Properties

Label 31.2.g.a.20.1
Level 31
Weight 2
Character 31.20
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 20.1
Root \(1.14660i\)
Character \(\chi\) = 31.20
Dual form 31.2.g.a.14.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.831304 - 2.55849i) q^{2}\) \(+(0.949606 + 1.05464i) q^{3}\) \(+(-4.23677 + 3.07819i) q^{4}\) \(+(-0.304192 - 0.526876i) q^{5}\) \(+(1.90889 - 3.30629i) q^{6}\) \(+(0.180508 + 1.71742i) q^{7}\) \(+(7.04481 + 5.11835i) q^{8}\) \(+(0.103062 - 0.980572i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.831304 - 2.55849i) q^{2}\) \(+(0.949606 + 1.05464i) q^{3}\) \(+(-4.23677 + 3.07819i) q^{4}\) \(+(-0.304192 - 0.526876i) q^{5}\) \(+(1.90889 - 3.30629i) q^{6}\) \(+(0.180508 + 1.71742i) q^{7}\) \(+(7.04481 + 5.11835i) q^{8}\) \(+(0.103062 - 0.980572i) q^{9}\) \(+(-1.09513 + 1.21627i) q^{10}\) \(+(-1.22177 - 0.543967i) q^{11}\) \(+(-7.26966 - 1.54521i) q^{12}\) \(+(-3.59045 + 0.763174i) q^{13}\) \(+(4.24394 - 1.88952i) q^{14}\) \(+(0.266804 - 0.821139i) q^{15}\) \(+(4.00227 - 12.3177i) q^{16}\) \(+(-2.52396 + 1.12374i) q^{17}\) \(+(-2.59446 + 0.551469i) q^{18}\) \(+(2.51157 + 0.533850i) q^{19}\) \(+(2.91062 + 1.29589i) q^{20}\) \(+(-1.63986 + 1.82124i) q^{21}\) \(+(-0.376072 + 3.57808i) q^{22}\) \(+(0.436271 + 0.316969i) q^{23}\) \(+(1.29175 + 12.2902i) q^{24}\) \(+(2.31493 - 4.00958i) q^{25}\) \(+(4.93733 + 8.55171i) q^{26}\) \(+(4.57641 - 3.32495i) q^{27}\) \(+(-6.05132 - 6.72067i) q^{28}\) \(+(-2.51258 - 7.73291i) q^{29}\) \(-2.32267 q^{30}\) \(+(4.75081 + 2.90341i) q^{31}\) \(-17.4262 q^{32}\) \(+(-0.586508 - 1.80509i) q^{33}\) \(+(4.97326 + 5.52336i) q^{34}\) \(+(0.849957 - 0.617530i) q^{35}\) \(+(2.58174 + 4.47170i) q^{36}\) \(+(-3.87249 + 6.70735i) q^{37}\) \(+(-0.722025 - 6.86961i) q^{38}\) \(+(-4.21439 - 3.06194i) q^{39}\) \(+(0.553763 - 5.26870i) q^{40}\) \(+(-0.0696243 + 0.0773256i) q^{41}\) \(+(6.02285 + 2.68155i) q^{42}\) \(+(2.93904 + 0.624713i) q^{43}\) \(+(6.85079 - 1.45618i) q^{44}\) \(+(-0.547990 + 0.243981i) q^{45}\) \(+(0.448289 - 1.37969i) q^{46}\) \(+(-2.07813 + 6.39584i) q^{47}\) \(+(16.7914 - 7.47602i) q^{48}\) \(+(3.93009 - 0.835366i) q^{49}\) \(+(-12.1829 - 2.58955i) q^{50}\) \(+(-3.58192 - 1.59477i) q^{51}\) \(+(12.8627 - 14.2855i) q^{52}\) \(+(-0.292549 + 2.78341i) q^{53}\) \(+(-12.3112 - 8.94464i) q^{54}\) \(+(0.0850494 + 0.809191i) q^{55}\) \(+(-7.51871 + 13.0228i) q^{56}\) \(+(1.82198 + 3.15576i) q^{57}\) \(+(-17.6959 + 12.8568i) q^{58}\) \(+(0.311970 + 0.346478i) q^{59}\) \(+(1.39724 + 4.30025i) q^{60}\) \(-5.11468 q^{61}\) \(+(3.47898 - 14.5685i) q^{62}\) \(+1.70266 q^{63}\) \(+(6.48190 + 19.9492i) q^{64}\) \(+(1.49428 + 1.65957i) q^{65}\) \(+(-4.13073 + 3.00115i) q^{66}\) \(+(-4.14923 - 7.18668i) q^{67}\) \(+(7.23436 - 12.5303i) q^{68}\) \(+(0.0799956 + 0.761107i) q^{69}\) \(+(-2.28652 - 1.66125i) q^{70}\) \(+(-0.497420 + 4.73264i) q^{71}\) \(+(5.74497 - 6.38043i) q^{72}\) \(+(6.85725 + 3.05304i) q^{73}\) \(+(20.3799 + 4.33188i) q^{74}\) \(+(6.42696 - 1.36609i) q^{75}\) \(+(-12.2842 + 5.46929i) q^{76}\) \(+(0.713679 - 2.19648i) q^{77}\) \(+(-4.33049 + 13.3279i) q^{78}\) \(+(-8.86044 + 3.94492i) q^{79}\) \(+(-7.70738 + 1.63825i) q^{80}\) \(+(4.95915 + 1.05410i) q^{81}\) \(+(0.255716 + 0.113852i) q^{82}\) \(+(-11.1642 + 12.3991i) q^{83}\) \(+(1.34155 - 12.7640i) q^{84}\) \(+(1.35984 + 0.987981i) q^{85}\) \(+(-0.844916 - 8.03884i) q^{86}\) \(+(5.76952 - 9.99310i) q^{87}\) \(+(-5.82292 - 10.0856i) q^{88}\) \(+(12.3911 - 9.00268i) q^{89}\) \(+(1.07977 + 1.19920i) q^{90}\) \(+(-1.95880 - 6.02855i) q^{91}\) \(-2.82407 q^{92}\) \(+(1.44933 + 7.76751i) q^{93}\) \(+18.0912 q^{94}\) \(+(-0.482726 - 1.48568i) q^{95}\) \(+(-16.5480 - 18.3784i) q^{96}\) \(+(1.03488 - 0.751881i) q^{97}\) \(+(-5.40437 - 9.36065i) q^{98}\) \(+(-0.659316 + 1.14197i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831304 2.55849i −0.587821 1.80913i −0.587636 0.809126i \(-0.699941\pi\)
−0.000184800 1.00000i \(-0.500059\pi\)
\(3\) 0.949606 + 1.05464i 0.548255 + 0.608899i 0.952047 0.305952i \(-0.0989746\pi\)
−0.403792 + 0.914851i \(0.632308\pi\)
\(4\) −4.23677 + 3.07819i −2.11839 + 1.53910i
\(5\) −0.304192 0.526876i −0.136039 0.235626i 0.789955 0.613165i \(-0.210104\pi\)
−0.925994 + 0.377539i \(0.876770\pi\)
\(6\) 1.90889 3.30629i 0.779300 1.34979i
\(7\) 0.180508 + 1.71742i 0.0682256 + 0.649123i 0.974184 + 0.225756i \(0.0724853\pi\)
−0.905958 + 0.423367i \(0.860848\pi\)
\(8\) 7.04481 + 5.11835i 2.49072 + 1.80961i
\(9\) 0.103062 0.980572i 0.0343541 0.326857i
\(10\) −1.09513 + 1.21627i −0.346311 + 0.384617i
\(11\) −1.22177 0.543967i −0.368377 0.164012i 0.214195 0.976791i \(-0.431287\pi\)
−0.582572 + 0.812779i \(0.697954\pi\)
\(12\) −7.26966 1.54521i −2.09857 0.446065i
\(13\) −3.59045 + 0.763174i −0.995812 + 0.211666i −0.676866 0.736106i \(-0.736662\pi\)
−0.318946 + 0.947773i \(0.603329\pi\)
\(14\) 4.24394 1.88952i 1.13424 0.504997i
\(15\) 0.266804 0.821139i 0.0688885 0.212017i
\(16\) 4.00227 12.3177i 1.00057 3.07943i
\(17\) −2.52396 + 1.12374i −0.612150 + 0.272547i −0.689304 0.724472i \(-0.742084\pi\)
0.0771534 + 0.997019i \(0.475417\pi\)
\(18\) −2.59446 + 0.551469i −0.611520 + 0.129983i
\(19\) 2.51157 + 0.533850i 0.576193 + 0.122474i 0.486786 0.873522i \(-0.338169\pi\)
0.0894075 + 0.995995i \(0.471503\pi\)
\(20\) 2.91062 + 1.29589i 0.650834 + 0.289770i
\(21\) −1.63986 + 1.82124i −0.357846 + 0.397428i
\(22\) −0.376072 + 3.57808i −0.0801788 + 0.762850i
\(23\) 0.436271 + 0.316969i 0.0909688 + 0.0660927i 0.632340 0.774691i \(-0.282095\pi\)
−0.541371 + 0.840784i \(0.682095\pi\)
\(24\) 1.29175 + 12.2902i 0.263678 + 2.50872i
\(25\) 2.31493 4.00958i 0.462987 0.801917i
\(26\) 4.93733 + 8.55171i 0.968290 + 1.67713i
\(27\) 4.57641 3.32495i 0.880730 0.639888i
\(28\) −6.05132 6.72067i −1.14359 1.27009i
\(29\) −2.51258 7.73291i −0.466574 1.43597i −0.856993 0.515329i \(-0.827670\pi\)
0.390419 0.920637i \(-0.372330\pi\)
\(30\) −2.32267 −0.424060
\(31\) 4.75081 + 2.90341i 0.853271 + 0.521468i
\(32\) −17.4262 −3.08054
\(33\) −0.586508 1.80509i −0.102098 0.314225i
\(34\) 4.97326 + 5.52336i 0.852906 + 0.947248i
\(35\) 0.849957 0.617530i 0.143669 0.104382i
