702i 0.506031 + 0.562004i
\(35\) 6.97979 5.07112i 1.17980 0.857175i
\(36\) −1.80857 3.13253i −0.301428 0.522089i
\(37\) −0.137239 + 0.237704i −0.0225619 + 0.0390783i −0.877086 0.480334i \(-0.840516\pi\)
0.854524 + 0.519412i \(0.173849\pi\)
\(38\) 0.134293 + 1.27771i 0.0217851 + 0.207272i
\(39\) −3.61253 2.62466i −0.578468 0.420282i
\(40\) −0.149354 + 1.42101i −0.0236150 + 0.224681i
\(41\) −2.86248 + 3.17911i −0.447045 + 0.496494i −0.923978 0.382446i \(-0.875082\pi\)
0.476933 + 0.878940i \(0.341748\pi\)
\(42\) 14.8812 + 6.62555i 2.29622 + 1.02234i
\(43\) −0.263799 0.0560722i −0.0402290 0.00855093i 0.187753 0.982216i \(-0.439879\pi\)
−0.227982 + 0.973665i \(0.573213\pi\)
\(44\) 9.60390 2.04137i 1.44784 0.307748i
\(45\) 3.38254 1.50600i 0.504239 0.224502i
\(46\) −2.14756 + 6.60950i −0.316640 + 0.974517i
\(47\) 1.66225 5.11589i 0.242464 0.746229i −0.753579 0.657358i \(-0.771674\pi\)
0.996043 0.0888711i \(-0.0283259\pi\)
\(48\) 6.50117 2.89451i 0.938363 0.417786i
\(49\) −6.36016 + 1.35189i −0.908595 + 0.193128i
\(50\) −1.03914 0.220875i −0.146956 0.0312365i
\(51\) −4.15921 1.85180i −0.582406 0.259304i
\(52\) −3.20338 + 3.55772i −0.444229 + 0.493367i
\(53\) −0.993928 + 9.45659i −0.136527 + 1.29896i 0.684895 + 0.728642i \(0.259848\pi\)
−0.821422 + 0.570321i \(0.806819\pi\)
\(54\) −5.10351 3.70792i −0.694500 0.504584i
\(55\) 1.05057 + 9.99551i 0.141659 + 1.34779i
\(56\) 1.11808 1.93658i 0.149410 0.258786i
\(57\) −0.663228 1.14874i −0.0878467 0.152155i
\(58\) 2.30908 1.67764i 0.303196 0.220285i
\(59\) −3.89932 4.33063i −0.507648 0.563800i 0.433778 0.901020i \(-0.357180\pi\)
−0.941426 + 0.337220i \(0.890513\pi\)
\(60\) −3.56032 10.9575i −0.459635 1.41461i
\(61\) 2.22719 0.285162 0.142581 0.989783i \(-0.454460\pi\)
0.142581 + 0.989783i \(0.454460\pi\)
\(62\) 9.67313 6.28768i 1.22849 0.798536i
\(63\) −5.79474 −0.730068
\(64\) −3.13704 9.65481i −0.392130 1.20685i
\(65\) −3.27911 3.64182i −0.406724 0.451713i
\(66\) −15.3522 + 11.1541i −1.88973 + 1.37297i
\(67\) 6.80719 + 11.7904i 0.831631 + 1.44043i 0.896744 + 0.442550i \(0.145926\pi\)
−0.0651129 + 0.997878i \(0.520741\pi\)
\(68\) −2.44059 + 4.22722i −0.295965 + 0.512626i
\(69\) −0.750018 7.13595i −0.0902916 0.859067i
\(70\) 14.4630 + 10.5080i 1.72866 + 1.25594i
\(71\) 0.139642 1.32861i 0.0165725 0.157676i −0.983106 0.183038i \(-0.941407\pi\)
0.999678 + 0.0253613i \(0.00807361\pi\)
\(72\) 0.642159 0.713189i 0.0756791 0.0840502i
\(73\) −12.9413 5.76184i −1.51466 0.674372i −0.529868 0.848080i \(-0.677758\pi\)
−0.984797 + 0.173708i \(0.944425\pi\)
\(74\) −0.556321 0.118250i −0.0646710 0.0137463i
\(75\) 1.07287 0.228046i 0.123885 0.0263325i
\(76\) −1.29917 + 0.578429i −0.149025 + 0.0663503i
\(77\) 4.86065 14.9595i 0.553922 1.70480i
\(78\) 2.85925 8.79986i 0.323746 0.996388i
\(79\) 7.92648 3.52910i 0.891799 0.397054i 0.0909042 0.995860i \(-0.471024\pi\)
0.800895 + 0.598805i \(0.204358\pi\)
\(80\) 7.63936 1.62380i 0.854106 0.181546i
\(81\) 10.9984 + 2.33777i 1.22204 + 0.259753i
\(82\) −8.09799 3.60546i −0.894274 0.398156i
\(83\) −3.46976 + 3.85356i −0.380856 + 0.422983i −0.902843 0.429970i \(-0.858524\pi\)
0.521987 + 0.852953i \(0.325191\pi\)
\(84\) −1.88479 + 17.9325i −0.205647 + 1.95660i
\(85\) −4.04231 2.93691i −0.438450 0.318553i
\(86\) −0.0584142 0.555774i −0.00629897 0.0599307i
\(87\) −1.47342 + 2.55203i −0.157967 + 0.273607i
\(88\) 1.30251 + 2.25601i 0.138848 + 0.240491i
\(89\) −4.05526 + 2.94632i −0.429857 + 0.312309i −0.781592 0.623790i \(-0.785592\pi\)
0.351735 + 0.936100i \(0.385592\pi\)
\(90\) 5.13379 + 5.70166i 0.541149 + 0.601007i
\(91\) 2.37001 + 7.29413i 0.248444 + 0.764632i
\(92\) −7.69274 −0.802024
\(93\) −6.48327 + 9.99270i −0.672284 + 1.03619i
\(94\) 11.1463 1.14965
\(95\) −0.449849 1.38449i −0.0461535 0.142046i
\(96\) 11.6094 + 12.8935i 1.18488 + 1.31594i
\(97\) −5.43173 + 3.94638i −0.551508 + 0.400694i −0.828341 0.560224i \(-0.810715\pi\)
0.276833 + 0.960918i \(0.410715\pi\)
\(98\) −6.73673 11.6684i −0.680512 1.17868i
\(99\) 3.37528 5.84615i 0.339228 0.587560i
\(100\) −0.122920 1.16950i −0.0122920 0.116950i
\(101\) 14.6130 + 10.6169i 1.45404 + 1.05642i 0.984866 + 0.173320i \(0.0554495\pi\)
0.469177 + 0.883104i \(0.344550\pi\)
\(102\) 0.986121 9.38232i 0.0976406 0.928988i
\(103\) 2.61986 2.90965i 0.258142 0.286696i −0.600117 0.799912i \(-0.704879\pi\)
0.858260 + 0.513216i \(0.171546\pi\)
\(104\) −1.16037 0.516628i −0.113783 0.0506596i
\(105\) −18.0543 3.83755i −1.76191 0.374506i
\(106\) −19.2726 + 4.09652i −1.87192 + 0.397889i
\(107\) 10.1546 4.52113i 0.981685 0.437074i 0.147803 0.989017i \(-0.452780\pi\)
0.833882 + 0.551943i \(0.186113\pi\)
\(108\) 2.15781 6.64105i 0.207635 0.639036i
\(109\) 5.59116 17.2078i 0.535536 1.64821i −0.206951 0.978351i \(-0.566354\pi\)
0.742488 0.669860i \(-0.233646\pi\)
\(110\) −19.0255 + 8.47070i −1.81401 + 0.807649i
\(111\) 0.574382 0.122089i 0.0545179 0.0115881i
\(112\) −11.9558 2.54128i −1.12972 0.240129i
\(113\) 16.0224 + 7.13365i 1.50727 + 0.671078i 0.983520 0.180798i \(-0.0578679\pi\)
0.523745 + 0.851875i \(0.324535\pi\)
\(114\) 1.83916 2.04259i 0.172253 0.191306i
\(115\) 0.823120 7.83147i 0.0767564 0.730288i
\(116\) 2.55598 + 1.85703i 0.237317 + 0.172421i
\(117\) 0.344056 + 3.27347i 0.0318080 + 0.302633i
\(118\) 6.03758 10.4574i 0.555804 0.962681i
\(119\) 3.90988 + 6.77211i 0.358418 + 0.620798i
\(120\) 2.47304 1.79677i 0.225756 0.164022i
