Properties

Label 31.2.g.a.19.1
Level 31
Weight 2
Character 31.19
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 19.1
Root \(1.42343i\)
Character \(\chi\) = 31.19
Dual form 31.2.g.a.18.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-1.86683 - 1.35633i) q^{2}\) \(+(-2.32289 - 1.03422i) q^{3}\) \(+(1.02738 + 3.16196i) q^{4}\) \(+(1.24923 - 2.16373i) q^{5}\) \(+(2.93370 + 5.08132i) q^{6}\) \(+(1.07187 - 1.19043i) q^{7}\) \(+(0.944583 - 2.90713i) q^{8}\) \(+(2.31884 + 2.57533i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-1.86683 - 1.35633i) q^{2}\) \(+(-2.32289 - 1.03422i) q^{3}\) \(+(1.02738 + 3.16196i) q^{4}\) \(+(1.24923 - 2.16373i) q^{5}\) \(+(2.93370 + 5.08132i) q^{6}\) \(+(1.07187 - 1.19043i) q^{7}\) \(+(0.944583 - 2.90713i) q^{8}\) \(+(2.31884 + 2.57533i) q^{9}\) \(+(-5.26683 + 2.34494i) q^{10}\) \(+(-0.717625 - 0.152536i) q^{11}\) \(+(0.883657 - 8.40743i) q^{12}\) \(+(0.198183 + 1.88559i) q^{13}\) \(+(-3.61560 + 0.768520i) q^{14}\) \(+(-5.13960 + 3.73414i) q^{15}\) \(+(-0.326952 + 0.237545i) q^{16}\) \(+(4.28354 - 0.910495i) q^{17}\) \(+(-0.835873 - 7.95280i) q^{18}\) \(+(0.484806 - 4.61262i) q^{19}\) \(+(8.12506 + 1.72703i) q^{20}\) \(+(-3.72099 + 1.65669i) q^{21}\) \(+(1.13279 + 1.25809i) q^{22}\) \(+(-2.19973 + 6.77006i) q^{23}\) \(+(-5.20077 + 5.77604i) q^{24}\) \(+(-0.621150 - 1.07586i) q^{25}\) \(+(2.18751 - 3.78887i) q^{26}\) \(+(-0.365721 - 1.12557i) q^{27}\) \(+(4.86530 + 2.16617i) q^{28}\) \(+(0.104314 + 0.0757884i) q^{29}\) \(+14.6595 q^{30}\) \(+(4.81795 + 2.79058i) q^{31}\) \(-5.18091 q^{32}\) \(+(1.50921 + 1.09651i) q^{33}\) \(+(-9.23157 - 4.11016i) q^{34}\) \(+(-1.23676 - 3.80635i) q^{35}\) \(+(-5.76075 + 9.97791i) q^{36}\) \(+(-4.21474 - 7.30014i) q^{37}\) \(+(-7.16128 + 7.95341i) q^{38}\) \(+(1.48975 - 4.58499i) q^{39}\) \(+(-5.11023 - 5.67549i) q^{40}\) \(+(-6.73647 + 2.99927i) q^{41}\) \(+(9.19348 + 1.95413i) q^{42}\) \(+(-0.0240929 + 0.229229i) q^{43}\) \(+(-0.254963 - 2.42581i) q^{44}\) \(+(8.46907 - 1.80016i) q^{45}\) \(+(13.2889 - 9.65498i) q^{46}\) \(+(6.50168 - 4.72375i) q^{47}\) \(+(1.00515 - 0.213651i) q^{48}\) \(+(0.463478 + 4.40970i) q^{49}\) \(+(-0.299645 + 2.85094i) q^{50}\) \(+(-10.8919 - 2.31514i) q^{51}\) \(+(-5.75854 + 2.56387i) q^{52}\) \(+(3.83695 + 4.26137i) q^{53}\) \(+(-0.843912 + 2.59729i) q^{54}\) \(+(-1.22652 + 1.36219i) q^{55}\) \(+(-2.44826 - 4.24051i) q^{56}\) \(+(-5.89661 + 10.2132i) q^{57}\) \(+(-0.0919419 - 0.282968i) q^{58}\) \(+(8.68208 + 3.86551i) q^{59}\) \(+(-17.0875 - 12.4148i) q^{60}\) \(-7.84044 q^{61}\) \(+(-5.20934 - 11.7443i) q^{62}\) \(+5.55122 q^{63}\) \(+(10.3258 + 7.50212i) q^{64}\) \(+(4.32748 + 1.92672i) q^{65}\) \(+(-1.33021 - 4.09397i) q^{66}\) \(+(-2.41329 + 4.17994i) q^{67}\) \(+(7.27978 + 12.6090i) q^{68}\) \(+(12.1115 - 13.4511i) q^{69}\) \(+(-2.85385 + 8.78324i) q^{70}\) \(+(-2.27840 - 2.53042i) q^{71}\) \(+(9.67714 - 4.30854i) q^{72}\) \(+(-2.63322 - 0.559708i) q^{73}\) \(+(-2.03321 + 19.3447i) q^{74}\) \(+(0.330187 + 3.14152i) q^{75}\) \(+(15.0830 - 3.20599i) q^{76}\) \(+(-0.950780 + 0.690782i) q^{77}\) \(+(-8.99987 + 6.53879i) q^{78}\) \(+(-4.42900 + 0.941413i) q^{79}\) \(+(0.105544 + 1.00418i) q^{80}\) \(+(0.772154 - 7.34656i) q^{81}\) \(+(16.6438 + 3.53775i) q^{82}\) \(+(2.43949 - 1.08613i) q^{83}\) \(+(-9.06128 - 10.0636i) q^{84}\) \(+(3.38106 - 10.4058i) q^{85}\) \(+(0.355888 - 0.395253i) q^{86}\) \(+(-0.163928 - 0.283932i) q^{87}\) \(+(-1.12130 + 1.94214i) q^{88}\) \(+(-0.681255 - 2.09669i) q^{89}\) \(+(-18.2519 - 8.12627i) q^{90}\) \(+(2.45708 + 1.78518i) q^{91}\) \(-23.6666 q^{92}\) \(+(-8.30552 - 11.4650i) q^{93}\) \(-18.5445 q^{94}\) \(+(-9.37482 - 6.81121i) q^{95}\) \(+(12.0347 + 5.35820i) q^{96}\) \(+(3.79778 + 11.6884i) q^{97}\) \(+(5.11577 - 8.86077i) q^{98}\) \(+(-1.27122 - 2.20182i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86683 1.35633i −1.32005 0.959070i −0.999932 0.0116917i \(-0.996278\pi\)
−0.320115 0.947379i \(-0.603722\pi\)
\(3\) −2.32289 1.03422i −1.34112 0.597107i −0.394336 0.918966i \(-0.629025\pi\)
−0.946787 + 0.321860i \(0.895692\pi\)
\(4\) 1.02738 + 3.16196i 0.513691 + 1.58098i
\(5\) 1.24923 2.16373i 0.558673 0.967649i −0.438935 0.898519i \(-0.644644\pi\)
0.997608 0.0691304i \(-0.0220225\pi\)
\(6\) 2.93370 + 5.08132i 1.19768 + 2.07444i
\(7\) 1.07187 1.19043i 0.405127 0.449939i −0.505711 0.862703i \(-0.668770\pi\)
0.910838 + 0.412764i \(0.135436\pi\)
\(8\) 0.944583 2.90713i 0.333960 1.02782i
\(9\) 2.31884 + 2.57533i 0.772945 + 0.858443i
\(10\) −5.26683 + 2.34494i −1.66552 + 0.741536i
\(11\) −0.717625 0.152536i −0.216372 0.0459913i 0.0984501 0.995142i \(-0.468612\pi\)
−0.314822 + 0.949151i \(0.601945\pi\)
\(12\) 0.883657 8.40743i 0.255090 2.42702i
\(13\) 0.198183 + 1.88559i 0.0549662 + 0.522968i 0.987014 + 0.160633i \(0.0513537\pi\)
−0.932048 + 0.362335i \(0.881980\pi\)
\(14\) −3.61560 + 0.768520i −0.966310 + 0.205396i
\(15\) −5.13960 + 3.73414i −1.32704 + 0.964150i
\(16\) −0.326952 + 0.237545i −0.0817381 + 0.0593862i
\(17\) 4.28354 0.910495i 1.03891 0.220828i 0.343285 0.939231i \(-0.388460\pi\)
0.695626 + 0.718404i \(0.255127\pi\)
\(18\) −0.835873 7.95280i −0.197017 1.87449i
\(19\) 0.484806 4.61262i 0.111222 1.05821i −0.786483 0.617611i \(-0.788100\pi\)
0.897706 0.440596i \(-0.145233\pi\)
\(20\) 8.12506 + 1.72703i 1.81682 + 0.386177i
\(21\) −3.72099 + 1.65669i −0.811987 + 0.361520i
\(22\) 1.13279 + 1.25809i 0.241512 + 0.268227i
\(23\) −2.19973 + 6.77006i −0.458675 + 1.41166i 0.408092 + 0.912941i \(0.366194\pi\)
−0.866766 + 0.498714i \(0.833806\pi\)
\(24\) −5.20077 + 5.77604i −1.06160 + 1.17903i
\(25\) −0.621150 1.07586i −0.124230 0.215173i
\(26\) 2.18751 3.78887i 0.429005 0.743059i
\(27\) −0.365721 1.12557i −0.0703831 0.216617i
\(28\) 4.86530 + 2.16617i 0.919455 + 0.409368i
\(29\) 0.104314 + 0.0757884i 0.0193706 + 0.0140736i 0.597428 0.801922i \(-0.296189\pi\)
−0.578058 + 0.815996i \(0.696189\pi\)
\(30\) 14.6595 2.67644
\(31\) 4.81795 + 2.79058i 0.865330 + 0.501203i
\(32\) −5.18091 −0.915865
\(33\) 1.50921 + 1.09651i 0.262720 + 0.190877i
\(34\) −9.23157 4.11016i −1.58320 0.704887i
\(35\) −1.23676 3.80635i −0.209050 0.643390i
\(36\) −5.76075 + 9.97791i −0.960125 + 1.66298i
\(37\) −4.21474 7.30014i −0.692899 1.20014i −0.970884 0.239550i \(-0.923000\pi\)
0.277985 0.960585i \(-0.410333\pi\)
\(38\) −7.16128 + 7.95341i −1.16171 + 1.29021i
\(39\) 1.48975 4.58499i 0.238551 0.734186i
\(40\) −5.11023 5.67549i −0.807999 0.897374i
\(41\) −6.73647 + 2.99927i −1.05206 + 0.468407i −0.858570 0.512696i \(-0.828647\pi\)
−0.193489 + 0.981102i \(0.561980\pi\)
\(42\) 9.19348 + 1.95413i 1.41858 + 0.301529i
\(43\) −0.0240929 + 0.229229i −0.00367414 + 0.0349571i −0.996205 0.0870338i \(-0.972261\pi\)
0.992531 + 0.121991i \(0.0389279\pi\)