\(36\) 2.58174 + 4.47170i 0.430290 + 0.745284i
\(37\) −3.87249 + 6.70735i −0.636633 + 1.10268i 0.349533 + 0.936924i \(0.386340\pi\)
−0.986167 + 0.165757i \(0.946993\pi\)
\(38\) −0.722025 6.86961i −0.117128 1.11440i
\(39\) −4.21439 3.06194i −0.674843 0.490302i
\(40\) 0.553763 5.26870i 0.0875576 0.833055i
\(41\) −0.0696243 + 0.0773256i −0.0108735 + 0.0120762i −0.748557 0.663070i \(-0.769253\pi\)
0.737684 + 0.675147i \(0.235920\pi\)
\(42\) 6.02285 + 2.68155i 0.929346 + 0.413772i
\(43\) 2.93904 + 0.624713i 0.448200 + 0.0952678i 0.426481 0.904496i \(-0.359753\pi\)
0.0217184 + 0.999764i \(0.493086\pi\)
\(44\) 6.85079 1.45618i 1.03280 0.219527i
\(45\) −0.547990 + 0.243981i −0.0816895 + 0.0363705i
\(46\) 0.448289 1.37969i 0.0660967 0.203425i
\(47\) −2.07813 + 6.39584i −0.303127 + 0.932929i 0.677243 + 0.735760i \(0.263175\pi\)
−0.980370 + 0.197169i \(0.936825\pi\)
\(48\) 16.7914 7.47602i 2.42363 1.07907i
\(49\) 3.93009 0.835366i 0.561441 0.119338i
\(50\) −12.1829 2.58955i −1.72292 0.366218i
\(51\) −3.58192 1.59477i −0.501568 0.223313i
\(52\) 12.8627 14.2855i 1.78374 1.98104i
\(53\) −0.292549 + 2.78341i −0.0401846 + 0.382331i 0.955884 + 0.293745i \(0.0949016\pi\)
−0.996068 + 0.0885864i \(0.971765\pi\)
\(54\) −12.3112 8.94464i −1.67535 1.21721i
\(55\) 0.0850494 + 0.809191i 0.0114681 + 0.109111i
\(56\) −7.51871 + 13.0228i −1.00473 + 1.74024i
\(57\) 1.82198 + 3.15576i 0.241327 + 0.417990i
\(58\) −17.6959 + 12.8568i −2.32358 + 1.68818i
\(59\) 0.311970 + 0.346478i 0.0406151 + 0.0451076i 0.763110 0.646269i \(-0.223671\pi\)
−0.722495 + 0.691376i \(0.757005\pi\)
\(60\) 1.39724 + 4.30025i 0.180382 + 0.555160i
\(61\) −5.11468 −0.654867 −0.327434 0.944874i \(-0.606184\pi\)
−0.327434 + 0.944874i \(0.606184\pi\)
\(62\) 3.47898 14.5685i 0.441831 1.85020i
\(63\) 1.70266 0.214514
\(64\) 6.48190 + 19.9492i 0.810238 + 2.49365i
\(65\) 1.49428 + 1.65957i 0.185343 + 0.205844i
\(66\) −4.13073 + 3.00115i −0.508457 + 0.369416i
\(67\) −4.14923 7.18668i −0.506910 0.877993i −0.999968 0.00799701i \(-0.997454\pi\)
0.493058 0.869996i \(-0.335879\pi\)
\(68\) 7.23436 12.5303i 0.877294 1.51952i
\(69\) 0.0799956 + 0.761107i 0.00963034 + 0.0916265i
\(70\) −2.28652 1.66125i −0.273291 0.198558i
\(71\) −0.497420 + 4.73264i −0.0590329 + 0.561661i 0.924532 + 0.381105i \(0.124456\pi\)
−0.983565 + 0.180556i \(0.942210\pi\)
\(72\) 5.74497 6.38043i 0.677051 0.751941i
\(73\) 6.85725 + 3.05304i 0.802580 + 0.357332i 0.766685 0.642024i \(-0.221905\pi\)
0.0358953 + 0.999356i \(0.488572\pi\)
\(74\) 20.3799 + 4.33188i 2.36911 + 0.503571i
\(75\) 6.42696 1.36609i 0.742122 0.157743i
\(76\) −12.2842 + 5.46929i −1.40910 + 0.627371i
\(77\) 0.713679 2.19648i 0.0813313 0.250312i
\(78\) −4.33049 + 13.3279i −0.490332 + 1.50909i
\(79\) −8.86044 + 3.94492i −0.996877 + 0.443838i −0.839300 0.543668i \(-0.817035\pi\)
−0.157577 + 0.987507i \(0.550368\pi\)
\(80\) −7.70738 + 1.63825i −0.861711 + 0.183162i
\(81\) 4.95915 + 1.05410i 0.551017 + 0.117122i
\(82\) 0.255716 + 0.113852i 0.0282391 + 0.0125728i
\(83\) −11.1642 + 12.3991i −1.22543 + 1.36097i −0.314047 + 0.949407i \(0.601685\pi\)
−0.911380 + 0.411567i \(0.864982\pi\)
\(84\) 1.34155 12.7640i 0.146375 1.39266i
\(85\) 1.35984 + 0.987981i 0.147495 + 0.107162i
\(86\) −0.844916 8.03884i −0.0911096 0.866850i
\(87\) 5.76952 9.99310i 0.618557 1.07137i
\(88\) −5.82292 10.0856i −0.620725 1.07513i
\(89\) 12.3911 9.00268i 1.31346 0.954282i 0.313468 0.949599i \(-0.398509\pi\)
0.999989 0.00468333i \(-0.00149075\pi\)
\(90\) 1.07977 + 1.19920i 0.113818 + 0.126407i
\(91\) −1.95880 6.02855i −0.205338 0.631964i
\(92\) −2.82407 −0.294430
\(93\) 1.44933 + 7.76751i 0.150289 + 0.805454i
\(94\) 18.0912 1.86597
\(95\) −0.482726 1.48568i −0.0495266 0.152427i
\(96\) −16.5480 18.3784i −1.68892 1.87574i
\(97\) 1.03488 0.751881i 0.105076 0.0763420i −0.534007 0.845480i \(-0.679314\pi\)
0.639082 + 0.769138i \(0.279314\pi\)
\(98\) −5.40437 9.36065i −0.545924 0.945568i
\(99\) −0.659316 + 1.14197i −0.0662638 + 0.114772i
\(100\) 2.53443 + 24.1135i 0.253443 + 2.41135i
\(101\) −6.56941 4.77296i −0.653681 0.474927i 0.210842 0.977520i \(-0.432379\pi\)
−0.864523 + 0.502593i \(0.832379\pi\)
\(102\) −1.10255 + 10.4900i −0.109168 + 1.03867i
\(103\) 10.1390 11.2605i 0.999026 1.10953i 0.00504416 0.999987i \(-0.498394\pi\)
0.993982 0.109544i \(-0.0349389\pi\)
\(104\) −29.2002 13.0008i −2.86332 1.27483i
\(105\) 1.45840 + 0.309992i 0.142325 + 0.0302522i
\(106\) 7.36453 1.56538i 0.715307 0.152043i
\(107\) −11.3057 + 5.03362i −1.09296 + 0.486618i −0.872419 0.488759i \(-0.837450\pi\)
−0.220543 + 0.975377i \(0.570783\pi\)
\(108\) −9.15433 + 28.1741i −0.880876 + 2.71106i
\(109\) 2.22788 6.85672i 0.213392 0.656755i −0.785871 0.618390i \(-0.787785\pi\)
0.999264 0.0383645i \(-0.0122148\pi\)
\(110\) 1.99960 0.890281i 0.190655 0.0848850i
\(111\) −10.7512 + 2.28524i −1.02046 + 0.216905i
\(112\) 21.8772 + 4.65013i 2.06720 + 0.439396i
\(113\) 15.2304 + 6.78103i 1.43276 + 0.637906i 0.968776 0.247938i \(-0.0797528\pi\)
0.463984 + 0.885844i \(0.346420\pi\)
\(114\) 6.55936 7.28491i 0.614340 0.682294i
\(115\) 0.0342934 0.326280i 0.00319788 0.0304258i
\(116\) 34.4486 + 25.0284i 3.19847 + 2.32383i
\(117\) 0.378307 + 3.59935i 0.0349745 + 0.332760i
\(118\) 0.627119 1.08620i 0.0577310 0.0999930i
\(119\) −2.38553 4.13185i −0.218681 0.378767i
\(120\) 6.08246 4.41917i 0.555250 0.403413i
\(121\) −6.16362 6.84539i −0.560329 0.622308i
\(122\) 4.25185 + 13.0859i 0.384944 + 1.18474i
\(123\) −0.147667 −0.0133147
\(124\) −29.0654 + 2.32284i −2.61015 + 0.208597i
\(125\) −5.85866 −0.524014
\(126\) −1.41542 4.35623i −0.126096 0.388084i
\(127\) −8.63810 9.59358i −0.766507 0.851293i 0.225918 0.974146i \(-0.427462\pi\)
−0.992425 + 0.122854i \(0.960795\pi\)
\(128\) 17.4553 12.6820i 1.54285 1.12095i
\(129\) 2.13208 + 3.69288i 0.187720 + 0.325140i
\(130\) 3.00379 5.20272i 0.263450 0.456309i
\(131\) 0.254818 + 2.42443i 0.0222635 + 0.211823i 0.999998 + 0.00197767i \(0.000629511\pi\)
−0.977735 + 0.209846i \(0.932704\pi\)
\(132\) 8.04130 + 5.84235i 0.699906 + 0.508511i
\(133\) −0.463486 + 4.40978i −0.0401894 + 0.382376i
\(134\) −14.9378 + 16.5901i −1.29043 + 1.43317i