\(121\) 4.90064 + 5.44271i 0.445513 + 0.494792i
\(122\) 1.42611 + 4.38913i 0.129114 + 0.397373i
\(123\) 9.15213 0.825220
\(124\) 9.92814 + 8.03263i 0.891573 + 0.721352i
\(125\) −10.5358 −0.942352
\(126\) −3.71049 11.4197i −0.330557 1.01735i
\(127\) −9.50050 10.5514i −0.843033 0.936283i 0.155638 0.987814i \(-0.450257\pi\)
−0.998671 + 0.0515308i \(0.983590\pi\)
\(128\) 3.89620 2.83075i 0.344378 0.250205i
\(129\) 0.288489 + 0.499677i 0.0254000 + 0.0439941i
\(130\) 5.07728 8.79410i 0.445307 0.771294i
\(131\) −0.751404 7.14913i −0.0656505 0.624623i −0.977037 0.213071i \(-0.931654\pi\)
0.911386 0.411552i \(-0.135013\pi\)
\(132\) −16.9938 12.3467i −1.47912 1.07465i
\(133\) −0.238144 + 2.26579i −0.0206497 + 0.196469i
\(134\) −18.8766 + 20.9646i −1.63069 + 1.81107i
\(135\) 6.52993 + 2.90731i 0.562007 + 0.250221i
\(136\) −1.26676 0.269259i −0.108624 0.0230888i
\(137\) −7.41206 + 1.57548i −0.633255 + 0.134603i −0.513345 0.858182i \(-0.671594\pi\)
−0.119910 + 0.992785i \(0.538261\pi\)
\(138\) 13.5826 6.04736i 1.15623 0.514785i
\(139\) −6.21069 + 19.1145i −0.526784 + 1.62127i 0.233977 + 0.972242i \(0.424826\pi\)
−0.760761 + 0.649032i \(0.775174\pi\)
\(140\) −6.11507 + 18.8203i −0.516818 + 1.59060i
\(141\) −10.5132 + 4.68078i −0.885371 + 0.394193i
\(142\) 2.70771 0.575541i 0.227226 0.0482983i
\(143\) −8.73931 1.85760i −0.730818 0.155340i
\(144\) −4.79216 2.13361i −0.399347 0.177801i
\(145\) −2.16400 + 2.40337i −0.179711 + 0.199589i
\(146\) 3.06830 29.1929i 0.253934 2.41602i
\(147\) 11.2541 + 8.17660i 0.928225 + 0.674395i
\(148\) −0.0658074 0.626116i −0.00540934 0.0514664i
\(149\) −6.15749 + 10.6651i −0.504441 + 0.873717i 0.495546 + 0.868582i \(0.334968\pi\)
−0.999987 + 0.00513554i \(0.998365\pi\)
\(150\) 1.13639 + 1.96829i 0.0927862 + 0.160710i
\(151\) 16.0808 11.6834i 1.30864 0.950781i 0.308637 0.951180i \(-0.400127\pi\)
1.00000 0.000399262i \(0.000127089\pi\)
\(152\) −0.252473 0.280399i −0.0204782 0.0227434i
\(153\) 1.03706 + 3.19174i 0.0838412 + 0.258037i
\(154\) 32.5932 2.62644
\(155\) −9.23979 + 9.24768i −0.742158 + 0.742792i
\(156\) 10.2421 0.820023
\(157\) −1.79373 5.52052i −0.143155 0.440585i 0.853614 0.520906i \(-0.174406\pi\)
−0.996769 + 0.0803203i \(0.974406\pi\)
\(158\) 12.0303 + 13.3610i 0.957079 + 1.06294i
\(159\) 16.4577 11.9572i 1.30518 0.948267i
\(160\) 9.52050 + 16.4900i 0.752662 + 1.30365i
\(161\) −6.16198 + 10.6729i −0.485632 + 0.841139i
\(162\) 2.43542 + 23.1714i 0.191344 + 1.82052i
\(163\) −14.3870 10.4528i −1.12688 0.818725i −0.141640 0.989918i \(-0.545238\pi\)
−0.985237 + 0.171194i \(0.945238\pi\)
\(164\) 1.02565 9.75845i 0.0800901 0.762007i
\(165\) 14.3877 15.9792i 1.12008 1.24398i
\(166\) −9.81599 4.37036i −0.761869 0.339206i
\(167\) −2.13435 0.453670i −0.165161 0.0351060i 0.124589 0.992208i \(-0.460239\pi\)
−0.289750 + 0.957102i \(0.593572\pi\)
\(168\) −4.67949 + 0.994657i −0.361031 + 0.0767394i
\(169\) −7.89632 + 3.51567i −0.607409 + 0.270436i
\(170\) 3.19941 9.84677i 0.245383 0.755212i
\(171\) −0.302145 + 0.929907i −0.0231056 + 0.0711117i
\(172\) 0.565110 0.251603i 0.0430892 0.0191846i
\(173\) 5.38757 1.14516i 0.409609 0.0870651i 0.00150131 0.999999i \(-0.499522\pi\)
0.408108 + 0.912934i \(0.366189\pi\)
\(174\) −5.97276 1.26955i −0.452794 0.0962443i
\(175\) −1.72102 0.766249i −0.130097 0.0579230i
\(176\) 9.52776 10.5816i 0.718182 0.797621i
\(177\) −1.30317 + 12.3989i −0.0979526 + 0.931956i
\(178\) −8.40300 6.10514i −0.629831 0.457599i
\(179\) −1.26834 12.0674i −0.0947999 0.901961i −0.933792 0.357817i \(-0.883521\pi\)
0.838992 0.544144i \(-0.183146\pi\)
\(180\) −4.24636 + 7.35491i −0.316505 + 0.548202i
\(181\) −4.82344 8.35444i −0.358523 0.620980i 0.629191 0.777251i \(-0.283386\pi\)
−0.987714 + 0.156270i \(0.950053\pi\)
\(182\) −12.8570 + 9.34116i −0.953025 + 0.692413i
\(183\) −3.18829 3.54096i −0.235685 0.261755i
\(184\) −0.630711 1.94113i −0.0464966 0.143102i
\(185\) 0.644448 0.0473808
\(186\) −23.8440 6.37808i −1.74833 0.467663i
\(187\) −9.10960 −0.666160
\(188\) 3.81269 + 11.7342i 0.278069 + 0.855808i
\(189\) −7.48532 8.31329i −0.544477 0.604703i
\(190\) 2.44038 1.77304i 0.177044 0.128630i
\(191\) −5.23270 9.06331i −0.378625 0.655798i 0.612237 0.790674i \(-0.290270\pi\)
−0.990862 + 0.134876i \(0.956936\pi\)
\(192\) −10.8592 + 18.8087i −0.783695 + 1.35740i
\(193\) 0.187174 + 1.78084i 0.0134731 + 0.128188i 0.999191 0.0402173i \(-0.0128050\pi\)
−0.985718 + 0.168405i \(0.946138\pi\)
\(194\) −11.2552 8.17738i −0.808076 0.587102i
\(195\) −1.09590 + 10.4268i −0.0784789 + 0.746677i
\(196\) 9.97950 11.0834i 0.712822 0.791669i
\(197\) 5.84391 + 2.60188i 0.416361 + 0.185376i 0.604216 0.796821i \(-0.293487\pi\)
−0.187854 + 0.982197i \(0.560153\pi\)
\(198\) 13.6823 + 2.90826i 0.972359 + 0.206681i
\(199\) −0.906896 + 0.192767i −0.0642881 + 0.0136649i −0.239943 0.970787i \(-0.577129\pi\)
0.175655 + 0.984452i \(0.443796\pi\)
\(200\) 0.285026 0.126902i 0.0201544 0.00897331i
\(201\) 9.00059 27.7010i 0.634852 1.95387i
\(202\) −11.5659 + 35.5961i −0.813771 + 2.50453i
\(203\) 4.62379 2.05865i 0.324527 0.144489i
\(204\) 10.2146 2.17117i 0.715162 0.152012i
\(205\) 9.82467 + 2.08830i 0.686185 + 0.145853i
\(206\) 7.41161 + 3.29986i 0.516391 + 0.229912i
\(207\) −3.53906 + 3.93053i −0.245982 + 0.273191i
\(208\) −0.725720 + 6.90477i −0.0503197 + 0.478759i
\(209\) −2.14718 1.56002i −0.148524 0.107909i
\(210\) −3.99784 38.0369i −0.275877 2.62479i