\(44\) −0.254963 2.42581i −0.0384371 0.365705i
\(45\) 8.46907 1.80016i 1.26249 0.268351i
\(46\) 13.2889 9.65498i 1.95935 1.42355i
\(47\) 6.50168 4.72375i 0.948368 0.689030i −0.00205222 0.999998i \(-0.500653\pi\)
0.950420 + 0.310968i \(0.100653\pi\)
\(48\) 1.00515 0.213651i 0.145081 0.0308379i
\(49\) 0.463478 + 4.40970i 0.0662111 + 0.629957i
\(50\) −0.299645 + 2.85094i −0.0423763 + 0.403183i
\(51\) −10.8919 2.31514i −1.52517 0.324184i
\(52\) −5.75854 + 2.56387i −0.798566 + 0.355545i
\(53\) 3.83695 + 4.26137i 0.527046 + 0.585344i 0.946610 0.322382i \(-0.104483\pi\)
−0.419563 + 0.907726i \(0.637817\pi\)
\(54\) −0.843912 + 2.59729i −0.114842 + 0.353447i
\(55\) −1.22652 + 1.36219i −0.165384 + 0.183678i
\(56\) −2.44826 4.24051i −0.327162 0.566662i
\(57\) −5.89661 + 10.2132i −0.781025 + 1.35278i
\(58\) −0.0919419 0.282968i −0.0120726 0.0371555i
\(59\) 8.68208 + 3.86551i 1.13031 + 0.503247i 0.884718 0.466127i \(-0.154351\pi\)
0.245592 + 0.969373i \(0.421018\pi\)
\(60\) −17.0875 12.4148i −2.20599 1.60274i
\(61\) −7.84044 −1.00387 −0.501933 0.864907i \(-0.667377\pi\)
−0.501933 + 0.864907i \(0.667377\pi\)
\(62\) −5.20934 11.7443i −0.661587 1.49152i
\(63\) 5.55122 0.699388
\(64\) 10.3258 + 7.50212i 1.29072 + 0.937765i
\(65\) 4.32748 + 1.92672i 0.536758 + 0.238980i
\(66\) −1.33021 4.09397i −0.163738 0.503933i
\(67\) −2.41329 + 4.17994i −0.294830 + 0.510661i −0.974945 0.222444i \(-0.928596\pi\)
0.680115 + 0.733105i \(0.261930\pi\)
\(68\) 7.27978 + 12.6090i 0.882804 + 1.52906i
\(69\) 12.1115 13.4511i 1.45805 1.61933i
\(70\) −2.85385 + 8.78324i −0.341100 + 1.04980i
\(71\) −2.27840 2.53042i −0.270396 0.300306i 0.592619 0.805483i \(-0.298094\pi\)
−0.863016 + 0.505177i \(0.831427\pi\)
\(72\) 9.67714 4.30854i 1.14046 0.507766i
\(73\) −2.63322 0.559708i −0.308195 0.0655088i 0.0512180 0.998687i \(-0.483690\pi\)
−0.359413 + 0.933179i \(0.617023\pi\)
\(74\) −2.03321 + 19.3447i −0.236356 + 2.24877i
\(75\) 0.330187 + 3.14152i 0.0381267 + 0.362751i
\(76\) 15.0830 3.20599i 1.73014 0.367752i
\(77\) −0.950780 + 0.690782i −0.108351 + 0.0787219i
\(78\) −8.99987 + 6.53879i −1.01903 + 0.740372i
\(79\) −4.42900 + 0.941413i −0.498301 + 0.105917i −0.450204 0.892925i \(-0.648649\pi\)
−0.0480968 + 0.998843i \(0.515316\pi\)
\(80\) 0.105544 + 1.00418i 0.0118002 + 0.112271i
\(81\) 0.772154 7.34656i 0.0857949 0.816284i
\(82\) 16.6438 + 3.53775i 1.83800 + 0.390680i
\(83\) 2.43949 1.08613i 0.267768 0.119218i −0.268461 0.963291i \(-0.586515\pi\)
0.536229 + 0.844072i \(0.319848\pi\)
\(84\) −9.06128 10.0636i −0.988666 1.09803i
\(85\) 3.38106 10.4058i 0.366728 1.12867i
\(86\) 0.355888 0.395253i 0.0383764 0.0426213i
\(87\) −0.163928 0.283932i −0.0175749 0.0304407i
\(88\) −1.12130 + 1.94214i −0.119531 + 0.207033i
\(89\) −0.681255 2.09669i −0.0722129 0.222248i 0.908436 0.418025i \(-0.137277\pi\)
−0.980649 + 0.195776i \(0.937277\pi\)
\(90\) −18.2519 8.12627i −1.92392 0.856584i
\(91\) 2.45708 + 1.78518i 0.257572 + 0.187137i
\(92\) −23.6666 −2.46741
\(93\) −8.30552 11.4650i −0.861243 1.18887i
\(94\) −18.5445 −1.91272
\(95\) −9.37482 6.81121i −0.961837 0.698815i
\(96\) 12.0347 + 5.35820i 1.22829 + 0.546869i
\(97\) 3.79778 + 11.6884i 0.385606 + 1.18677i 0.936040 + 0.351894i \(0.114462\pi\)
−0.550434 + 0.834879i \(0.685538\pi\)
\(98\) 5.11577 8.86077i 0.516771 0.895073i
\(99\) −1.27122 2.20182i −0.127763 0.221292i
\(100\) 2.76367 3.06937i 0.276367 0.306937i