\(135\) −3.14394 1.39977i −0.270588 0.120473i
\(136\) −23.5325 5.00199i −2.01790 0.428917i
\(137\) −7.96586 + 1.69320i −0.680570 + 0.144660i −0.535210 0.844719i \(-0.679767\pi\)
−0.145360 + 0.989379i \(0.546434\pi\)
\(138\) 1.88078 0.837379i 0.160103 0.0712824i
\(139\) −0.418212 + 1.28712i −0.0354723 + 0.109172i −0.967225 0.253921i \(-0.918280\pi\)
0.931753 + 0.363094i \(0.118280\pi\)
\(140\) −1.70020 + 5.23267i −0.143693 + 0.442241i
\(141\) −8.71874 + 3.88183i −0.734251 + 0.326909i
\(142\) 12.5219 2.66162i 1.05082 0.223358i
\(143\) 4.80184 + 1.02066i 0.401550 + 0.0853522i
\(144\) −11.6659 5.19401i −0.972161 0.432834i
\(145\) −3.30998 + 3.67611i −0.274879 + 0.305284i
\(146\) 2.11072 20.0822i 0.174685 1.66201i
\(147\) 4.61305 + 3.35158i 0.380478 + 0.276433i
\(148\) −4.23967 40.3378i −0.348499 3.31574i
\(149\) 4.50192 7.79756i 0.368812 0.638801i −0.620568 0.784153i \(-0.713098\pi\)
0.989380 + 0.145351i \(0.0464313\pi\)
\(150\) −8.83789 15.3077i −0.721611 1.24987i
\(151\) 2.59566 1.88585i 0.211232 0.153469i −0.477139 0.878828i \(-0.658326\pi\)
0.688371 + 0.725359i \(0.258326\pi\)
\(152\) 14.9611 + 16.6160i 1.21350 + 1.34773i
\(153\) 0.841782 + 2.59074i 0.0680541 + 0.209449i
\(154\) −6.21295 −0.500654
\(155\) 0.0845781 3.38628i 0.00679348 0.271993i
\(156\) 27.2807 2.18420
\(157\) −1.02803 3.16395i −0.0820456 0.252510i 0.901616 0.432537i \(-0.142382\pi\)
−0.983662 + 0.180027i \(0.942382\pi\)
\(158\) 17.4588 + 19.3899i 1.38894 + 1.54258i
\(159\) −3.21332 + 2.33461i −0.254833 + 0.185147i
\(160\) 5.30090 + 9.18143i 0.419073 + 0.725856i
\(161\) −0.465619 + 0.806476i −0.0366959 + 0.0635592i
\(162\) −1.42566 13.5642i −0.112010 1.06570i
\(163\) −1.40797 1.02295i −0.110281 0.0801236i 0.531278 0.847198i \(-0.321712\pi\)
−0.641559 + 0.767074i \(0.721712\pi\)
\(164\) 0.0569589 0.541928i 0.00444774 0.0423175i
\(165\) −0.772645 + 0.858109i −0.0601503 + 0.0668037i
\(166\) 41.0037 + 18.2560i 3.18250 + 1.41694i
\(167\) 13.7102 + 2.91419i 1.06093 + 0.225507i 0.705145 0.709063i \(-0.250882\pi\)
0.355780 + 0.934570i \(0.384215\pi\)
\(168\) −20.8742 + 4.43696i −1.61048 + 0.342319i
\(169\) 0.432821 0.192704i 0.0332939 0.0148234i
\(170\) 1.39730 4.30045i 0.107168 0.329829i
\(171\) 0.782326 2.40775i 0.0598260 0.184125i
\(172\) −14.3750 + 6.40018i −1.09609 + 0.488009i
\(173\) 0.0117191 0.00249097i 0.000890985 0.000189385i −0.207466 0.978242i \(-0.566522\pi\)
0.208357 + 0.978053i \(0.433188\pi\)
\(174\) −30.3635 6.45395i −2.30185 0.489273i
\(175\) 7.30400 + 3.25195i 0.552131 + 0.245824i
\(176\) −11.5903 + 12.8723i −0.873651 + 0.970288i
\(177\) −0.0691624 + 0.658036i −0.00519856 + 0.0494610i
\(178\) −33.3341 24.2186i −2.49849 1.81526i
\(179\) 1.04299 + 9.92334i 0.0779564 + 0.741706i 0.961769 + 0.273864i \(0.0883017\pi\)
−0.883812 + 0.467842i \(0.845032\pi\)
\(180\) 1.57069 2.72051i 0.117072 0.202775i
\(181\) 9.30158 + 16.1108i 0.691381 + 1.19751i 0.971385 + 0.237509i \(0.0763308\pi\)
−0.280004 + 0.959999i \(0.590336\pi\)
\(182\) −13.7956 + 10.0231i −1.02260 + 0.742963i
\(183\) −4.85693 5.39417i −0.359035 0.398748i
\(184\) 1.45108 + 4.46598i 0.106975 + 0.329236i
\(185\) 4.71192 0.346427
\(186\) 18.6683 10.1653i 1.36882 0.745354i
\(187\) 3.69497 0.270203
\(188\) −10.8831 33.4946i −0.793728 2.44284i
\(189\) 6.53642 + 7.25943i 0.475454 + 0.528046i
\(190\) −3.39980 + 2.47010i −0.246647 + 0.179200i
\(191\) −0.599059 1.03760i −0.0433464 0.0750782i 0.843538 0.537069i \(-0.180469\pi\)
−0.886885 + 0.461991i \(0.847135\pi\)
\(192\) −14.8841 + 25.7800i −1.07417 + 1.86051i
\(193\) −1.33029 12.6568i −0.0957562 0.911059i −0.931941 0.362611i \(-0.881885\pi\)
0.836184 0.548448i \(-0.184781\pi\)
\(194\) −2.78398 2.02268i −0.199878 0.145220i
\(195\) −0.331276 + 3.15188i −0.0237231 + 0.225711i
\(196\) −14.0795 + 15.6368i −1.00568 + 1.11692i
\(197\) −2.71195 1.20744i −0.193218 0.0860263i 0.307847 0.951436i \(-0.400392\pi\)
−0.501065 + 0.865410i \(0.667058\pi\)
\(198\) 3.46981 + 0.737531i 0.246589 + 0.0524140i
\(199\) 12.8960 2.74112i 0.914170 0.194313i 0.273270 0.961937i \(-0.411895\pi\)
0.640900 + 0.767625i \(0.278561\pi\)
\(200\) 36.8307 16.3981i 2.60433 1.15952i
\(201\) 3.63926 11.2005i 0.256694 0.790021i
\(202\) −6.75039 + 20.7755i −0.474955 + 1.46176i
\(203\) 12.8271 5.71100i 0.900287 0.400834i
\(204\) 20.0848 4.26915i 1.40622 0.298900i
\(205\) 0.0619201 + 0.0131615i 0.00432469 + 0.000919241i
\(206\) −37.2385 16.5796i −2.59453 1.15516i
\(207\) 0.355774 0.395127i 0.0247280 0.0274633i
\(208\) −4.96940 + 47.2807i −0.344566 + 3.27832i
\(209\) −2.77816 2.01845i −0.192169 0.139619i
\(210\) −0.419261 3.98900i −0.0289317 0.275267i
\(211\) −9.16614 + 15.8762i −0.631023 + 1.09296i 0.356320 + 0.934364i \(0.384031\pi\)
−0.987343 + 0.158600i \(0.949302\pi\)
\(212\) −7.32843 12.6932i −0.503318 0.871773i
\(213\) −5.46361 + 3.96954i −0.374360 + 0.271989i
\(214\) 22.2769 + 24.7410i 1.52282 + 1.69126i
\(215\) −0.564887 1.73854i −0.0385250 0.118568i
\(216\) 49.2582 3.35160
\(217\) −4.12881 + 8.68322i −0.280282 + 0.589456i
\(218\) −19.3949 −1.31359
\(219\) 3.29181 + 10.1311i 0.222440 + 0.684599i
\(220\) −2.85118 3.16656i −0.192227 0.213489i
\(221\) 8.20455 5.96096i 0.551898 0.400977i
\(222\) 14.7843 + 25.6071i 0.992256 + 1.71864i
\(223\) −4.69801 + 8.13718i −0.314602 + 0.544906i −0.979353 0.202159i \(-0.935204\pi\)
0.664751 + 0.747065i \(0.268538\pi\)
\(224\) −3.14557 29.9281i −0.210172 1.99965i
\(225\) −3.69310 2.68320i −0.246207 0.178880i
\(226\) 4.68807 44.6040i 0.311846 2.96702i
\(227\) 5.66046 6.28658i 0.375698 0.417255i −0.525410 0.850849i \(-0.676088\pi\)
0.901108 + 0.433594i \(0.142755\pi\)
\(228\) −17.4333 7.76182i −1.15455 0.514039i
\(229\) −22.3443 4.74942i −1.47655 0.313850i −0.601887 0.798582i \(-0.705584\pi\)
−0.874663 + 0.484731i \(0.838917\pi\)
\(230\) −0.863293 + 0.183499i −0.0569238 + 0.0120995i
\(231\) 2.99422 1.33311i 0.197005 0.0877123i
\(232\) 21.8792 67.3372i 1.43644 4.42090i
\(233\) 5.02260 15.4580i 0.329042 1.01269i −0.640542 0.767923i \(-0.721290\pi\)
0.969583 0.244762i \(-0.0787099\pi\)
\(234\) 8.89441 3.96005i 0.581446 0.258876i
\(235\) 4.00196 0.850643i 0.261059 0.0554899i
\(236\) −2.38828 0.507644i −0.155463 0.0330448i