\(211\) 3.09072 5.35328i 0.212774 0.368535i −0.739808 0.672818i \(-0.765084\pi\)
0.952582 + 0.304283i \(0.0984169\pi\)
\(212\) −10.9050 18.8880i −0.748957 1.29723i
\(213\) −2.31222 + 1.67993i −0.158431 + 0.115107i
\(214\) 15.4120 + 17.1168i 1.05354 + 1.17008i
\(215\) 0.195674 + 0.602222i 0.0133448 + 0.0410712i
\(216\) 1.85267 0.126058
\(217\) 19.0970 7.34000i 1.29639 0.498272i
\(218\) 37.4917 2.53926
\(219\) 9.36527 + 28.8233i 0.632846 + 1.94770i
\(220\) −15.4254 17.1316i −1.03998 1.15501i
\(221\) 3.59345 2.61080i 0.241722 0.175621i
\(222\) 0.608389 + 1.05376i 0.0408324 + 0.0707238i
\(223\) −7.94891 + 13.7679i −0.532298 + 0.921968i 0.466991 + 0.884262i \(0.345338\pi\)
−0.999289 + 0.0377054i \(0.987995\pi\)
\(224\) −3.11491 29.6364i −0.208124 1.98017i
\(225\) −0.654096 0.475229i −0.0436064 0.0316819i
\(226\) −3.79882 + 36.1433i −0.252694 + 2.40422i
\(227\) −3.10808 + 3.45188i −0.206291 + 0.229109i −0.837408 0.546578i \(-0.815930\pi\)
0.631117 + 0.775688i \(0.282597\pi\)
\(228\) 2.77944 + 1.23749i 0.184073 + 0.0819545i
\(229\) 18.9940 + 4.03731i 1.25516 + 0.266793i 0.787057 0.616881i \(-0.211604\pi\)
0.468104 + 0.883673i \(0.344937\pi\)
\(230\) 15.9606 3.39252i 1.05241 0.223696i
\(231\) −30.7420 + 13.6872i −2.02268 + 0.900554i
\(232\) −0.259029 + 0.797210i −0.0170061 + 0.0523394i
\(233\) −4.40302 + 13.5511i −0.288452 + 0.887763i 0.696891 + 0.717177i \(0.254566\pi\)
−0.985343 + 0.170586i \(0.945434\pi\)
\(234\) −6.23074 + 2.77411i −0.407316 + 0.181349i
\(235\) −12.3538 + 2.62588i −0.805873 + 0.171294i
\(236\) 13.0742 + 2.77901i 0.851060 + 0.180898i
\(237\) −16.9578 7.55012i −1.10153 0.490433i
\(238\) −10.8423 + 12.0415i −0.702799 + 0.780537i
\(239\) 0.710952 6.76426i 0.0459877 0.437544i −0.947167 0.320740i \(-0.896068\pi\)
0.993155 0.116804i \(-0.0372648\pi\)
\(240\) −13.5176 9.82113i −0.872559 0.633951i
\(241\) 1.20261 + 11.4421i 0.0774671 + 0.737050i 0.962456 + 0.271438i \(0.0874992\pi\)
−0.884989 + 0.465612i \(0.845834\pi\)
\(242\) −7.58800 + 13.1428i −0.487775 + 0.844851i
\(243\) −7.46119 12.9232i −0.478636 0.829021i
\(244\) −4.13284 + 3.00269i −0.264578 + 0.192227i
\(245\) 10.2154 + 11.3454i 0.652640 + 0.724830i
\(246\) 5.86030 + 18.0362i 0.373639 + 1.14994i
\(247\) 1.29410 0.0823413
\(248\) −1.21291 + 3.16377i −0.0770197 + 0.200899i
\(249\) 11.0938 0.703039
\(250\) −6.74630 20.7630i −0.426673 1.31317i
\(251\) −4.88091 5.42080i −0.308080 0.342158i 0.569145 0.822237i \(-0.307274\pi\)
−0.877225 + 0.480080i \(0.840608\pi\)
\(252\) 10.7529 7.81244i 0.677369 0.492137i
\(253\) −7.17837 12.4333i −0.451300 0.781675i
\(254\) 14.7103 25.4790i 0.923005 1.59869i
\(255\) 1.11737 + 10.6311i 0.0699724 + 0.665743i
\(256\) −8.35235 6.06834i −0.522022 0.379271i
\(257\) 2.57722 24.5206i 0.160763 1.52955i −0.555378 0.831598i \(-0.687426\pi\)
0.716140 0.697956i \(-0.245907\pi\)
\(258\) −0.799991 + 0.888480i −0.0498053 + 0.0553143i
\(259\) −0.921381 0.410225i −0.0572518 0.0254902i
\(260\) 10.9947 + 2.33700i 0.681864 + 0.144935i
\(261\) 2.12471 0.451622i 0.131516 0.0279547i
\(262\) 13.6077 6.05853i 0.840686 0.374297i
\(263\) −8.12313 + 25.0004i −0.500894 + 1.54159i 0.306672 + 0.951815i \(0.400785\pi\)
−0.807566 + 0.589777i \(0.799215\pi\)
\(264\) 1.72220 5.30037i 0.105994 0.326215i
\(265\) 20.3954 9.08062i 1.25288 0.557818i
\(266\) −4.61769 + 0.981521i −0.283129 + 0.0601809i
\(267\) 10.4895 + 2.22962i 0.641949 + 0.136450i
\(268\) −28.5274 12.7012i −1.74259 0.775851i
\(269\) −13.9713 + 15.5167i −0.851846 + 0.946071i −0.999074 0.0430321i \(-0.986298\pi\)
0.147228 + 0.989103i \(0.452965\pi\)
\(270\) −1.54820 + 14.7302i −0.0942206 + 0.896450i
\(271\) 16.9981 + 12.3499i 1.03256 + 0.750201i 0.968820 0.247765i \(-0.0796962\pi\)
0.0637431 + 0.997966i \(0.479696\pi\)
\(272\) 0.739939 + 7.04005i 0.0448654 + 0.426866i
\(273\) 8.20403 14.2098i 0.496530 0.860016i
\(274\) −7.85091 13.5982i −0.474291 0.821496i
\(275\) 1.77550 1.28997i 0.107066 0.0777883i
\(276\) 11.0124 + 12.2305i 0.662869 + 0.736191i
\(277\) −1.47070 4.52635i −0.0883657 0.271962i 0.897102 0.441823i \(-0.145668\pi\)
−0.985468 + 0.169861i \(0.945668\pi\)
\(278\) −41.6459 −2.49776
\(279\) 8.67165 1.37725i 0.519158 0.0824539i
\(280\) −5.25032 −0.313767
\(281\) −2.05645 6.32910i −0.122678 0.377563i 0.870793 0.491649i \(-0.163606\pi\)
−0.993471 + 0.114087i \(0.963606\pi\)
\(282\) −15.9563 17.7212i −0.950181 1.05528i
\(283\) 5.86234 4.25924i 0.348480 0.253185i −0.399751 0.916624i \(-0.630904\pi\)
0.748231 + 0.663438i \(0.230904\pi\)
\(284\) 1.53210 + 2.65367i 0.0909132 + 0.157466i
\(285\) −1.55720 + 2.69715i −0.0922406 + 0.159765i
\(286\) −1.93519 18.4121i −0.114430 1.08873i
\(287\) −12.7172 9.23961i −0.750675 0.545397i
\(288\) 1.33682 12.7190i 0.0787729 0.749474i
\(289\) −8.34488 + 9.26793i −0.490875 + 0.545172i
\(290\) −6.12199 2.72568i −0.359495 0.160058i
\(291\) 14.0500 + 2.98641i 0.823623 + 0.175066i
\(292\) 31.7824 6.75555i 1.85992 0.395339i
\(293\) 12.3434 5.49563i 0.721108 0.321058i −0.0131637 0.999913i \(-0.504190\pi\)
0.734272 + 0.678855i \(0.237524\pi\)
\(294\) −8.90741 + 27.4142i −0.519491 + 1.59883i
\(295\) −4.22807 + 13.0126i −0.246168 + 0.757626i
\(296\) 0.152594 0.0679392i 0.00886934 0.00394888i
\(297\) 12.7471 2.70947i 0.739659 0.157219i
\(298\) −24.9605 5.30552i −1.44592 0.307340i
\(299\) 6.39501 + 2.84724i 0.369833 + 0.164660i
\(300\) −1.68341 + 1.86961i −0.0971915 + 0.107942i