\(101\) 2.26952 6.98486i 0.225826 0.695020i −0.772381 0.635159i \(-0.780934\pi\)
0.998207 0.0598605i \(-0.0190656\pi\)
\(102\) 17.1932 + 19.0949i 1.70238 + 1.89068i
\(103\) 5.10558 2.27315i 0.503068 0.223980i −0.139481 0.990225i \(-0.544544\pi\)
0.642549 + 0.766245i \(0.277877\pi\)
\(104\) 5.66885 + 1.20495i 0.555876 + 0.118155i
\(105\) −1.06374 + 10.1208i −0.103810 + 0.987690i
\(106\) −1.38311 13.1594i −0.134340 1.27816i
\(107\) −1.78430 + 0.379264i −0.172495 + 0.0366649i −0.293349 0.956005i \(-0.594770\pi\)
0.120855 + 0.992670i \(0.461437\pi\)
\(108\) 3.18328 2.31279i 0.306312 0.222548i
\(109\) −9.51832 + 6.91546i −0.911689 + 0.662381i −0.941442 0.337176i \(-0.890528\pi\)
0.0297521 + 0.999557i \(0.490528\pi\)
\(110\) 4.13729 0.879409i 0.394475 0.0838483i
\(111\) 2.24045 + 21.3164i 0.212654 + 2.02326i
\(112\) −0.0676692 + 0.643829i −0.00639414 + 0.0608361i
\(113\) −10.8130 2.29837i −1.01720 0.216212i −0.331003 0.943630i \(-0.607387\pi\)
−0.686195 + 0.727417i \(0.740720\pi\)
\(114\) 24.8605 11.0686i 2.32840 1.03667i
\(115\) 11.9006 + 13.2170i 1.10974 + 1.23249i
\(116\) −0.132470 + 0.407700i −0.0122995 + 0.0378540i
\(117\) −4.39646 + 4.88276i −0.406452 + 0.451411i
\(118\) −10.9650 18.9920i −1.00941 1.74836i
\(119\) 3.50750 6.07518i 0.321532 0.556911i
\(120\) 6.00083 + 18.4687i 0.547799 + 1.68595i
\(121\) −9.55728 4.25518i −0.868844 0.386834i
\(122\) 14.6368 + 10.6342i 1.32515 + 0.962777i
\(123\) 18.7500 1.69063
\(124\) −3.87381 + 18.1012i −0.347879 + 1.62553i
\(125\) 9.38846 0.839730
\(126\) −10.3632 7.52929i −0.923225 0.670762i
\(127\) −1.17576 0.523483i −0.104332 0.0464516i 0.353907 0.935281i \(-0.384853\pi\)
−0.458239 + 0.888829i \(0.651520\pi\)
\(128\) −5.89913 18.1557i −0.521414 1.60475i
\(129\) 0.293038 0.507557i 0.0258006 0.0446879i
\(130\) −5.46540 9.46635i −0.479347 0.830254i
\(131\) −5.36666 + 5.96028i −0.468888 + 0.520752i −0.930481 0.366339i \(-0.880611\pi\)
0.461594 + 0.887091i \(0.347278\pi\)
\(132\) −1.91657 + 5.89859i −0.166816 + 0.513406i
\(133\) −4.97134 5.52123i −0.431070 0.478752i
\(134\) 10.1746 4.53001i 0.878949 0.391334i
\(135\) −2.89231 0.614779i −0.248930 0.0529118i
\(136\) 1.39924 13.3128i 0.119983 1.14157i
\(137\) 1.72229 + 16.3865i 0.147145 + 1.39999i 0.780028 + 0.625745i \(0.215205\pi\)
−0.632883 + 0.774248i \(0.718128\pi\)
\(138\) −40.8542 + 8.68382i −3.47774 + 0.739216i
\(139\) −5.93804 + 4.31424i −0.503658 + 0.365929i −0.810412 0.585860i \(-0.800757\pi\)
0.306755 + 0.951789i \(0.400757\pi\)
\(140\) 10.7649 7.82114i 0.909799 0.661007i
\(141\) −19.9881 + 4.24861i −1.68330 + 0.357797i
\(142\) 0.821298 + 7.81413i 0.0689218 + 0.655747i
\(143\) 0.145399 1.38338i 0.0121588 0.115684i
\(144\) −1.36990 0.291182i −0.114159 0.0242652i
\(145\) 0.294298 0.131030i 0.0244401 0.0108814i
\(146\) 4.15662 + 4.61639i 0.344004 + 0.382055i
\(147\) 3.48398 10.7226i 0.287354 0.884385i
\(148\) 18.7526 20.8269i 1.54145 1.71196i
\(149\) 3.18096 + 5.50959i 0.260595 + 0.451363i 0.966400 0.257043i \(-0.0827480\pi\)
−0.705805 + 0.708406i \(0.749415\pi\)
\(150\) 3.64454 6.31252i 0.297575 0.515415i
\(151\) −1.70724 5.25433i −0.138933 0.427592i 0.857248 0.514904i \(-0.172172\pi\)
−0.996181 + 0.0873120i \(0.972172\pi\)
\(152\) −12.9515 5.76639i −1.05051 0.467716i
\(153\) 12.2777 + 8.92024i 0.992590 + 0.721159i
\(154\) 2.71187 0.218529
\(155\) 12.0568 6.93867i 0.968424 0.557327i