\(237\) −12.5744 5.59849i −0.816796 0.363661i
\(238\) −8.58821 + 9.53817i −0.556691 + 0.618268i
\(239\) −1.91005 + 18.1729i −0.123551 + 1.17551i 0.740484 + 0.672074i \(0.234596\pi\)
−0.864035 + 0.503433i \(0.832070\pi\)
\(240\) −9.04675 6.57285i −0.583965 0.424275i
\(241\) 1.89944 + 18.0720i 0.122354 + 1.16412i 0.867576 + 0.497304i \(0.165677\pi\)
−0.745222 + 0.666816i \(0.767657\pi\)
\(242\) −12.3900 + 21.4602i −0.796461 + 1.37951i
\(243\) −4.88759 8.46555i −0.313539 0.543065i
\(244\) 21.6697 15.7440i 1.38726 1.00790i
\(245\) −1.63564 1.81656i −0.104497 0.116056i
\(246\) 0.122756 + 0.377804i 0.00782663 + 0.0240879i
\(247\) −9.42508 −0.599704
\(248\) 18.6079 + 44.7703i 1.18160 + 2.84292i
\(249\) −23.6782 −1.50054
\(250\) 4.87032 + 14.9893i 0.308026 + 0.948007i
\(251\) −15.3433 17.0405i −0.968461 1.07558i −0.997108 0.0759953i \(-0.975787\pi\)
0.0286471 0.999590i \(-0.490880\pi\)
\(252\) −7.21376 + 5.24111i −0.454424 + 0.330159i
\(253\) −0.360602 0.624580i −0.0226708 0.0392670i
\(254\) −17.3642 + 30.0757i −1.08953 + 1.88712i
\(255\) 0.249343 + 2.37234i 0.0156145 + 0.148562i
\(256\) −13.0179 9.45807i −0.813620 0.591129i
\(257\) −0.0111002 + 0.105611i −0.000692411 + 0.00658785i −0.994863 0.101234i \(-0.967721\pi\)
0.994170 + 0.107822i \(0.0343876\pi\)
\(258\) 7.67578 8.52482i 0.477873 0.530732i
\(259\) −12.2183 5.43996i −0.759211 0.338022i
\(260\) −11.4394 2.43152i −0.709443 0.150797i
\(261\) −7.84163 + 1.66679i −0.485385 + 0.103172i
\(262\) 5.99105 2.66739i 0.370128 0.164792i
\(263\) −2.25499 + 6.94015i −0.139049 + 0.427948i −0.996198 0.0871204i \(-0.972234\pi\)
0.857149 + 0.515068i \(0.172234\pi\)
\(264\) 5.10723 15.7184i 0.314328 0.967403i
\(265\) 1.55550 0.692555i 0.0955539 0.0425433i
\(266\) 11.6677 2.48004i 0.715391 0.152061i
\(267\) 21.2613 + 4.51923i 1.30117 + 0.276573i
\(268\) 39.7014 + 17.6762i 2.42515 + 1.07974i
\(269\) 10.8529 12.0533i 0.661711 0.734905i −0.315088 0.949063i \(-0.602034\pi\)
0.976799 + 0.214158i \(0.0687007\pi\)
\(270\) −0.967735 + 9.20739i −0.0588945 + 0.560344i
\(271\) 4.16291 + 3.02453i 0.252879 + 0.183727i 0.707002 0.707212i \(-0.250047\pi\)
−0.454123 + 0.890939i \(0.650047\pi\)
\(272\) 3.74034 + 35.5870i 0.226792 + 2.15778i
\(273\) 4.49790 7.79058i 0.272225 0.471508i
\(274\) 10.9541 + 18.9730i 0.661760 + 1.14620i
\(275\) −5.00939 + 3.63954i −0.302078 + 0.219472i
\(276\) −2.68176 2.97839i −0.161423 0.179278i
\(277\) −5.22944 16.0946i −0.314207 0.967029i −0.976080 0.217413i \(-0.930238\pi\)
0.661873 0.749616i \(-0.269762\pi\)
\(278\) 3.64076 0.218358
\(279\) 3.33663 4.35928i 0.199759 0.260983i
\(280\) 9.14853 0.546729
\(281\) 0.589193 + 1.81335i 0.0351483 + 0.108175i 0.967091 0.254429i \(-0.0818876\pi\)
−0.931943 + 0.362605i \(0.881888\pi\)
\(282\) 17.1796 + 19.0798i 1.02303 + 1.13619i
\(283\) 12.3859 8.99888i 0.736265 0.534928i −0.155274 0.987871i \(-0.549626\pi\)
0.891539 + 0.452944i \(0.149626\pi\)
\(284\) −12.4605 21.5823i −0.739396 1.28067i
\(285\) 1.10846 1.91991i 0.0656596 0.113726i
\(286\) −1.38043 13.1339i −0.0816268 0.776627i
\(287\) −0.145368 0.105616i −0.00858081 0.00623433i
\(288\) −1.79598 + 17.0876i −0.105829 + 1.00690i
\(289\) −6.26763 + 6.96091i −0.368684 + 0.409465i
\(290\) 12.1569 + 5.41259i 0.713876 + 0.317838i
\(291\) 1.77569 + 0.377435i 0.104093 + 0.0221256i
\(292\) −38.4504 + 8.17289i −2.25014 + 0.478282i
\(293\) 24.4772 10.8980i 1.42998 0.636666i 0.461810 0.886979i \(-0.347200\pi\)
0.968165 + 0.250313i \(0.0805334\pi\)
\(294\) 4.74013 14.5886i 0.276450 0.850826i
\(295\) 0.0876522 0.269766i 0.00510331 0.0157064i
\(296\) −61.6115 + 27.4312i −3.58110 + 1.59441i
\(297\) −7.39998 + 1.57291i −0.429390 + 0.0912697i
\(298\) −23.6924 5.03599i −1.37247 0.291727i
\(299\) −1.80831 0.805113i −0.104577 0.0465609i
\(300\) −23.0245 + 25.5713i −1.32932 + 1.47636i
\(301\) −0.542373 + 5.16033i −0.0312619 + 0.297437i
\(302\) −6.98272 5.07324i −0.401810 0.291932i
\(303\) −1.20458 11.4608i −0.0692014 0.658407i
\(304\) 16.6278 28.8002i 0.953670 1.65181i
\(305\) 1.55584 + 2.69480i 0.0890873 + 0.154304i
\(306\) 5.92860 4.30738i 0.338916 0.246237i
\(307\) 5.98956 + 6.65208i 0.341842 + 0.379654i 0.889413 0.457105i \(-0.151114\pi\)
−0.547570 + 0.836760i \(0.684447\pi\)
\(308\) 3.73749 + 11.5028i 0.212963 + 0.655434i
\(309\) 21.5039 1.22331
\(310\) −8.73408 + 2.59864i −0.496062 + 0.147593i
\(311\) 20.6556 1.17127 0.585637 0.810574i \(-0.300844\pi\)
0.585637 + 0.810574i \(0.300844\pi\)
\(312\) −14.0175 43.1415i −0.793586 2.44241i
\(313\) 0.301993 + 0.335397i 0.0170696 + 0.0189577i 0.751619 0.659597i \(-0.229273\pi\)
−0.734550 + 0.678555i \(0.762606\pi\)
\(314\) −7.24032 + 5.26040i −0.408595 + 0.296862i
\(315\) −0.517934 0.897088i −0.0291823 0.0505452i
\(316\) 25.3964 43.9879i 1.42866 2.47451i
\(317\) 0.583357 + 5.55027i 0.0327646 + 0.311734i 0.998614 + 0.0526304i \(0.0167605\pi\)
−0.965849 + 0.259104i \(0.916573\pi\)
\(318\) 8.64432 + 6.28047i 0.484750 + 0.352191i
\(319\) −1.13666 + 10.8146i −0.0636407 + 0.605501i
\(320\) 8.53903 9.48355i 0.477346 0.530147i
\(321\) −16.0446 7.14353i −0.895524 0.398713i
\(322\) 2.45043 + 0.520855i 0.136557 + 0.0290261i
\(323\) −6.93901 + 1.47493i −0.386097 + 0.0820674i
\(324\) −24.2555 + 10.7992i −1.34753 + 0.599958i
\(325\) −5.25165 + 16.1629i −0.291309 + 0.896557i
\(326\) −1.44676 + 4.45266i −0.0801284 + 0.246610i
\(327\) 9.34701 4.16156i 0.516891 0.230135i
\(328\) −0.886270 + 0.188382i −0.0489360 + 0.0104017i
\(329\) −11.3595 2.41453i −0.626267 0.133117i
\(330\) 2.83777 + 1.26346i 0.156214 + 0.0695509i
\(331\) 16.1966 17.9882i 0.890246 0.988719i −0.109740 0.993960i \(-0.535002\pi\)
0.999986 + 0.00524168i \(0.00166849\pi\)
\(332\) 9.13329 86.8975i 0.501255 4.76912i
\(333\) 6.17793 + 4.48853i 0.338548 + 0.245970i
\(334\) −3.94140 37.4999i −0.215664 2.05191i
\(335\) −2.52433 + 4.37226i −0.137919 + 0.238882i
\(336\) 15.8704 + 27.4884i 0.865804 + 1.49962i
\(337\) −8.92830 + 6.48679i −0.486355 + 0.353358i −0.803781 0.594925i \(-0.797182\pi\)
0.317426 + 0.948283i \(0.397182\pi\)
\(338\) −0.852838 0.947173i −0.0463883 0.0515194i
\(339\) 7.31135 + 22.5020i 0.397098 + 1.22214i
\(340\) −8.80253 −0.477384
\(341\) −4.22504 6.13158i −0.228799 0.332044i