\(301\) 0.103587 0.985567i 0.00597067 0.0568071i
\(302\) 33.3214 + 24.2094i 1.91743 + 1.39309i
\(303\) −4.03929 38.4313i −0.232051 2.20782i
\(304\) −1.03120 + 1.78609i −0.0591434 + 0.102439i
\(305\) −2.61462 4.52866i −0.149713 0.259310i
\(306\) −5.62592 + 4.08747i −0.321613 + 0.233665i
\(307\) −15.2065 16.8886i −0.867883 0.963882i 0.131741 0.991284i \(-0.457943\pi\)
−0.999624 + 0.0274020i \(0.991277\pi\)
\(308\) 11.1488 + 34.3125i 0.635263 + 1.95514i
\(309\) −8.37640 −0.476517
\(310\) −24.1409 12.2874i −1.37111 0.697878i
\(311\) 9.49330 0.538315 0.269158 0.963096i \(-0.413255\pi\)
0.269158 + 0.963096i \(0.413255\pi\)
\(312\) 0.839726 + 2.58441i 0.0475401 + 0.146313i
\(313\) 18.8006 + 20.8802i 1.06267 + 1.18022i 0.983040 + 0.183393i \(0.0587082\pi\)
0.0796330 + 0.996824i \(0.474625\pi\)
\(314\) 9.73075 7.06981i 0.549138 0.398972i
\(315\) 6.80276 + 11.7827i 0.383292 + 0.663882i
\(316\) −9.95072 + 17.2352i −0.559772 + 0.969553i
\(317\) 1.65331 + 15.7302i 0.0928591 + 0.883495i 0.937459 + 0.348096i \(0.113172\pi\)
−0.844600 + 0.535398i \(0.820161\pi\)
\(318\) 34.1023 + 24.7768i 1.91236 + 1.38941i
\(319\) −0.616323 + 5.86393i −0.0345075 + 0.328317i
\(320\) −15.9489 + 17.7130i −0.891569 + 0.990188i
\(321\) −21.7247 9.67247i −1.21256 0.539865i
\(322\) −24.9787 5.30938i −1.39201 0.295880i
\(323\) 1.29062 0.274329i 0.0718118 0.0152641i
\(324\) −23.5607 + 10.4899i −1.30893 + 0.582772i
\(325\) −0.330674 + 1.01771i −0.0183425 + 0.0564523i
\(326\) 11.3870 35.0457i 0.630669 1.94100i
\(327\) −35.3623 + 15.7443i −1.95554 + 0.870662i
\(328\) 2.54646 0.541267i 0.140605 0.0298865i
\(329\) 19.3340 + 4.10957i 1.06592 + 0.226568i
\(330\) 40.7030 + 18.1221i 2.24063 + 0.997591i
\(331\) 8.66131 9.61936i 0.476069 0.528728i −0.456499 0.889724i \(-0.650897\pi\)
0.932567 + 0.360996i \(0.117563\pi\)
\(332\) 1.24325 11.8287i 0.0682321 0.649185i
\(333\) −0.350182 0.254422i −0.0191899 0.0139423i
\(334\) −0.472618 4.49666i −0.0258605 0.246046i
\(335\) 15.9827 27.6828i 0.873228 1.51247i
\(336\) 13.0748 + 22.6462i 0.713287 + 1.23545i
\(337\) 22.5443 16.3794i 1.22807 0.892243i 0.231323 0.972877i \(-0.425694\pi\)
0.996744 + 0.0806338i \(0.0256944\pi\)
\(338\) −11.9845 13.3102i −0.651872 0.723977i
\(339\) −11.5950 35.6858i −0.629755 1.93819i
\(340\) 11.4606 0.621537
\(341\) −3.71834 + 23.5418i −0.201360 + 1.27486i
\(342\) −2.02604 −0.109556
\(343\) 0.565190 + 1.73948i 0.0305174 + 0.0939229i
\(344\) 0.109820 + 0.121967i 0.00592108 + 0.00657603i
\(345\) −13.6294 + 9.90233i −0.733782 + 0.533124i
\(346\) 5.70655 + 9.88403i 0.306786 + 0.531369i
\(347\) −2.66175 + 4.61029i −0.142890 + 0.247493i −0.928584 0.371123i \(-0.878973\pi\)
0.785693 + 0.618616i \(0.212306\pi\)
\(348\) −0.706520 6.72209i −0.0378734 0.360342i
\(349\) 3.31528 + 2.40869i 0.177463 + 0.128934i 0.672971 0.739669i \(-0.265018\pi\)
−0.495508 + 0.868603i \(0.665018\pi\)
\(350\) 0.408043 3.88227i 0.0218108 0.207516i
\(351\) −4.25178 + 4.72208i −0.226943 + 0.252046i
\(352\) 31.7137 + 14.1199i 1.69035 + 0.752591i
\(353\) −21.3132 4.53026i −1.13439 0.241122i −0.397806 0.917470i \(-0.630228\pi\)
−0.736582 + 0.676348i \(0.763562\pi\)
\(354\) −25.2690 + 5.37109i −1.34303 + 0.285470i
\(355\) −2.86546 + 1.27578i −0.152083 + 0.0677115i
\(356\) 3.55286 10.9346i 0.188301 0.579531i
\(357\) 5.16971 15.9107i 0.273610 0.842085i
\(358\) 22.9692 10.2265i 1.21396 0.540489i
\(359\) 6.92668 1.47231i 0.365576 0.0777057i −0.0214610 0.999770i \(-0.506832\pi\)
0.387037 + 0.922064i \(0.373498\pi\)
\(360\) −2.20403 0.468481i −0.116163 0.0246911i
\(361\) −17.0062 7.57164i −0.895062 0.398507i
\(362\) 13.3756 14.8551i 0.703005 0.780766i
\(363\) 1.63782 15.5828i 0.0859634 0.817887i
\(364\) −14.2318 10.3400i −0.745947 0.541963i
\(365\) 3.47668 + 33.0784i 0.181977 + 1.73140i
\(366\) 4.93665 8.55053i 0.258043 0.446943i
\(367\) 8.05884 + 13.9583i 0.420668 + 0.728619i 0.996005 0.0892980i \(-0.0284624\pi\)
−0.575337 + 0.817917i \(0.695129\pi\)
\(368\) −9.02559 + 6.55747i −0.470491 + 0.341832i
\(369\) −4.51412 5.01344i −0.234996 0.260989i
\(370\) 0.412653 + 1.27002i 0.0214528 + 0.0660250i
\(371\) −34.9401 −1.81400
\(372\) −1.44155 27.2835i −0.0747409 1.41458i
\(373\) −9.81895 −0.508406 −0.254203 0.967151i \(-0.581813\pi\)
−0.254203 + 0.967151i \(0.581813\pi\)
\(374\) −5.83306 17.9523i −0.301621 0.928293i
\(375\) 15.0824 + 16.7507i 0.778849 + 0.865000i
\(376\) −2.64834 + 1.92413i −0.136578 + 0.0992294i
\(377\) −1.43747 2.48977i −0.0740335 0.128230i
\(378\) 11.5900 20.0745i 0.596127 1.03252i
\(379\) 1.44413 + 13.7399i 0.0741798 + 0.705773i 0.966899 + 0.255160i \(0.0821281\pi\)
−0.892719 + 0.450614i \(0.851205\pi\)
\(380\) 2.70132 + 1.96262i 0.138575 + 0.100680i
\(381\) −3.17512 + 30.2093i −0.162666 + 1.54767i
\(382\) 14.5105 16.1155i 0.742421 0.824542i
\(383\) 9.41502 + 4.19184i 0.481085 + 0.214193i 0.632926 0.774212i \(-0.281854\pi\)
−0.151841 + 0.988405i \(0.548520\pi\)
\(384\) −10.0781 2.14216i −0.514295 0.109317i
\(385\) −36.1242 + 7.67843i −1.84106 + 0.391329i
\(386\) −3.38966 + 1.50917i −0.172529 + 0.0768149i
\(387\) 0.131426 0.404488i 0.00668076 0.0205613i
\(388\) 4.75879 14.6461i 0.241591 0.743541i
\(389\) −23.1725 + 10.3170i −1.17489 + 0.523095i −0.898938 0.438077i \(-0.855660\pi\)
−0.275952 + 0.961171i \(0.588993\pi\)
\(390\) −21.2498 + 4.51679i −1.07603 + 0.228717i
\(391\) 6.98139 + 1.48394i 0.353064 + 0.0750460i
\(392\) 3.61489 + 1.60945i 0.182579 + 0.0812896i