\(156\) 16.0281 1.28327
\(157\) −6.46767 4.69903i −0.516176 0.375024i 0.298985 0.954258i \(-0.403352\pi\)
−0.815161 + 0.579234i \(0.803352\pi\)
\(158\) 9.54505 + 4.24973i 0.759363 + 0.338090i
\(159\) −4.50565 13.8670i −0.357321 1.09972i
\(160\) −6.47215 + 11.2101i −0.511669 + 0.886236i
\(161\) 5.70146 + 9.87521i 0.449338 + 0.778276i
\(162\) −11.4058 + 12.6675i −0.896127 + 0.995250i
\(163\) −5.27350 + 16.2302i −0.413052 + 1.27124i 0.500929 + 0.865488i \(0.332992\pi\)
−0.913981 + 0.405756i \(0.867008\pi\)
\(164\) −16.4045 18.2190i −1.28098 1.42267i
\(165\) 4.25789 1.89574i 0.331476 0.147583i
\(166\) −6.02725 1.28113i −0.467805 0.0994351i
\(167\) 2.54759 24.2387i 0.197138 1.87565i −0.232431 0.972613i \(-0.574668\pi\)
0.429570 0.903034i \(-0.358665\pi\)
\(168\) 1.30143 + 12.3823i 0.100408 + 0.955314i
\(169\) 9.19975 1.95547i 0.707673 0.150421i
\(170\) −20.4256 + 14.8401i −1.56657 + 1.13818i
\(171\) 13.0032 9.44737i 0.994379 0.722458i
\(172\) −0.749565 + 0.159325i −0.0571538 + 0.0121484i
\(173\) −0.937997 8.92444i −0.0713146 0.678513i −0.970526 0.240998i \(-0.922525\pi\)
0.899211 0.437515i \(-0.144141\pi\)
\(174\) −0.0790797 + 0.752393i −0.00599501 + 0.0570387i
\(175\) −1.94653 0.413747i −0.147144 0.0312763i
\(176\) 0.270863 0.120596i 0.0204171 0.00909027i
\(177\) −16.1698 17.9583i −1.21539 1.34983i
\(178\) −1.57201 + 4.83816i −0.117827 + 0.362635i
\(179\) −7.55483 + 8.39049i −0.564675 + 0.627135i −0.956088 0.293080i \(-0.905320\pi\)
0.391413 + 0.920215i \(0.371986\pi\)
\(180\) 14.3930 + 24.9294i 1.07279 + 1.85813i
\(181\) 7.47052 12.9393i 0.555279 0.961772i −0.442602 0.896718i \(-0.645945\pi\)
0.997882 0.0650542i \(-0.0207220\pi\)
\(182\) −2.16567 6.66523i −0.160530 0.494060i
\(183\) 18.2125 + 8.10873i 1.34631 + 0.599415i
\(184\) 17.6036 + 12.7898i 1.29775 + 0.942874i
\(185\) −21.0607 −1.54841
\(186\) −0.0453903 + 32.6683i −0.00332818 + 2.39536i
\(187\) −3.21286 −0.234947
\(188\) 21.6160 + 15.7050i 1.57651 + 1.14540i
\(189\) −1.73192 0.771100i −0.125979 0.0560893i
\(190\) 8.26294 + 25.4307i 0.599457 + 1.84494i
\(191\) −1.13046 + 1.95802i −0.0817975 + 0.141677i −0.904022 0.427486i \(-0.859399\pi\)
0.822225 + 0.569163i \(0.192733\pi\)
\(192\) −16.2269 28.1057i −1.17107 2.02836i
\(193\) 17.1727 19.0723i 1.23612 1.37285i 0.333307 0.942818i \(-0.391835\pi\)
0.902813 0.430033i \(-0.141498\pi\)
\(194\) 8.76347 26.9712i 0.629181 1.93642i
\(195\) −8.05963 8.95113i −0.577162 0.641004i
\(196\) −13.4671 + 5.99594i −0.961936 + 0.428282i
\(197\) 6.06032 + 1.28816i 0.431780 + 0.0917776i 0.418674 0.908136i \(-0.362495\pi\)
0.0131056 + 0.999914i \(0.495828\pi\)
\(198\) −0.613244 + 5.83463i −0.0435813 + 0.414649i
\(199\) 0.477625 + 4.54430i 0.0338579 + 0.322137i 0.998321 + 0.0579199i \(0.0184468\pi\)
−0.964463 + 0.264217i \(0.914887\pi\)
\(200\) −3.71440 + 0.789519i −0.262647 + 0.0558274i
\(201\) 9.92879 7.21369i 0.700323 0.508814i
\(202\) −13.7106 + 9.96132i −0.964673 + 0.700876i
\(203\) 0.202031 0.0429430i 0.0141798 0.00301401i
\(204\) −3.86974 36.8182i −0.270936 2.57779i
\(205\) −1.92579 + 18.3227i −0.134503 + 1.27971i
\(206\) −12.6144 2.68127i −0.878886 0.186813i
\(207\) −22.5359 + 10.0336i −1.56636 + 0.697386i
\(208\) −0.512708 0.569420i −0.0355499 0.0394822i
\(209\) −1.05150 + 3.23618i −0.0727336 + 0.223851i
\(210\) 15.7130 17.4510i 1.08430 1.20424i