\(342\) −6.81056 −0.368273
\(343\) 5.87953 + 18.0953i 0.317465 + 0.977056i
\(344\) 17.5075 + 19.4440i 0.943941 + 1.04835i
\(345\) 0.376675 0.273670i 0.0202795 0.0147339i
\(346\) −0.0161152 0.0279124i −0.000866360 0.00150058i
\(347\) 9.28369 16.0798i 0.498375 0.863210i −0.501624 0.865086i \(-0.667264\pi\)
0.999998 + 0.00187589i \(0.000597114\pi\)
\(348\) 6.31657 + 60.0982i 0.338604 + 3.22160i
\(349\) 26.0298 + 18.9118i 1.39334 + 1.01232i 0.995489 + 0.0948756i \(0.0302453\pi\)
0.397855 + 0.917448i \(0.369755\pi\)
\(350\) 2.24824 21.3906i 0.120173 1.14337i
\(351\) −13.8939 + 15.4307i −0.741599 + 0.823629i
\(352\) 21.2908 + 9.47926i 1.13480 + 0.505246i
\(353\) −31.5094 6.69754i −1.67708 0.356474i −0.731493 0.681849i \(-0.761176\pi\)
−0.945585 + 0.325375i \(0.894510\pi\)
\(354\) 1.74107 0.370077i 0.0925370 0.0196693i
\(355\) 2.64482 1.17755i 0.140373 0.0624980i
\(356\) −24.7864 + 76.2846i −1.31367 + 4.04307i
\(357\) 2.09233 6.43952i 0.110738 0.340815i
\(358\) 24.5217 10.9178i 1.29601 0.577023i
\(359\) −20.6998 + 4.39988i −1.09249 + 0.232217i −0.718718 0.695302i \(-0.755271\pi\)
−0.373777 + 0.927519i \(0.621937\pi\)
\(360\) −5.10927 1.08601i −0.269282 0.0572377i
\(361\) −11.3344 5.04639i −0.596547 0.265600i
\(362\) 33.4869 37.1910i 1.76003 1.95472i
\(363\) 1.36644 13.0009i 0.0717197 0.682368i
\(364\) 26.8560 + 19.5120i 1.40764 + 1.02271i
\(365\) −0.477344 4.54163i −0.0249853 0.237720i
\(366\) −9.76334 + 16.9106i −0.510338 + 0.883931i
\(367\) −6.49822 11.2552i −0.339204 0.587519i 0.645079 0.764116i \(-0.276824\pi\)
−0.984283 + 0.176597i \(0.943491\pi\)
\(368\) 5.65042 4.10527i 0.294549 0.214002i
\(369\) 0.0686477 + 0.0762409i 0.00357365 + 0.00396894i
\(370\) −3.91704 12.0554i −0.203637 0.626730i
\(371\) −4.83309 −0.250922
\(372\) −30.0504 28.4478i −1.55804 1.47495i
\(373\) −4.42592 −0.229166 −0.114583 0.993414i \(-0.536553\pi\)
−0.114583 + 0.993414i \(0.536553\pi\)
\(374\) −3.07165 9.45355i −0.158831 0.488832i
\(375\) −5.56342 6.17880i −0.287294 0.319072i
\(376\) −47.3762 + 34.4208i −2.44324 + 1.77512i
\(377\) 14.9228 + 25.8471i 0.768566 + 1.33119i
\(378\) 13.1394 22.7581i 0.675819 1.17055i
\(379\) 1.56330 + 14.8738i 0.0803013 + 0.764016i 0.958379 + 0.285498i \(0.0921591\pi\)
−0.878078 + 0.478518i \(0.841174\pi\)
\(380\) 6.61840 + 4.80855i 0.339517 + 0.246673i
\(381\) 1.91503 18.2202i 0.0981097 0.933452i
\(382\) −2.15669 + 2.39525i −0.110346 + 0.122552i
\(383\) −10.6431 4.73862i −0.543838 0.242132i 0.116382 0.993205i \(-0.462870\pi\)
−0.660220 + 0.751072i \(0.729537\pi\)
\(384\) 29.9508 + 6.36623i 1.52842 + 0.324875i
\(385\) −1.37437 + 0.292131i −0.0700442 + 0.0148884i
\(386\) −31.2765 + 13.9252i −1.59193 + 0.708774i
\(387\) 0.915480 2.81756i 0.0465365 0.143225i
\(388\) −2.07009 + 6.37110i −0.105093 + 0.323443i
\(389\) 13.1568 5.85779i 0.667077 0.297002i −0.0451198 0.998982i \(-0.514367\pi\)
0.712197 + 0.701980i \(0.247700\pi\)
\(390\) 8.33944 1.77260i 0.422284 0.0897592i
\(391\) −1.45732 0.309763i −0.0737000 0.0156654i
\(392\) 31.9624 + 14.2306i 1.61435 + 0.718753i
\(393\) −2.31493 + 2.57100i −0.116773 + 0.129690i
\(394\) −0.834763 + 7.94224i −0.0420547 + 0.400124i
\(395\) 4.77376 + 3.46834i 0.240194 + 0.174511i
\(396\) −0.721831 6.86777i −0.0362734 0.345118i
\(397\) −7.89506 + 13.6746i −0.396242 + 0.686311i −0.993259 0.115918i \(-0.963019\pi\)
0.597017 + 0.802229i \(0.296352\pi\)
\(398\) −17.7336 30.7155i −0.888904 1.53963i
\(399\) −5.09088 + 3.69874i −0.254863 + 0.185169i
\(400\) −40.1240 44.5622i −2.00620 2.22811i
\(401\) 9.58670 + 29.5048i 0.478737 + 1.47340i 0.840851 + 0.541267i \(0.182055\pi\)
−0.362114 + 0.932134i \(0.617945\pi\)
\(402\) −31.6817 −1.58014
\(403\) −19.2734 6.79886i −0.960075 0.338675i
\(404\) 42.5252 2.11571
\(405\) −0.953153 2.93350i −0.0473626 0.145767i
\(406\) −25.2748 28.0705i −1.25437 1.39311i
\(407\) 8.37986 6.08832i 0.415374 0.301787i
\(408\) −17.0713 29.5684i −0.845156 1.46385i
\(409\) −3.29291 + 5.70349i −0.162824 + 0.282019i −0.935880 0.352318i \(-0.885394\pi\)
0.773056 + 0.634337i \(0.218727\pi\)
\(410\) −0.0178008 0.169363i −0.000879119 0.00836425i
\(411\) −9.35015 6.79328i −0.461209 0.335088i
\(412\) −8.29462 + 78.9180i −0.408647 + 3.88801i
\(413\) −0.538735 + 0.598326i −0.0265094 + 0.0294417i
\(414\) −1.30669 0.581774i −0.0642201 0.0285926i
\(415\) 9.92882 + 2.11043i 0.487386 + 0.103597i
\(416\) 62.5679 13.2992i 3.06764 0.652047i
\(417\) −1.75460 + 0.781196i −0.0859229 + 0.0382554i
\(418\) −2.85469 + 8.78583i −0.139627 + 0.429729i
\(419\) −4.53389 + 13.9539i −0.221495 + 0.681692i 0.777133 + 0.629336i \(0.216673\pi\)
−0.998628 + 0.0523559i \(0.983327\pi\)
\(420\) −7.13312 + 3.17587i −0.348061 + 0.154967i
\(421\) 26.1321 5.55454i 1.27360 0.270712i 0.478983 0.877824i \(-0.341006\pi\)
0.794616 + 0.607112i \(0.207672\pi\)
\(422\) 48.2390 + 10.2535i 2.34824 + 0.499133i
\(423\) 6.05740 + 2.69693i 0.294521 + 0.131129i
\(424\) −16.3074 + 18.1113i −0.791959 + 0.879560i
\(425\) −1.33708 + 12.7214i −0.0648577 + 0.617079i
\(426\) 14.6980 + 10.6787i 0.712118 + 0.517384i
\(427\) −0.923240 8.78404i −0.0446787 0.425090i
\(428\) 32.4052 56.1274i 1.56636 2.71302i
\(429\) 3.48342 + 6.03347i 0.168181 + 0.291299i
\(430\) −3.97845 + 2.89052i −0.191858 + 0.139393i
\(431\) 2.66850 + 2.96367i 0.128537 + 0.142755i 0.803978 0.594660i \(-0.202713\pi\)
−0.675441 + 0.737414i \(0.736046\pi\)
\(432\) −22.6399 69.6783i −1.08926 3.35240i
\(433\) 18.0766 0.868704 0.434352 0.900743i \(-0.356977\pi\)
0.434352 + 0.900743i \(0.356977\pi\)
\(434\) 25.6482 + 3.34513i 1.23115 + 0.160571i
\(435\) −7.02016 −0.336591
\(436\) 11.6673 + 35.9082i 0.558762 + 1.71969i
\(437\) 0.926510 + 1.02899i 0.0443210 + 0.0492234i
\(438\) 23.1839 16.8441i 1.10777 0.804843i
\(439\) −11.4543 19.8394i −0.546684 0.946884i −0.998499 0.0547723i \(-0.982557\pi\)
0.451815 0.892112i \(-0.350777\pi\)
\(440\) −3.54257 + 6.13591i −0.168885 + 0.292518i
\(441\) −0.414093 3.93983i −0.0197187 0.187611i
\(442\) −22.0715 16.0359i −1.04984 0.762750i
\(443\) 2.24645 21.3736i 0.106732 1.01549i −0.801777 0.597624i \(-0.796112\pi\)
0.908509 0.417866i \(-0.137222\pi\)
\(444\) 38.5160 42.7763i 1.82789 2.03008i