\(393\) −10.2906 + 11.4289i −0.519091 + 0.576509i
\(394\) −1.38555 + 13.1827i −0.0698032 + 0.664133i
\(395\) −16.4812 11.9743i −0.829261 0.602493i
\(396\) 1.61848 + 15.3988i 0.0813319 + 0.773821i
\(397\) −8.37941 + 14.5136i −0.420550 + 0.728415i −0.995993 0.0894272i \(-0.971496\pi\)
0.575443 + 0.817842i \(0.304830\pi\)
\(398\) −0.960590 1.66379i −0.0481500 0.0833983i
\(399\) 3.94324 2.86493i 0.197409 0.143426i
\(400\) −1.14113 1.26735i −0.0570565 0.0633677i
\(401\) −8.53615 26.2716i −0.426275 1.31194i −0.901768 0.432220i \(-0.857730\pi\)
0.475493 0.879720i \(-0.342270\pi\)
\(402\) 60.3537 3.01017
\(403\) −5.28026 10.3522i −0.263028 0.515678i
\(404\) −41.4300 −2.06122
\(405\) −8.15807 25.1080i −0.405378 1.24763i
\(406\) 7.01769 + 7.79394i 0.348282 + 0.386807i
\(407\) 0.950545 0.690611i 0.0471168 0.0342323i
\(408\) 1.38532 + 2.39945i 0.0685838 + 0.118791i
\(409\) 11.3053 19.5814i 0.559013 0.968239i −0.438566 0.898699i \(-0.644514\pi\)
0.997579 0.0695399i \(-0.0221531\pi\)
\(410\) 2.17552 + 20.6987i 0.107441 + 1.02224i
\(411\) 13.1154 + 9.52892i 0.646936 + 0.470027i
\(412\) −0.938720 + 8.93132i −0.0462474 + 0.440015i
\(413\) 14.3282 15.9131i 0.705045 0.783031i
\(414\) −10.0120 4.45765i −0.492065 0.219082i
\(415\) 11.9090 + 2.53133i 0.584589 + 0.124258i
\(416\) −16.5568 + 3.51926i −0.811764 + 0.172546i
\(417\) 39.2806 17.4888i 1.92358 0.856432i
\(418\) 1.69945 5.23038i 0.0831229 0.255826i
\(419\) −1.91312 + 5.88796i −0.0934618 + 0.287646i −0.986850 0.161640i \(-0.948322\pi\)
0.893388 + 0.449286i \(0.148322\pi\)
\(420\) 38.6758 17.2196i 1.88719 0.840230i
\(421\) −6.41600 + 1.36376i −0.312697 + 0.0664657i −0.361587 0.932338i \(-0.617765\pi\)
0.0488901 + 0.998804i \(0.484432\pi\)
\(422\) 12.5288 + 2.66308i 0.609892 + 0.129637i
\(423\) 7.74953 + 3.45031i 0.376795 + 0.167760i
\(424\) 3.87197 4.30026i 0.188040 0.208839i
\(425\) −0.114046 + 1.08507i −0.00553202 + 0.0526337i
\(426\) −4.79121 3.48102i −0.232135 0.168656i
\(427\) 0.855450 + 8.13906i 0.0413981 + 0.393877i
\(428\) −12.7479 + 22.0800i −0.616192 + 1.06728i
\(429\) 9.55725 + 16.5536i 0.461428 + 0.799217i
\(430\) −1.06151 + 0.771231i −0.0511905 + 0.0371920i
\(431\) 15.7030 + 17.4399i 0.756385 + 0.840051i 0.991253 0.131977i \(-0.0421324\pi\)
−0.234868 + 0.972027i \(0.575466\pi\)
\(432\) −3.12932 9.63105i −0.150559 0.463374i
\(433\) 24.3130 1.16841 0.584203 0.811607i \(-0.301407\pi\)
0.584203 + 0.811607i \(0.301407\pi\)
\(434\) 26.6932 + 32.9345i 1.28131 + 1.58091i
\(435\) 6.91890 0.331736
\(436\) 12.8244 + 39.4694i 0.614176 + 1.89024i
\(437\) 1.39143 + 1.54534i 0.0665610 + 0.0739234i
\(438\) −50.8055 + 36.9124i −2.42758 + 1.76374i
\(439\) −7.25318 12.5629i −0.346175 0.599593i 0.639391 0.768881i \(-0.279186\pi\)
−0.985567 + 0.169288i \(0.945853\pi\)
\(440\) 3.05817 5.29690i 0.145792 0.252520i
\(441\) −1.07184 10.1979i −0.0510399 0.485612i
\(442\) 7.44607 + 5.40989i 0.354173 + 0.257322i
\(443\) 1.73162 16.4752i 0.0822716 0.782762i −0.873137 0.487475i \(-0.837918\pi\)
0.955409 0.295287i \(-0.0954153\pi\)
\(444\) −0.901242 + 1.00093i −0.0427711 + 0.0475021i
\(445\) 10.7516 + 4.78692i 0.509675 + 0.226922i
\(446\) −32.2223 6.84907i −1.52577 0.324313i
\(447\) 25.7708 5.47775i 1.21892 0.259089i
\(448\) 34.0777 15.1724i 1.61002 0.716828i
\(449\) 2.10667 6.48365i 0.0994197 0.305982i −0.888961 0.457984i \(-0.848572\pi\)
0.988380 + 0.152001i \(0.0485718\pi\)
\(450\) 0.517704 1.59333i 0.0244048 0.0751102i
\(451\) 16.7290 7.44825i 0.787740 0.350724i
\(452\) −39.3493 + 8.36396i −1.85084 + 0.393408i
\(453\) −41.5953 8.84136i −1.95432 0.415403i
\(454\) −8.79280 3.91481i −0.412667 0.183731i
\(455\) 12.0492 13.3820i 0.564877 0.627359i
\(456\) −0.0843778 + 0.802801i −0.00395135 + 0.0375946i
\(457\) −17.3354 12.5949i −0.810916 0.589165i 0.103180 0.994663i \(-0.467098\pi\)
−0.914096 + 0.405497i \(0.867098\pi\)
\(458\) 4.20594 + 40.0168i 0.196530 + 1.86986i
\(459\) −3.23934 + 5.61070i −0.151200 + 0.261885i
\(460\) 9.03094 + 15.6420i 0.421070 + 0.729314i
\(461\) 7.01782 5.09875i 0.326853 0.237472i −0.412241 0.911075i \(-0.635254\pi\)
0.739094 + 0.673602i \(0.235254\pi\)
\(462\) −46.6582 51.8192i −2.17074 2.41085i
\(463\) 1.12787 + 3.47124i 0.0524167 + 0.161322i 0.973838 0.227243i \(-0.0729710\pi\)
−0.921421 + 0.388565i \(0.872971\pi\)
\(464\) 4.58180 0.212705
\(465\) 27.9297 + 1.45178i 1.29521 + 0.0673245i
\(466\) −29.5246 −1.36770
\(467\) −0.952115 2.93031i −0.0440586 0.135599i 0.926607 0.376030i \(-0.122711\pi\)
−0.970666 + 0.240431i \(0.922711\pi\)
\(468\) −5.05172 5.61051i −0.233516 0.259346i
\(469\) −40.4724 + 29.4049i −1.86884 + 1.35779i
\(470\) −13.0852 22.6643i −0.603577 1.04543i
\(471\) −6.20917 + 10.7546i −0.286104 + 0.495546i
\(472\) 0.370692 + 3.52690i 0.0170625 + 0.162339i
\(473\) 0.933975 + 0.678572i 0.0429442 + 0.0312008i
\(474\) 4.02060 38.2534i 0.184672 1.75704i
\(475\) −0.212700 + 0.236227i −0.00975933 + 0.0108388i
\(476\) −16.3854 7.29526i −0.751025 0.334378i
\(477\) −14.6675 3.11767i −0.671578 0.142748i
\(478\) 13.7856 2.93022i 0.630538 0.134025i
\(479\) −15.9050 + 7.08138i −0.726720 + 0.323556i −0.736539 0.676395i \(-0.763541\pi\)
0.00981912 + 0.999952i \(0.496874\pi\)
\(480\) 12.5882 38.7424i 0.574568 1.76834i
\(481\) −0.177032 + 0.544849i −0.00807197 + 0.0248430i
\(482\) −21.7789 + 9.69661i −0.992003 + 0.441668i
\(483\) 25.7896 5.48175i 1.17347 0.249428i
\(484\) −16.4316 3.49265i −0.746892 0.158757i