\(211\) 9.30839 + 16.1226i 0.640816 + 1.10993i 0.985251 + 0.171115i \(0.0547371\pi\)
−0.344435 + 0.938810i \(0.611930\pi\)
\(212\) −9.53225 + 16.5103i −0.654678 + 1.13394i
\(213\) 2.67547 + 8.23426i 0.183321 + 0.564203i
\(214\) 3.84539 + 1.71208i 0.262865 + 0.117035i
\(215\) 0.465892 + 0.338490i 0.0317736 + 0.0230849i
\(216\) −3.61764 −0.246149
\(217\) 8.48618 2.74430i 0.576080 0.186295i
\(218\) 27.1487 1.83874
\(219\) 5.53783 + 4.02347i 0.374212 + 0.271881i
\(220\) −5.56731 2.47872i −0.375348 0.167116i
\(221\) 2.56575 + 7.89656i 0.172591 + 0.531180i
\(222\) 24.7296 42.8329i 1.65974 2.87475i
\(223\) −3.10748 5.38231i −0.208092 0.360426i 0.743021 0.669268i \(-0.233392\pi\)
−0.951113 + 0.308842i \(0.900059\pi\)
\(224\) −5.55324 + 6.16750i −0.371042 + 0.412084i
\(225\) 1.33036 4.09441i 0.0886904 0.272961i
\(226\) 17.0686 + 18.9566i 1.13539 + 1.26097i
\(227\) −11.9198 + 5.30702i −0.791142 + 0.352239i −0.762200 0.647342i \(-0.775881\pi\)
−0.0289423 + 0.999581i \(0.509214\pi\)
\(228\) −38.3519 8.15194i −2.53992 0.539876i
\(229\) −1.59698 + 15.1942i −0.105531 + 1.00406i 0.805743 + 0.592265i \(0.201766\pi\)
−0.911275 + 0.411799i \(0.864901\pi\)
\(230\) −4.28983 40.8150i −0.282863 2.69126i
\(231\) 2.92298 0.621299i 0.192318 0.0408785i
\(232\) 0.318860 0.231665i 0.0209342 0.0152096i
\(233\) −10.5668 + 7.67721i −0.692253 + 0.502951i −0.877400 0.479760i \(-0.840724\pi\)
0.185147 + 0.982711i \(0.440724\pi\)
\(234\) 14.8301 3.15223i 0.969471 0.206068i
\(235\) −2.09882 19.9689i −0.136912 1.30263i
\(236\) −3.30277 + 31.4237i −0.214992 + 2.04551i
\(237\) 11.2617 + 2.39375i 0.731527 + 0.155491i
\(238\) −14.7879 + 6.58398i −0.958554 + 0.426776i
\(239\) −15.6859 17.4210i −1.01464 1.12687i −0.991886 0.127128i \(-0.959424\pi\)
−0.0227507 0.999741i \(-0.507242\pi\)
\(240\) 0.793379 2.44177i 0.0512124 0.157616i
\(241\) 16.5356 18.3647i 1.06515 1.18297i 0.0826776 0.996576i \(-0.473653\pi\)
0.982475 0.186395i \(-0.0596805\pi\)
\(242\) 12.0704 + 20.9065i 0.775914 + 1.34392i
\(243\) −11.1668 + 19.3415i −0.716353 + 1.24076i
\(244\) −8.05513 24.7911i −0.515677 1.58709i
\(245\) 10.1204 + 4.50588i 0.646567 + 0.287870i
\(246\) −35.0030 25.4312i −2.23171 1.62143i
\(247\) 8.79358 0.559522
\(248\) 12.6635 11.3705i 0.804134 0.722025i
\(249\) −6.78996 −0.430296
\(250\) −17.5266 12.7339i −1.10848 0.805360i
\(251\) −21.1889 9.43391i −1.33743 0.595463i −0.391605 0.920134i \(-0.628080\pi\)
−0.945827 + 0.324671i \(0.894747\pi\)
\(252\) 5.70323 + 17.5527i 0.359270 + 1.10572i
\(253\) 2.61125 4.52282i 0.164168 0.284348i
\(254\) 1.48493 + 2.57198i 0.0931729 + 0.161380i
\(255\) −18.6158 + 20.6749i −1.16577 + 1.29471i
\(256\) −5.72420 + 17.6173i −0.357763 + 1.10108i
\(257\) 10.2686 + 11.4044i 0.640535 + 0.711386i 0.972760 0.231814i \(-0.0744661\pi\)
−0.332225 + 0.943200i \(0.607799\pi\)
\(258\) −1.23547 + 0.550066i −0.0769169 + 0.0342456i
\(259\) −13.2079 2.80743i −0.820700 0.174445i
\(260\) −1.64623 + 15.6628i −0.102095 + 0.971365i
\(261\) 0.0467066 + 0.444383i 0.00289106 + 0.0275066i
\(262\) 18.1028 3.84786i 1.11839 0.237722i
\(263\) 5.50607 4.00039i 0.339519 0.246675i −0.404940 0.914343i \(-0.632708\pi\)
0.744459 + 0.667668i \(0.232708\pi\)
\(264\) 4.61325 3.35173i 0.283926 0.206284i
\(265\) 14.0137 2.97870i 0.860854 0.182980i
\(266\) 1.79202 + 17.0500i 0.109876 + 1.04540i
\(267\) −0.585951 + 5.57495i −0.0358596 + 0.341181i
\(268\) −15.6962 3.33632i −0.958796 0.203798i