\(445\) −8.51257 3.79004i −0.403535 0.179665i
\(446\) 24.7244 + 5.25533i 1.17073 + 0.248847i
\(447\) 12.4987 2.65668i 0.591169 0.125657i
\(448\) −33.0912 + 14.7331i −1.56341 + 0.696075i
\(449\) 5.80940 17.8795i 0.274163 0.843786i −0.715277 0.698841i \(-0.753700\pi\)
0.989440 0.144945i \(-0.0463005\pi\)
\(450\) −3.79484 + 11.6793i −0.178890 + 0.550568i
\(451\) 0.127127 0.0566007i 0.00598619 0.00266522i
\(452\) −85.4012 + 18.1526i −4.01694 + 0.853826i
\(453\) 4.45376 + 0.946676i 0.209256 + 0.0444787i
\(454\) −20.7897 9.25617i −0.975709 0.434414i
\(455\) −2.58045 + 2.86588i −0.120973 + 0.134354i
\(456\) −3.31680 + 31.5572i −0.155323 + 1.47780i
\(457\) −3.32182 2.41344i −0.155388 0.112896i 0.507374 0.861726i \(-0.330616\pi\)
−0.662763 + 0.748830i \(0.730616\pi\)
\(458\) 6.42352 + 61.1158i 0.300152 + 2.85575i
\(459\) −7.81429 + 13.5347i −0.364740 + 0.631748i
\(460\) 0.859060 + 1.48794i 0.0400539 + 0.0693754i
\(461\) 18.5063 13.4456i 0.861924 0.626225i −0.0664836 0.997788i \(-0.521178\pi\)
0.928408 + 0.371563i \(0.121178\pi\)
\(462\) −5.89986 6.55246i −0.274486 0.304848i
\(463\) −5.11947 15.7561i −0.237922 0.732249i −0.996720 0.0809233i \(-0.974213\pi\)
0.758798 0.651326i \(-0.225787\pi\)
\(464\) −105.308 −4.88880
\(465\) 3.65164 3.12643i 0.169341 0.144985i
\(466\) −43.7244 −2.02549
\(467\) 11.7878 + 36.2792i 0.545476 + 1.67880i 0.719855 + 0.694124i \(0.244208\pi\)
−0.174379 + 0.984679i \(0.555792\pi\)
\(468\) −12.6823 14.0851i −0.586239 0.651085i
\(469\) 11.5936 8.42323i 0.535342 0.388949i
\(470\) −5.50321 9.53184i −0.253844 0.439671i
\(471\) 2.36062 4.08871i 0.108771 0.188398i
\(472\) 0.424374 + 4.03765i 0.0195334 + 0.185848i
\(473\) −3.25101 2.36200i −0.149482 0.108605i
\(474\) −3.87052 + 36.8256i −0.177779 + 1.69145i
\(475\) 7.95463 8.83451i 0.364984 0.405355i
\(476\) 22.8256 + 10.1626i 1.04621 + 0.465802i
\(477\) 2.69919 + 0.573730i 0.123587 + 0.0262693i
\(478\) 48.0830 10.2204i 2.19926 0.467468i
\(479\) −30.7726 + 13.7008i −1.40603 + 0.626007i −0.962755 0.270377i \(-0.912852\pi\)
−0.443279 + 0.896383i \(0.646185\pi\)
\(480\) −4.64938 + 14.3093i −0.212214 + 0.653128i
\(481\) 8.78511 27.0378i 0.400567 1.23282i
\(482\) 44.6580 19.8830i 2.03412 0.905647i
\(483\) −1.29270 + 0.274772i −0.0588199 + 0.0125026i
\(484\) 47.1853 + 10.0295i 2.14479 + 0.455888i
\(485\) −0.710949 0.316535i −0.0322825 0.0143731i
\(486\) −17.5960 + 19.5423i −0.798169 + 0.886456i
\(487\) 2.16130 20.5634i 0.0979379 0.931817i −0.829668 0.558257i \(-0.811470\pi\)
0.927606 0.373560i \(-0.121863\pi\)
\(488\) −36.0319 26.1787i −1.63109 1.18506i
\(489\) −0.258168 2.45631i −0.0116748 0.111078i
\(490\) −3.28793 + 5.69487i −0.148534 + 0.257268i
\(491\) −12.3664 21.4192i −0.558087 0.966634i −0.997656 0.0684258i \(-0.978202\pi\)
0.439570 0.898209i \(-0.355131\pi\)
\(492\) 0.625630 0.454547i 0.0282056 0.0204925i
\(493\) 15.0314 + 16.6941i 0.676982 + 0.751864i
\(494\) 7.83511 + 24.1140i 0.352518 + 1.08494i
\(495\) 0.802235 0.0360578
\(496\) 54.7775 46.8990i 2.45958 2.10583i
\(497\) −8.21771 −0.368615
\(498\) 19.6838 + 60.5804i 0.882050 + 2.71467i
\(499\) −16.4340 18.2518i −0.735685 0.817061i 0.252937 0.967483i \(-0.418604\pi\)
−0.988622 + 0.150422i \(0.951937\pi\)
\(500\) 24.8218 18.0341i 1.11006 0.806509i
\(501\) 9.94584 + 17.2267i 0.444347 + 0.769632i
\(502\) −30.8429 + 53.4215i −1.37659 + 2.38432i
\(503\) −1.54066 14.6584i −0.0686946 0.653585i −0.973645 0.228068i \(-0.926759\pi\)
0.904951 0.425517i \(-0.139908\pi\)
\(504\) 11.9949 + 8.71479i 0.534295 + 0.388188i
\(505\) −0.516394 + 4.91316i −0.0229792 + 0.218633i
\(506\) −1.29821 + 1.44181i −0.0577126 + 0.0640963i
\(507\) 0.614244 + 0.273479i 0.0272795 + 0.0121456i
\(508\) 66.1285 + 14.0561i 2.93398 + 0.623637i
\(509\) −15.1674 + 3.22394i −0.672285 + 0.142899i −0.531392 0.847126i \(-0.678331\pi\)
−0.140893 + 0.990025i \(0.544997\pi\)
\(510\) 5.86233 2.61008i 0.259588 0.115576i
\(511\) −4.00557 + 12.3279i −0.177196 + 0.545353i
\(512\) −0.0418393 + 0.128768i −0.00184905 + 0.00569080i
\(513\) 13.2690 5.90773i 0.585840 0.260833i
\(514\) 0.279433 0.0593953i 0.0123253 0.00261982i
\(515\) −9.01709 1.91664i −0.397341 0.0844574i
\(516\) −20.4005 9.08291i −0.898084 0.399853i
\(517\) 6.01812 6.68380i 0.264677 0.293953i
\(518\) −3.76092 + 35.7828i −0.165245 + 1.57220i
\(519\) 0.0137556 + 0.00999402i 0.000603803 + 0.000438689i
\(520\) 2.03268 + 19.3396i 0.0891388 + 0.848099i
\(521\) −14.7073 + 25.4738i −0.644337 + 1.11603i 0.340117 + 0.940383i \(0.389533\pi\)
−0.984454 + 0.175642i \(0.943800\pi\)
\(522\) 10.7832 + 18.6771i 0.471970 + 0.817475i
\(523\) −36.4268 + 26.4656i −1.59283 + 1.15726i −0.693078 + 0.720863i \(0.743746\pi\)
−0.899754 + 0.436397i \(0.856254\pi\)
\(524\) −8.54247 9.48737i −0.373180 0.414458i
\(525\) 3.50627 + 10.7912i 0.153026 + 0.470966i
\(526\) 19.6309 0.855947
\(527\) −15.2535 1.98942i −0.664455 0.0866604i
\(528\) −24.5819 −1.06979
\(529\) −7.01753 21.5977i −0.305110 0.939032i
\(530\) −3.06499 3.40402i −0.133135 0.147861i
\(531\) 0.371899 0.270201i 0.0161391 0.0117257i
\(532\) −11.6105 20.1099i −0.503378 0.871876i
\(533\) 0.190970 0.330769i 0.00827182 0.0143272i
\(534\) −6.11220 58.1537i −0.264501 2.51656i
\(535\) 6.09119 + 4.42551i 0.263345 + 0.191331i
\(536\) 7.55343 71.8661i 0.326258 3.10414i
\(537\) −9.47518 + 10.5232i −0.408884 + 0.454112i
\(538\) −39.8604 17.7470i −1.71850 0.765127i
\(539\) −5.25607 1.11721i −0.226395 0.0481217i
\(540\) 17.6289 3.74715i 0.758629 0.161252i
\(541\) 34.5126 15.3660i 1.48381 0.660635i 0.504577 0.863367i \(-0.331648\pi\)
0.979234 + 0.202731i \(0.0649818\pi\)
\(542\) 4.27759 13.1651i 0.183738 0.565488i
\(543\) −8.15834 + 25.1088i −0.350108 + 1.07752i
\(544\) 43.9830 19.5825i 1.88576 0.839593i
\(545\) −4.29034 + 0.911941i −0.183778 + 0.0390632i
\(546\) −23.6712 5.03148i −1.01304 0.215327i
\(547\) −16.6345 7.40617i −0.711241 0.316665i 0.0190333 0.999819i \(-0.493941\pi\)
−0.730274 + 0.683154i \(0.760608\pi\)
\(548\) 28.5375 31.6942i 1.21906 1.35391i
\(549\) −0.527130 + 5.01531i −0.0224974 + 0.214048i
\(550\) 13.4761 + 9.79092i 0.574621 + 0.417486i
\(551\) −2.18229 20.7631i −0.0929686 0.884537i