\(485\) 14.4010 + 6.41173i 0.653915 + 0.291142i
\(486\) 20.6902 22.9788i 0.938526 1.04234i
\(487\) −3.00766 + 28.6160i −0.136290 + 1.29671i 0.685981 + 0.727619i \(0.259373\pi\)
−0.822272 + 0.569095i \(0.807294\pi\)
\(488\) −1.09652 0.796666i −0.0496370 0.0360634i
\(489\) 3.97684 + 37.8371i 0.179839 + 1.71105i
\(490\) −15.8172 + 27.3963i −0.714550 + 1.23764i
\(491\) 4.91284 + 8.50929i 0.221713 + 0.384019i 0.955328 0.295546i \(-0.0955017\pi\)
−0.733615 + 0.679565i \(0.762168\pi\)
\(492\) −16.9830 + 12.3389i −0.765652 + 0.556279i
\(493\) −1.96140 2.17836i −0.0883371 0.0981083i
\(494\) 0.828636 + 2.55028i 0.0372821 + 0.114743i
\(495\) −15.8497 −0.712391
\(496\) 18.4955 + 0.961388i 0.830472 + 0.0431676i
\(497\) 4.90891 0.220195
\(498\) 7.10357 + 21.8625i 0.318319 + 0.979684i
\(499\) −7.25874 8.06164i −0.324946 0.360889i 0.558432 0.829550i \(-0.311403\pi\)
−0.883378 + 0.468661i \(0.844736\pi\)
\(500\) 19.5506 14.2043i 0.874329 0.635237i
\(501\) 2.33411 + 4.04280i 0.104280 + 0.180619i
\(502\) 7.55745 13.0899i 0.337305 0.584230i
\(503\) −0.894863 8.51405i −0.0399000 0.379623i −0.996190 0.0872044i \(-0.972207\pi\)
0.956290 0.292418i \(-0.0944600\pi\)
\(504\) 2.85294 + 2.07278i 0.127080 + 0.0923290i
\(505\) 4.43299 42.1771i 0.197265 1.87685i
\(506\) 19.9059 22.1077i 0.884925 0.982809i
\(507\) 16.8933 + 7.52139i 0.750259 + 0.334037i
\(508\) 31.8548 + 6.77094i 1.41333 + 0.300412i
\(509\) 38.7174 8.22963i 1.71612 0.364772i 0.758245 0.651969i \(-0.226057\pi\)
0.957871 + 0.287197i \(0.0927236\pi\)
\(510\) −20.2352 + 9.00930i −0.896030 + 0.398938i
\(511\) 16.0855 49.5059i 0.711579 2.19001i
\(512\) 9.58715 29.5062i 0.423696 1.30400i
\(513\) −1.72436 + 0.767736i −0.0761325 + 0.0338964i
\(514\) 49.9732 10.6221i 2.20422 0.468522i
\(515\) −8.99194 1.91130i −0.396232 0.0842217i
\(516\) −1.20899 0.538278i −0.0532229 0.0236964i
\(517\) −15.4076 + 17.1119i −0.677625 + 0.752578i
\(518\) 0.218453 2.07845i 0.00959830 0.0913217i
\(519\) −9.53314 6.92623i −0.418458 0.304028i
\(520\) 0.311732 + 2.96593i 0.0136703 + 0.130065i
\(521\) 0.674660 1.16855i 0.0295574 0.0511949i −0.850868 0.525379i \(-0.823924\pi\)
0.880426 + 0.474184i \(0.157257\pi\)
\(522\) 2.25051 + 3.89800i 0.0985022 + 0.170611i
\(523\) −23.0351 + 16.7360i −1.00725 + 0.731812i −0.963631 0.267236i \(-0.913890\pi\)
−0.0436219 + 0.999048i \(0.513890\pi\)
\(524\) 11.0328 + 12.2531i 0.481968 + 0.535280i
\(525\) 1.24546 + 3.83313i 0.0543562 + 0.167291i
\(526\) −54.4699 −2.37500
\(527\) −7.46057 9.20499i −0.324987 0.400976i
\(528\) −30.4628 −1.32572
\(529\) −3.63142 11.1764i −0.157888 0.485929i
\(530\) 30.9548 + 34.3788i 1.34459 + 1.49332i
\(531\) 7.43474 5.40166i 0.322640 0.234412i
\(532\) −2.61282 4.52554i −0.113280 0.196207i
\(533\) −4.46443 + 7.73262i −0.193376 + 0.334937i
\(534\) 2.32274 + 22.0994i 0.100515 + 0.956336i
\(535\) −21.1141 15.3403i −0.912843 0.663220i
\(536\) 0.866031 8.23974i 0.0374069 0.355902i
\(537\) −17.3701 + 19.2914i −0.749573 + 0.832485i
\(538\) −39.5250 17.5977i −1.70404 0.758689i
\(539\) 27.2256 + 5.78697i 1.17269 + 0.249263i
\(540\) −16.0368 + 3.40872i −0.690113 + 0.146688i
\(541\) −13.0725 + 5.82024i −0.562029 + 0.250232i −0.668030 0.744134i \(-0.732862\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(542\) −13.4537 + 41.4062i −0.577885 + 1.77855i
\(543\) −6.37763 + 19.6283i −0.273690 + 0.842332i
\(544\) −15.7663 + 7.01959i −0.675973 + 0.300962i
\(545\) −41.5533 + 8.83243i −1.77995 + 0.378340i
\(546\) 33.2565 + 7.06889i 1.42325 + 0.302521i
\(547\) 38.7041 + 17.2322i 1.65487 + 0.736795i 0.999823 0.0187957i \(-0.00598320\pi\)
0.655044 + 0.755590i \(0.272650\pi\)
\(548\) 11.6300 12.9164i 0.496809 0.551762i
\(549\) −0.367132 + 3.49303i −0.0156688 + 0.149079i
\(550\) 3.67904 + 2.67298i 0.156875 + 0.113976i
\(551\) −0.0892693 0.849341i −0.00380300 0.0361831i
\(552\) −2.18327 + 3.78154i −0.0929263 + 0.160953i
\(553\) 15.9413 + 27.6111i 0.677893 + 1.17414i
\(554\) 7.97837 5.79663i 0.338969 0.246275i
\(555\) −0.922548 1.02459i −0.0391600 0.0434916i
\(556\) −14.2454 43.8428i −0.604139 1.85935i
\(557\) 27.3019 1.15682 0.578409 0.815747i \(-0.303674\pi\)
0.578409 + 0.815747i \(0.303674\pi\)
\(558\) 8.26679 + 16.2074i 0.349961 + 0.686113i
\(559\) −0.562902 −0.0238082
\(560\) 8.86825 + 27.2937i 0.374752 + 1.15337i
\(561\) 13.0407 + 14.4831i 0.550578 + 0.611479i
\(562\) 11.1560 8.10531i 0.470588 0.341902i
\(563\) −2.59399 4.49293i −0.109324 0.189354i 0.806173 0.591680i \(-0.201535\pi\)
−0.915497 + 0.402326i \(0.868202\pi\)
\(564\) 13.1980 22.8597i 0.555737 0.962565i
\(565\) −4.30442 40.9539i −0.181088 1.72294i
\(566\) 12.1475 + 8.82566i 0.510596 + 0.370970i
\(567\) −4.31878 + 41.0905i −0.181372 + 1.72564i
\(568\) −0.543993 + 0.604166i −0.0228255 + 0.0253502i
\(569\) 2.16312 + 0.963083i 0.0906827 + 0.0403746i 0.451577 0.892232i \(-0.350862\pi\)
−0.360894 + 0.932607i \(0.617528\pi\)
\(570\) −6.31239 1.34174i −0.264397 0.0561993i
\(571\) −19.9170 + 4.23348i −0.833500 + 0.177166i −0.604846 0.796342i \(-0.706765\pi\)
−0.228653 + 0.973508i \(0.573432\pi\)
\(572\) 18.7214 8.33528i 0.782779 0.348516i
\(573\) −6.91877 + 21.2938i −0.289036 + 0.889560i
\(574\) 10.0654 30.9782i 0.420123 1.29301i
\(575\) −1.57083 + 0.699381i −0.0655083 + 0.0291662i
\(576\) 15.6593 3.32849i 0.652471 0.138687i
\(577\) −25.0227 5.31874i −1.04171 0.221422i −0.344871 0.938650i \(-0.612077\pi\)