\(269\) 9.61017 4.27873i 0.585943 0.260878i −0.0922822 0.995733i \(-0.529416\pi\)
0.678225 + 0.734854i \(0.262750\pi\)
\(270\) 4.56560 + 5.07061i 0.277854 + 0.308588i
\(271\) −0.487363 + 1.49995i −0.0296052 + 0.0911154i −0.964767 0.263105i \(-0.915254\pi\)
0.935162 + 0.354220i \(0.115254\pi\)
\(272\) −1.18423 + 1.31522i −0.0718046 + 0.0797470i
\(273\) −3.86128 6.68794i −0.233695 0.404772i
\(274\) 19.0103 32.9268i 1.14845 1.98918i
\(275\) 0.281645 + 0.866813i 0.0169838 + 0.0522708i
\(276\) 54.9750 + 24.4765i 3.30911 + 1.47331i
\(277\) −9.79020 7.11300i −0.588236 0.427379i 0.253448 0.967349i \(-0.418435\pi\)
−0.841684 + 0.539970i \(0.818435\pi\)
\(278\) 16.9368 1.01580
\(279\) 3.98538 + 18.8787i 0.238599 + 1.13024i
\(280\) −12.2337 −0.731106
\(281\) 17.3718 + 12.6214i 1.03632 + 0.752927i 0.969563 0.244842i \(-0.0787362\pi\)
0.0667525 + 0.997770i \(0.478736\pi\)
\(282\) 43.0769 + 19.1791i 2.56519 + 1.14210i
\(283\) −0.212853 0.655094i −0.0126528 0.0389413i 0.944531 0.328423i \(-0.106517\pi\)
−0.957184 + 0.289482i \(0.906517\pi\)
\(284\) 5.66030 9.80392i 0.335877 0.581756i
\(285\) 14.7324 + 25.5173i 0.872675 + 1.51152i
\(286\) −2.14775 + 2.38532i −0.126999 + 0.141047i
\(287\) −3.65018 + 11.2341i −0.215463 + 0.663127i
\(288\) −12.0137 13.3426i −0.707913 0.786217i
\(289\) 1.98947 0.885767i 0.117027 0.0521040i
\(290\) −0.727123 0.154555i −0.0426981 0.00907576i
\(291\) 3.26649 31.0785i 0.191485 1.82186i
\(292\) −0.935550 8.90116i −0.0547489 0.520901i
\(293\) −8.81495 + 1.87368i −0.514975 + 0.109461i −0.458066 0.888918i \(-0.651458\pi\)
−0.0569086 + 0.998379i \(0.518124\pi\)
\(294\) −21.0474 + 15.2918i −1.22751 + 0.891837i
\(295\) 19.2098 13.9568i 1.11844 0.812594i
\(296\) −25.2036 + 5.35719i −1.46493 + 0.311380i
\(297\) 0.0907602 + 0.863526i 0.00526644 + 0.0501068i
\(298\) 1.53451 14.5999i 0.0888918 0.845749i
\(299\) −13.2015 2.80607i −0.763463 0.162279i
\(300\) −9.59413 + 4.27158i −0.553917 + 0.246620i
\(301\) 0.247056 + 0.274384i 0.0142401 + 0.0158152i
\(302\) −3.93949 + 12.1245i −0.226692 + 0.697688i
\(303\) −12.4957 + 13.8779i −0.717861 + 0.797265i
\(304\) 0.937195 + 1.62327i 0.0537518 + 0.0931009i
\(305\) −9.79451 + 16.9646i −0.560832 + 0.971389i
\(306\) −10.8215 33.3051i −0.618623 1.90393i
\(307\) −28.6238 12.7441i −1.63365 0.727346i −0.634679 0.772776i \(-0.718868\pi\)
−0.998968 + 0.0454296i \(0.985534\pi\)
\(308\) −3.16104 2.29663i −0.180117 0.130863i
\(309\) −14.2107 −0.808416
\(310\) −31.9191 3.39968i −1.81288 0.193089i
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) −11.9219 8.66180i −0.674947 0.490378i
\(313\) −19.7953 8.81346i −1.11890 0.498166i −0.237903 0.971289i \(-0.576460\pi\)
−0.880996 + 0.473123i \(0.843127\pi\)
\(314\) 5.70058 + 17.5446i 0.321702 + 0.990098i
\(315\) 6.93475 12.0113i 0.390729 0.676762i
\(316\) −7.52698 13.0371i −0.423426 0.733395i
\(317\) 0.679868 0.755070i 0.0381852 0.0424089i −0.723750 0.690063i \(-0.757583\pi\)
0.761935 + 0.647654i \(0.224250\pi\)
\(318\) −10.3969 + 31.9984i −0.583030 + 1.79438i
\(319\) −0.0632977 0.0702992i −0.00354399 0.00393600i
\(320\) 29.1318 12.9703i 1.62852 0.725063i
\(321\) 4.53698 + 0.964364i 0.253229 + 0.0538256i
\(322\) 2.75041 26.1684i 0.153274 1.45831i
\(323\) −2.12308 20.1998i −0.118131 1.12394i
\(324\) 24.0228 5.10620i 1.33460 0.283678i
\(325\) 1.90553 1.38445i 0.105700 0.0767955i
\(326\) 31.8582 23.1463i 1.76446 1.28196i