\(552\) −3.33206 + 5.77130i −0.141822 + 0.245643i
\(553\) −8.37446 14.5050i −0.356118 0.616815i
\(554\) −36.8305 + 26.7590i −1.56478 + 1.13688i
\(555\) 4.47447 + 4.96940i 0.189931 + 0.210939i
\(556\) −2.19015 6.74059i −0.0928831 0.285865i
\(557\) −9.19760 −0.389715 −0.194857 0.980832i \(-0.562424\pi\)
−0.194857 + 0.980832i \(0.562424\pi\)
\(558\) −13.9269 4.91285i −0.589574 0.207978i
\(559\) −11.0293 −0.466488
\(560\) −4.20481 12.9411i −0.177686 0.546860i
\(561\) 3.50877 + 3.89688i 0.148140 + 0.164527i
\(562\) 4.14964 3.01489i 0.175042 0.127175i
\(563\) 18.0809 + 31.3170i 0.762019 + 1.31986i 0.941808 + 0.336150i \(0.109125\pi\)
−0.179790 + 0.983705i \(0.557542\pi\)
\(564\) 24.9903 43.2844i 1.05228 1.82260i
\(565\) −1.06022 10.0873i −0.0446037 0.424375i
\(566\) −33.3200 24.2084i −1.40054 1.01755i
\(567\) −0.915165 + 8.70721i −0.0384333 + 0.365668i
\(568\) −27.7276 + 30.7946i −1.16342 + 1.29211i
\(569\) 37.9119 + 16.8795i 1.58935 + 0.707624i 0.995303 0.0968056i \(-0.0308625\pi\)
0.594047 + 0.804430i \(0.297529\pi\)
\(570\) −5.83354 1.23996i −0.244340 0.0519361i
\(571\) 31.6853 6.73491i 1.32599 0.281847i 0.510128 0.860099i \(-0.329598\pi\)
0.815859 + 0.578251i \(0.196265\pi\)
\(572\) −23.4861 + 10.4567i −0.982004 + 0.437216i
\(573\) 0.525430 1.61711i 0.0219501 0.0675556i
\(574\) −0.149373 + 0.459722i −0.00623470 + 0.0191884i
\(575\) 2.28085 1.01550i 0.0951182 0.0423494i
\(576\) 20.2297 4.29995i 0.842904 0.179165i
\(577\) −40.0870 8.52075i −1.66884 0.354723i −0.725931 0.687768i \(-0.758591\pi\)
−0.942911 + 0.333044i \(0.891924\pi\)
\(578\) 23.0197 + 10.2490i 0.957494 + 0.426304i
\(579\) 12.0852 13.4220i 0.502245 0.557799i
\(580\) 2.70786 25.7636i 0.112438 1.06977i
\(581\) −23.3096 16.9354i −0.967046 0.702600i
\(582\) −0.510476 4.85685i −0.0211599 0.201323i
\(583\) 1.87151 3.24155i 0.0775100 0.134251i
\(584\) 32.6814 + 56.6059i 1.35237 + 2.34237i
\(585\) 1.78133 1.29421i 0.0736490 0.0535092i
\(586\) −48.2304 53.5652i −1.99238 2.21276i
\(587\) 7.88963 + 24.2818i 0.325640 + 1.00222i 0.971151 + 0.238466i \(0.0766445\pi\)
−0.645511 + 0.763751i \(0.723356\pi\)
\(588\) −29.8612 −1.23146
\(589\) 10.3820 + 9.82833i 0.427783 + 0.404969i
\(590\) −0.763058 −0.0314146
\(591\) −1.30187 4.00673i −0.0535516 0.164815i
\(592\) 67.1206 + 74.5449i 2.75864 + 3.06378i
\(593\) −36.0269 + 26.1751i −1.47945 + 1.07488i −0.501716 + 0.865033i \(0.667298\pi\)
−0.977734 + 0.209850i \(0.932702\pi\)
\(594\) 10.1759 + 17.6252i 0.417523 + 0.723170i
\(595\) −1.45132 + 2.51375i −0.0594982 + 0.103054i
\(596\) 4.92879 + 46.8943i 0.201891 + 1.92086i
\(597\) 15.1370 + 10.9977i 0.619515 + 0.450104i
\(598\) −0.556616 + 5.29584i −0.0227617 + 0.216563i
\(599\) 12.7001 14.1049i 0.518911 0.576309i −0.425549 0.904935i \(-0.639919\pi\)
0.944460 + 0.328627i \(0.106586\pi\)
\(600\) 52.2689 + 23.2716i 2.13387 + 0.950059i
\(601\) 12.5592 + 2.66955i 0.512301 + 0.108893i 0.456807 0.889566i \(-0.348993\pi\)
0.0554947 + 0.998459i \(0.482326\pi\)
\(602\) 13.6535 2.90215i 0.556477 0.118283i
\(603\) −7.47469 + 3.32795i −0.304393 + 0.135524i
\(604\) −5.19217 + 15.9799i −0.211267 + 0.650212i
\(605\) −1.73175 + 5.32977i −0.0704056 + 0.216686i
\(606\) −28.3210 + 12.6093i −1.15046 + 0.512219i
\(607\) 37.3059 7.92960i 1.51420 0.321853i 0.625456 0.780260i \(-0.284913\pi\)
0.888742 + 0.458407i \(0.151580\pi\)
\(608\) −43.7670 9.30297i −1.77499 0.377285i
\(609\) 18.2038 + 8.10485i 0.737654 + 0.328425i
\(610\) 5.60124 6.22081i 0.226788 0.251873i
\(611\) 2.58030 24.5499i 0.104388 0.993184i
\(612\) −11.5412 8.38520i −0.466527 0.338952i
\(613\) 1.93821 + 18.4408i 0.0782834 + 0.744817i 0.961305 + 0.275485i \(0.0888385\pi\)
−0.883022 + 0.469332i \(0.844495\pi\)
\(614\) 12.0401 20.8541i 0.485901 0.841605i
\(615\) 0.0449190 + 0.0778020i 0.00181131 + 0.00313728i
\(616\) 16.2701 11.8209i 0.655541 0.476278i
\(617\) 5.44374 + 6.04589i 0.219157 + 0.243398i 0.842691 0.538398i \(-0.180970\pi\)
−0.623534 + 0.781796i \(0.714304\pi\)
\(618\) −17.8763 55.0175i −0.719089 2.21313i
\(619\) −5.36063 −0.215462 −0.107731 0.994180i \(-0.534359\pi\)
−0.107731 + 0.994180i \(0.534359\pi\)
\(620\) 10.0653 + 14.6072i 0.404232 + 0.586641i
\(621\) 3.05046 0.122411
\(622\) −17.1711 52.8472i −0.688499 2.11898i
\(623\) 17.6981 + 19.6557i 0.709058 + 0.787489i
\(624\) −54.5833 + 39.6571i −2.18508 + 1.58755i
\(625\) −9.79252 16.9611i −0.391701 0.678446i
\(626\) 0.607062 1.05146i 0.0242631 0.0420249i
\(627\) −0.509409 4.84670i −0.0203438 0.193559i
\(628\) 14.0948 + 10.2404i 0.562442 + 0.408638i
\(629\) 2.23670 21.2808i 0.0891830 0.848519i
\(630\) −1.86463 + 2.07088i −0.0742887 + 0.0825059i
\(631\) 26.5358 + 11.8145i 1.05637 + 0.470327i 0.860049 0.510212i \(-0.170433\pi\)
0.196324 + 0.980539i \(0.437100\pi\)
\(632\) −82.6116 17.5596i −3.28611 0.698485i
\(633\) −25.4480 + 5.40914i −1.01147 + 0.214994i
\(634\) 13.7154 6.10647i 0.544707 0.242519i
\(635\) −2.42699 + 7.46949i −0.0963120 + 0.296418i
\(636\) 6.42770 19.7824i 0.254875 0.784424i
\(637\) −13.4733 + 5.99868i −0.533830 + 0.237677i
\(638\) 28.6139 6.08208i 1.13284 0.240792i
\(639\) 4.58943 + 0.975513i 0.181555 + 0.0385907i
\(640\) −11.9916 5.33902i −0.474011 0.211043i
\(641\) −18.4717 + 20.5149i −0.729589 + 0.810290i −0.987788 0.155801i \(-0.950204\pi\)
0.258200 + 0.966092i \(0.416871\pi\)
\(642\) −4.93868 + 46.9884i −0.194914 + 1.85449i
\(643\) 3.42136 + 2.48577i 0.134925 + 0.0980291i 0.653201 0.757185i \(-0.273426\pi\)
−0.518275 + 0.855214i \(0.673426\pi\)
\(644\) −0.509768 4.85012i −0.0200877 0.191121i
\(645\) 1.29713 2.24669i 0.0510742 0.0884632i
\(646\) 9.54202 + 16.5273i 0.375426 + 0.650257i
\(647\) 21.2617 15.4475i 0.835883 0.607304i −0.0853349 0.996352i \(-0.527196\pi\)
0.921217 + 0.389048i \(0.127196\pi\)
\(648\) 29.5410 + 32.8086i 1.16048 + 1.28884i
\(649\) −0.192683 0.593018i −0.00756348 0.0232780i
\(650\) 45.7184 1.79322
\(651\) −13.0785 + 3.89121i −0.512585 + 0.152509i
\(652\) 9.11408 0.356935
\(653\) −4.12592 12.6983i −0.161460 0.496922i 0.837298 0.546746i \(-0.184134\pi\)
−0.998758 + 0.0498246i \(0.984134\pi\)
\(654\) −18.4175 20.4547i −0.720182 0.799843i
\(655\) 1.19986 0.871749i 0.0468824 0.0340621i
\(656\) 0.673821 + 1.16709i 0.0263083 + 0.0455673i