−0.696839 + 0.717228i \(0.745411\pi\)
\(578\) −23.6077 10.5108i −0.981953 0.437194i
\(579\) 2.56337 2.84691i 0.106530 0.118314i
\(580\) 0.775382 7.37727i 0.0321960 0.306324i
\(581\) −15.4152 11.1998i −0.639531 0.464646i
\(582\) 3.11115 + 29.6006i 0.128961 + 1.22698i
\(583\) 20.3516 35.2501i 0.842879 1.45991i
\(584\) 4.31041 + 7.46585i 0.178366 + 0.308939i
\(585\) 6.25221 4.54250i 0.258497 0.187809i
\(586\) 18.7340 + 20.8062i 0.773894 + 0.859497i
\(587\) 12.3489 + 38.0060i 0.509694 + 1.56868i 0.792733 + 0.609568i \(0.208657\pi\)
−0.283040 + 0.959108i \(0.591343\pi\)
\(588\) −31.9072 −1.31583
\(589\) −0.182141 3.44729i −0.00750499 0.142043i
\(590\) −28.3514 −1.16721
\(591\) −4.22908 13.0158i −0.173961 0.535397i
\(592\) −0.610925 0.678501i −0.0251089 0.0278862i
\(593\) 16.9709 12.3301i 0.696911 0.506335i −0.182014 0.983296i \(-0.558262\pi\)
0.878925 + 0.476961i \(0.158262\pi\)
\(594\) 13.5018 + 23.3857i 0.553984 + 0.959529i
\(595\) 9.18005 15.9003i 0.376345 0.651849i
\(596\) −2.95258 28.0920i −0.120943 1.15069i
\(597\) 1.60473 + 1.16590i 0.0656771 + 0.0477172i
\(598\) −1.51621 + 14.4258i −0.0620026 + 0.589915i
\(599\) 14.0125 15.5625i 0.572535 0.635865i −0.385434 0.922735i \(-0.625948\pi\)
0.957969 + 0.286870i \(0.0926149\pi\)
\(600\) −0.609782 0.271492i −0.0248943 0.0110836i
\(601\) 16.2555 + 3.45522i 0.663076 + 0.140941i 0.527143 0.849777i \(-0.323263\pi\)
0.135933 + 0.990718i \(0.456597\pi\)
\(602\) 2.00859 0.426939i 0.0818640 0.0174007i
\(603\) −19.6137 + 8.73257i −0.798730 + 0.355618i
\(604\) −14.0886 + 43.3601i −0.573256 + 1.76430i
\(605\) 5.31381 16.3542i 0.216037 0.664894i
\(606\) 73.1503 32.5686i 2.97153 1.32301i
\(607\) −28.9056 + 6.14407i −1.17324 + 0.249380i −0.752993 0.658029i \(-0.771390\pi\)
−0.420249 + 0.907409i \(0.638057\pi\)
\(608\) −4.91830 1.04542i −0.199463 0.0423972i
\(609\) −9.89211 4.40425i −0.400848 0.178469i
\(610\) 7.25045 8.05244i 0.293562 0.326034i
\(611\) 1.17358 11.1659i 0.0474780 0.451723i
\(612\) −6.22749 4.52453i −0.251731 0.182893i
\(613\) −3.87799 36.8966i −0.156631 1.49024i −0.737003 0.675889i \(-0.763760\pi\)
0.580373 0.814351i \(-0.302907\pi\)
\(614\) 23.5453 40.7817i 0.950212 1.64582i
\(615\) −10.7442 18.6095i −0.433248 0.750407i
\(616\) −7.74409 + 5.62641i −0.312018 + 0.226695i
\(617\) −17.6270 19.5768i −0.709636 0.788131i 0.275243 0.961375i \(-0.411242\pi\)
−0.984879 + 0.173244i \(0.944575\pi\)
\(618\) −5.36358 16.5074i −0.215755 0.664026i
\(619\) −26.3796 −1.06029 −0.530144 0.847908i \(-0.677862\pi\)
−0.530144 + 0.847908i \(0.677862\pi\)
\(620\) 4.67796 29.6173i 0.187871 1.18946i
\(621\) −10.2104 −0.409730
\(622\) 6.07875 + 18.7085i 0.243736 + 0.750142i
\(623\) −12.3247 13.6879i −0.493778 0.548396i
\(624\) 12.0166 8.73059i 0.481050 0.349503i
\(625\) 13.6503 + 23.6430i 0.546012 + 0.945720i
\(626\) −29.1103 + 50.4204i −1.16348 + 2.01521i
\(627\) 0.593521 + 5.64698i 0.0237029 + 0.225518i
\(628\) 10.7712 + 7.82576i 0.429819 + 0.312282i
\(629\) −0.0610564 + 0.580913i −0.00243448 + 0.0231625i
\(630\) −18.8643 + 20.9510i −0.751573 + 0.834706i
\(631\) 18.2446 + 8.12304i 0.726308 + 0.323373i 0.736372 0.676576i \(-0.236537\pi\)
−0.0100649 + 0.999949i \(0.503204\pi\)
\(632\) −5.16483 1.09782i −0.205446 0.0436688i
\(633\) −12.9355 + 2.74953i −0.514141 + 0.109284i
\(634\) −29.9409 + 13.3305i −1.18910 + 0.529423i
\(635\) −10.3015 + 31.7047i −0.408802 + 1.25816i
\(636\) −14.4187 + 44.3763i −0.571740 + 1.75964i
\(637\) −12.3982 + 5.52002i −0.491234 + 0.218711i
\(638\) −11.9507 + 2.54020i −0.473133 + 0.100568i
\(639\) 2.06071 + 0.438017i 0.0815204 + 0.0173277i
\(640\) −10.3299 4.59916i −0.408324 0.181798i
\(641\) 15.5874 17.3115i 0.615664 0.683764i −0.352002 0.935999i \(-0.614499\pi\)
0.967666 + 0.252235i \(0.0811657\pi\)
\(642\) 5.15079 49.0065i 0.203285 1.93413i
\(643\) 31.4658 + 22.8612i 1.24089 + 0.901559i 0.997657 0.0684089i \(-0.0217922\pi\)
0.243232 + 0.969968i \(0.421792\pi\)
\(644\) −2.95474 28.1124i −0.116433 1.10779i
\(645\) 0.677346 1.17320i 0.0266705 0.0461946i
\(646\) 1.36703 + 2.36777i 0.0537851 + 0.0931585i
\(647\) 1.80444 1.31100i 0.0709399 0.0515408i −0.551750 0.834009i \(-0.686040\pi\)
0.622690 + 0.782469i \(0.286040\pi\)
\(648\) −4.57863 5.08508i −0.179866 0.199761i
\(649\) 7.70848 + 23.7243i 0.302584 + 0.931259i
\(650\) −2.21734 −0.0869713
\(651\) −39.0076 19.8544i −1.52883 0.778155i
\(652\) 40.7894 1.59744
\(653\) −8.82960 27.1747i −0.345529 1.06343i −0.961300 0.275504i \(-0.911155\pi\)
0.615771 0.787925i \(-0.288845\pi\)
\(654\) −53.6706 59.6072i −2.09869 2.33083i
\(655\) −13.6546 + 9.92063i −0.533529 + 0.387631i
\(656\) −7.11497 12.3235i −0.277793 0.481151i
\(657\) 11.1699 19.3468i 0.435778 0.754790i
\(658\) 4.28122 + 40.7331i 0.166899 + 1.58794i
\(659\) −4.15656 3.01991i −0.161916 0.117639i 0.503877 0.863776i \(-0.331907\pi\)
−0.665793 + 0.746136i \(0.731907\pi\)
\(660\) −5.15525 + 49.0489i −0.200668 + 1.90923i
\(661\) −3.94482 + 4.38117i −0.153436 + 0.170408i −0.814962 0.579514i \(-0.803242\pi\)
0.661526 + 0.749922i \(0.269909\pi\)
\(662\) 24.5029 + 10.9094i 0.952333 + 0.424006i
\(663\) −9.29499 1.97571i −0.360987 0.0767302i
\(664\) 3.08670 0.656098i 0.119787 0.0254615i
\(665\) 4.88672 2.17571i 0.189499 0.0843703i
\(666\) 0.277162 0.853018i 0.0107398 0.0330538i
\(667\) 1.42756 4.39358i 0.0552754 0.170120i
\(668\) 4.57220 2.03567i 0.176904 0.0787626i
\(669\) 33.2684 7.07142i 1.28623 0.273397i