\(657\) 3.70045 6.40937i 0.144368 0.250053i
\(658\) 3.26561 + 31.0702i 0.127307 + 1.21124i
\(659\) 12.4717 + 9.06119i 0.485827 + 0.352974i 0.803577 0.595200i \(-0.202927\pi\)
−0.317750 + 0.948174i \(0.602927\pi\)
\(660\) 0.632093 6.01396i 0.0246042 0.234093i
\(661\) −3.16035 + 3.50992i −0.122923 + 0.136520i −0.801465 0.598042i \(-0.795946\pi\)
0.678542 + 0.734562i \(0.262612\pi\)
\(662\) −59.4868 26.4852i −2.31202 1.02938i
\(663\) 14.0778 + 2.99233i 0.546736 + 0.116212i
\(664\) −142.112 + 30.2069i −5.51502 + 1.17225i
\(665\) 2.46439 1.09722i 0.0955651 0.0425483i
\(666\) 6.34812 19.5375i 0.245984 0.757062i
\(667\) 1.35493 4.17006i 0.0524632 0.161465i
\(668\) −67.0573 + 29.8558i −2.59453 + 1.15516i
\(669\) −13.0431 + 2.77239i −0.504275 + 0.107187i
\(670\) 13.2849 + 2.82379i 0.513239 + 0.109092i
\(671\) 6.24895 + 2.78221i 0.241238 + 0.107406i
\(672\) 28.5764 31.7373i 1.10236 1.22429i
\(673\) 3.24801 30.9028i 0.125202 1.19121i −0.733845 0.679317i \(-0.762276\pi\)
0.859046 0.511898i \(-0.171057\pi\)
\(674\) 24.0185 + 17.4505i 0.925158 + 0.672167i
\(675\) −2.73760 26.0465i −0.105370 1.00253i
\(676\) −1.24058 + 2.14875i −0.0477147 + 0.0826443i
\(677\) 4.51998 + 7.82883i 0.173717 + 0.300886i 0.939716 0.341955i \(-0.111089\pi\)
−0.766000 + 0.642841i \(0.777756\pi\)
\(678\) 51.4932 37.4120i 1.97759 1.43680i
\(679\) 1.47810 + 1.64159i 0.0567242 + 0.0629986i
\(680\) 4.52297 + 13.9203i 0.173448 + 0.533818i
\(681\) 12.0053 0.460044
\(682\) −12.1753 + 15.9069i −0.466216 + 0.609107i
\(683\) 7.13535 0.273027 0.136513 0.990638i \(-0.456410\pi\)
0.136513 + 0.990638i \(0.456410\pi\)
\(684\) 4.09699 + 12.6092i 0.156652 + 0.482127i
\(685\) 3.31525 + 3.68196i 0.126669 + 0.140681i
\(686\) 41.4091 30.0854i 1.58101 1.14867i
\(687\) −16.2093 28.0753i −0.618423 1.07114i
\(688\) 19.4579 33.7021i 0.741826 1.28488i
\(689\) −1.07385 10.2170i −0.0409103 0.389236i
\(690\) −1.01331 0.736216i −0.0385762 0.0280273i
\(691\) −3.81272 + 36.2756i −0.145043 + 1.37999i 0.643706 + 0.765273i \(0.277396\pi\)
−0.788749 + 0.614716i \(0.789271\pi\)
\(692\) −0.0419833 + 0.0466272i −0.00159597 + 0.00177250i
\(693\) −2.08025 0.926188i −0.0790222 0.0351830i
\(694\) −48.8576 10.3850i −1.85461 0.394210i
\(695\) 0.805371 0.171187i 0.0305495 0.00649349i
\(696\) 91.7934 40.8690i 3.47942 1.54914i
\(697\) 0.0888351 0.273406i 0.00336487 0.0103560i
\(698\) 26.7469 82.3185i 1.01238 3.11580i
\(699\) 21.0722 9.38193i 0.797022 0.354857i
\(700\) −40.9555 + 8.70536i −1.54797 + 0.329032i
\(701\) 1.57916 + 0.335661i 0.0596441 + 0.0126777i 0.237637 0.971354i \(-0.423627\pi\)
−0.177993 + 0.984032i \(0.556960\pi\)
\(702\) 51.0293 + 22.7197i 1.92598 + 0.857500i
\(703\) −13.3067 + 14.7786i −0.501873 + 0.557386i
\(704\) 2.93233 27.8993i 0.110516 1.05149i
\(705\) 4.69742 + 3.41287i 0.176915 + 0.128536i
\(706\) 9.05833 + 86.1843i 0.340915 + 3.24359i
\(707\) 7.01134 12.1440i 0.263688 0.456722i
\(708\) −1.73254 3.00084i −0.0651127 0.112779i
\(709\) −9.29395 + 6.75245i −0.349042 + 0.253594i −0.748467 0.663172i \(-0.769210\pi\)
0.399425 + 0.916766i \(0.369210\pi\)
\(710\) −5.21141 5.78785i −0.195581 0.217214i
\(711\) 2.95510 + 9.09487i 0.110825 + 0.341084i
\(712\) 133.372 4.99833
\(713\) 1.15235 + 2.77254i 0.0431558 + 0.103832i
\(714\) −18.2148 −0.681672
\(715\) −0.922919 2.84045i −0.0345152 0.106227i
\(716\) −34.9649 38.8324i −1.30670 1.45124i
\(717\) −20.9797 + 15.2427i −0.783503 + 0.569248i
\(718\) 28.4649 + 49.3026i 1.06230 + 1.83996i
\(719\) 7.08549 12.2724i 0.264244 0.457685i −0.703121 0.711070i \(-0.748211\pi\)
0.967365 + 0.253386i \(0.0815441\pi\)
\(720\) 0.812085 + 7.72648i 0.0302646 + 0.287949i
\(721\) 21.1692 + 15.3803i 0.788382 + 0.572793i
\(722\) −3.48883 + 33.1940i −0.129841 + 1.23535i
\(723\) −17.2558 + 19.1645i −0.641751 + 0.712736i
\(724\) −89.0009 39.6258i −3.30769 1.47268i
\(725\) −36.8222 7.82681i −1.36754 0.290680i
\(726\) −34.3985 + 7.31162i −1.27665 + 0.271360i
\(727\) −24.6180 + 10.9606i −0.913030 + 0.406507i −0.808826 0.588049i \(-0.799896\pi\)
−0.104205 + 0.994556i \(0.533230\pi\)
\(728\) 17.0569 52.4958i 0.632172 1.94562i
\(729\) 8.98695 27.6590i 0.332850 1.02441i
\(730\) −11.2229 + 4.99675i −0.415378 + 0.184938i
\(731\) −8.12005 + 1.72597i −0.300331 + 0.0638373i
\(732\) 37.1820 + 7.90328i 1.37429 + 0.292113i
\(733\) −25.9662 11.5609i −0.959083 0.427011i −0.133348 0.991069i \(-0.542573\pi\)
−0.825735 + 0.564058i \(0.809239\pi\)
\(734\) −23.3944 + 25.9822i −0.863504 + 0.959019i
\(735\) 0.362612 3.45003i 0.0133752 0.127256i
\(736\) −7.60254 5.52357i −0.280233 0.203601i
\(737\) 1.16009 + 11.0375i 0.0427324 + 0.406572i
\(738\) 0.137995 0.239014i 0.00507965 0.00879822i
\(739\) 0.348653 + 0.603885i 0.0128254 + 0.0222143i 0.872367 0.488852i \(-0.162584\pi\)
−0.859541 + 0.511066i \(0.829251\pi\)
\(740\) −19.9633 + 14.5042i −0.733866 + 0.533185i
\(741\) −8.95012 9.94011i −0.328791 0.365159i
\(742\) 4.01777 + 12.3654i 0.147497 + 0.453949i
\(743\) −18.1815 −0.667015 −0.333508 0.942747i \(-0.608232\pi\)
−0.333508 + 0.942747i \(0.608232\pi\)
\(744\) −29.5466 + 62.1389i −1.08323 + 2.27812i
\(745\) −5.47779 −0.200691
\(746\) 3.67929 + 11.3237i 0.134708 + 0.414589i
\(747\) 11.0076 + 12.2251i 0.402746 + 0.447295i
\(748\) −15.6548 + 11.3738i −0.572395 + 0.415869i
\(749\) −10.6856 18.5080i −0.390443 0.676267i
\(750\) −11.1835 + 19.3704i −0.408364 + 0.707307i
\(751\) 3.87445 + 36.8629i 0.141381 + 1.34515i 0.803301 + 0.595573i \(0.203075\pi\)
−0.661920 + 0.749574i \(0.730258\pi\)
\(752\) 70.4650 + 51.1958i 2.56959 + 1.86692i
\(753\) 3.40154 32.3635i 0.123959 1.17939i
\(754\) 53.7242 59.6668i 1.95652 2.17294i
\(755\) −1.78319 0.793927i −0.0648969 0.0288940i
\(756\) −50.0392 10.6362i −1.81991 0.386834i
\(757\) −6.26211 + 1.33105i −0.227600 + 0.0483779i −0.320300 0.947316i \(-0.603784\pi\)
0.0926997 + 0.995694i \(0.470450\pi\)
\(758\) 36.7549 16.3643i 1.33500 0.594380i
\(759\) 0.316281 0.973412i 0.0114803 0.0353326i
\(760\) 4.20351 12.9371i 0.152477 0.469277i
\(761\) −19.4940 + 8.67928i −0.706657 + 0.314624i −0.728412 0.685140i \(-0.759741\pi\)
0.0217552 + 0.999763i \(0.493075\pi\)
\(762\) −48.2083 + 10.2470i −1.74640 + 0.371209i