\(670\) 64.7887 + 13.7713i 2.50301 + 0.532031i
\(671\) −8.70955 3.87774i −0.336229 0.149699i
\(672\) −42.6592 + 47.3778i −1.64561 + 1.82764i
\(673\) −2.84979 + 27.1140i −0.109851 + 1.04517i 0.791231 + 0.611518i \(0.209441\pi\)
−0.901082 + 0.433649i \(0.857226\pi\)
\(674\) 46.7146 + 33.9401i 1.79938 + 1.30732i
\(675\) −0.163149 1.55226i −0.00627961 0.0597465i
\(676\) 9.91286 17.1696i 0.381264 0.660368i
\(677\) 1.31511 + 2.27784i 0.0505438 + 0.0875444i 0.890190 0.455589i \(-0.150571\pi\)
−0.839647 + 0.543133i \(0.817238\pi\)
\(678\) 62.9016 45.7007i 2.41572 1.75512i
\(679\) −16.5080 18.3340i −0.633519 0.703594i
\(680\) 0.939627 + 2.89187i 0.0360330 + 0.110898i
\(681\) 9.93738 0.380801
\(682\) −48.7748 + 7.74652i −1.86768 + 0.296630i
\(683\) 29.5859 1.13207 0.566037 0.824380i \(-0.308476\pi\)
0.566037 + 0.824380i \(0.308476\pi\)
\(684\) −0.693026 2.13292i −0.0264985 0.0815540i
\(685\) 11.9049 + 13.2218i 0.454864 + 0.505178i
\(686\) −3.06609 + 2.22765i −0.117064 + 0.0850519i
\(687\) −20.7717 35.9777i −0.792492 1.37264i
\(688\) 0.448549 0.776909i 0.0171008 0.0296194i
\(689\) 2.07453 + 19.7378i 0.0790331 + 0.751950i
\(690\) −28.2418 20.5188i −1.07515 0.781139i
\(691\) −1.76087 + 16.7535i −0.0669866 + 0.637334i 0.908592 + 0.417684i \(0.137158\pi\)
−0.975579 + 0.219650i \(0.929508\pi\)
\(692\) −8.45344 + 9.38849i −0.321351 + 0.356897i
\(693\) 22.6607 + 10.0892i 0.860808 + 0.383256i
\(694\) −10.7899 2.29346i −0.409579 0.0870587i
\(695\) 46.1576 9.81111i 1.75086 0.372157i
\(696\) 1.63827 0.729407i 0.0620986 0.0276481i
\(697\) −2.81323 + 8.65822i −0.106559 + 0.327954i
\(698\) −2.62397 + 8.07576i −0.0993189 + 0.305672i
\(699\) 27.8477 12.3986i 1.05330 0.468957i
\(700\) 4.22664 0.898400i 0.159752 0.0339563i
\(701\) −20.7605 4.41279i −0.784114 0.166669i −0.201577 0.979473i \(-0.564607\pi\)
−0.582537 + 0.812804i \(0.697940\pi\)
\(702\) −12.0283 5.35536i −0.453980 0.202125i
\(703\) −0.113873 + 0.126468i −0.00429479 + 0.00476985i
\(704\) −4.54235 + 43.2176i −0.171196 + 1.62882i
\(705\) 21.8597 + 15.8820i 0.823284 + 0.598151i
\(706\) −4.71948 44.9029i −0.177620 1.68994i
\(707\) −33.1859 + 57.4796i −1.24808 + 2.16174i
\(708\) −14.2979 24.7647i −0.537348 0.930714i
\(709\) −41.5383 + 30.1794i −1.56001 + 1.13341i −0.624000 + 0.781424i \(0.714494\pi\)
−0.936005 + 0.351986i \(0.885506\pi\)
\(710\) −4.34900 4.83006i −0.163215 0.181269i
\(711\) 4.22828 + 13.0133i 0.158573 + 0.488037i
\(712\) 3.05044 0.114320
\(713\) 6.68457 17.4362i 0.250339 0.652989i
\(714\) 34.6656 1.29733
\(715\) 6.48241 + 19.9508i 0.242429 + 0.746118i
\(716\) 18.6228 + 20.6827i 0.695967 + 0.772950i
\(717\) −11.7721 + 8.55293i −0.439637 + 0.319415i
\(718\) 7.33679 + 12.7077i 0.273807 + 0.474247i
\(719\) 20.0999 34.8141i 0.749601 1.29835i −0.198413 0.980119i \(-0.563579\pi\)
0.948014 0.318229i \(-0.103088\pi\)
\(720\) 1.28741 + 12.2489i 0.0479790 + 0.456490i
\(721\) 11.6393 + 8.45647i 0.433471 + 0.314935i
\(722\) 4.03205 38.3624i 0.150058 1.42770i
\(723\) 16.4700 18.2917i 0.612524 0.680277i
\(724\) 20.2139 + 8.99983i 0.751245 + 0.334476i
\(725\) 0.690753 + 0.146824i 0.0256539 + 0.00545291i
\(726\) 31.7579 6.75035i 1.17865 0.250529i
\(727\) −19.6265 + 8.73827i −0.727906 + 0.324084i −0.737017 0.675874i \(-0.763766\pi\)
0.00911160 + 0.999958i \(0.497100\pi\)
\(728\) 1.44228 4.43889i 0.0534545 0.164516i
\(729\) 0.558517 1.71894i 0.0206858 0.0636644i
\(730\) −62.9615 + 28.0323i −2.33031 + 1.03752i
\(731\) −0.561388 + 0.119327i −0.0207637 + 0.00441346i
\(732\) 10.6902 + 2.27227i 0.395121 + 0.0839856i
\(733\) 20.5286 + 9.13991i 0.758241 + 0.337590i 0.749178 0.662368i \(-0.230449\pi\)
0.00906234 + 0.999959i \(0.497115\pi\)
\(734\) −22.3475 + 24.8194i −0.824861 + 0.916101i
\(735\) 3.41405 32.4826i 0.125929 1.19814i
\(736\) −22.0046 15.9872i −0.811099 0.589298i
\(737\) −6.09174 57.9591i −0.224392 2.13495i
\(738\) 6.98953 12.1062i 0.257288 0.445636i
\(739\) −26.2750 45.5097i −0.966542 1.67410i −0.705413 0.708797i \(-0.749238\pi\)
−0.261129 0.965304i \(-0.584095\pi\)
\(740\) −1.19586 + 0.868842i −0.0439606 + 0.0319393i
\(741\) −1.85254 2.05745i −0.0680547 0.0755824i
\(742\) −22.3728 68.8565i −0.821333 2.52780i
\(743\) −17.4032 −0.638460 −0.319230 0.947677i \(-0.603424\pi\)
−0.319230 + 0.947677i \(0.603424\pi\)
\(744\) 6.76632 2.60066i 0.248065 0.0953449i
\(745\) 28.9145 1.05934
\(746\) −6.28728 19.3503i −0.230194 0.708463i
\(747\) −5.47180 6.07705i −0.200203 0.222348i
\(748\) 16.9041 12.2815i 0.618074 0.449057i
\(749\) 20.4224 + 35.3727i 0.746219 + 1.29249i
\(750\) −23.3530 + 40.4487i −0.852732 + 1.47698i
\(751\) 2.34603 + 22.3210i 0.0856080 + 0.814505i 0.950118 + 0.311890i \(0.100962\pi\)
−0.864510 + 0.502615i \(0.832371\pi\)
\(752\) 14.4758 + 10.5173i 0.527879 + 0.383526i
\(753\) −1.63123 + 15.5201i −0.0594453 + 0.565584i
\(754\) 3.98616 4.42708i 0.145168 0.161225i
\(755\) −42.6346 18.9821i −1.55163 0.690831i
\(756\) 25.0979 + 5.33473i 0.912804 + 0.194022i
\(757\) 14.4696 3.07560i 0.525906 0.111785i 0.0626946 0.998033i \(-0.480031\pi\)
0.463211 + 0.886248i \(0.346697\pi\)
\(758\) −26.1527 + 11.6439i −0.949907 + 0.422926i
\(759\) −9.49136 + 29.2114i −0.344515 + 1.06031i
\(760\) −0.273758 + 0.842542i −0.00993026 + 0.0305622i
\(761\) −18.1807 + 8.09457i −0.659050 + 0.293428i −0.708879 0.705330i \(-0.750799\pi\)
0.0498293 + 0.998758i \(0.484132\pi\)
\(762\) −61.5667 + 13.0864i −2.23032 + 0.474070i