\(327\) 29.2621 6.21986i 1.61820 0.343959i
\(328\) 2.35610 + 22.4168i 0.130094 + 1.23776i
\(329\) 1.34565 12.8030i 0.0741881 0.705853i
\(330\) −10.5200 2.23609i −0.579107 0.123093i
\(331\) 24.3820 10.8556i 1.34016 0.596676i 0.393621 0.919273i \(-0.371222\pi\)
0.946537 + 0.322597i \(0.104556\pi\)
\(332\) 5.94058 + 6.59768i 0.326032 + 0.362095i
\(333\) 9.02697 27.7822i 0.494675 1.52245i
\(334\) −37.6316 + 41.7941i −2.05911 + 2.28687i
\(335\) 6.02951 + 10.4434i 0.329427 + 0.570584i
\(336\) 0.823049 1.42556i 0.0449010 0.0777708i
\(337\) 9.87048 + 30.3782i 0.537679 + 1.65481i 0.737788 + 0.675033i \(0.235871\pi\)
−0.200108 + 0.979774i \(0.564129\pi\)
\(338\) −19.8266 8.82738i −1.07843 0.480146i
\(339\) 22.7404 + 16.5218i 1.23509 + 0.897343i
\(340\) 36.3765 1.97279
\(341\) −3.03182 2.73750i −0.164182 0.148244i
\(342\) −37.0885 −2.00552
\(343\) 14.8178 + 10.7658i 0.800088 + 0.581298i
\(344\) 0.643640 + 0.286567i 0.0347027 + 0.0154507i
\(345\) −13.9746 43.0095i −0.752368 2.31555i
\(346\) −10.3534 + 17.9326i −0.556603 + 0.964065i
\(347\) −1.56066 2.70314i −0.0837804 0.145112i 0.821090 0.570798i \(-0.193366\pi\)
−0.904871 + 0.425686i \(0.860033\pi\)
\(348\) 0.729364 0.810041i 0.0390980 0.0434227i
\(349\) −6.80655 + 20.9484i −0.364346 + 1.12134i 0.586043 + 0.810280i \(0.300685\pi\)
−0.950389 + 0.311063i \(0.899315\pi\)
\(350\) 3.07265 + 3.41253i 0.164240 + 0.182407i
\(351\) 2.04989 0.912671i 0.109415 0.0487147i
\(352\) 3.71795 + 0.790275i 0.198167 + 0.0421218i
\(353\) −0.515575 + 4.90537i −0.0274413 + 0.261087i 0.972196 + 0.234167i \(0.0752364\pi\)
−0.999638 + 0.0269192i \(0.991430\pi\)
\(354\) 5.82873 + 55.4567i 0.309794 + 2.94749i
\(355\) −8.32139 + 1.76877i −0.441654 + 0.0938764i
\(356\) 5.92973 4.30820i 0.314275 0.228334i
\(357\) −14.4306 + 10.4845i −0.763750 + 0.554897i
\(358\) 25.4838 5.41676i 1.34686 0.286285i
\(359\) 0.0377201 + 0.358883i 0.00199079 + 0.0189411i 0.995472 0.0950532i \(-0.0303021\pi\)
−0.993481 + 0.113994i \(0.963635\pi\)
\(360\) 2.76645 26.3211i 0.145805 1.38724i
\(361\) −2.45641 0.522126i −0.129285 0.0274803i
\(362\) −31.4962 + 14.0230i −1.65540 + 0.737033i
\(363\) 17.7998 + 19.7686i 0.934246 + 1.03758i
\(364\) −3.12029 + 9.60325i −0.163547 + 0.503347i
\(365\) −4.50055 + 4.99837i −0.235570 + 0.261627i
\(366\) −23.0015 39.8398i −1.20231 2.08246i
\(367\) 14.6935 25.4498i 0.766992 1.32847i −0.172195 0.985063i \(-0.555086\pi\)
0.939187 0.343406i \(-0.111581\pi\)
\(368\) −0.888987 2.73602i −0.0463416 0.142625i
\(369\) −23.3449 10.3938i −1.21528 0.541080i
\(370\) 39.3167 + 28.5653i 2.04398 + 1.48504i
\(371\) 9.18555 0.476890
\(372\) 27.7190 38.0407i 1.43716 1.97232i
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) 5.99786 + 4.35770i 0.310142 + 0.225331i
\(375\) −21.8084 9.70973i −1.12618 0.501408i
\(376\) −7.59116 23.3632i −0.391484 1.20486i
\(377\) −0.122233 + 0.211713i −0.00629530 + 0.0109038i
\(378\) 2.18733 + 3.78857i 0.112504 + 0.194863i
\(379\) −1.64634 + 1.82845i −0.0845669 + 0.0939211i −0.783943 0.620833i \(-0.786795\pi\)
0.699376 + 0.714754i \(0.253461\pi\)
\(380\) 11.9052 36.6405i 0.610725 1.87962i
\(381\) 2.18978 + 2.43199i 0.112186 + 0.124595i
\(382\) 4.76611 2.12201i 0.243855 0.108571i
\(383\) 18.7001 + 3.97484i 0.955533 + 0.203105i 0.659190 0.751977i \(-0.270899\pi\)
0.296343 + 0.955082i \(0.404233\pi\)
\(384\) −5.07387 + 48.2747i −0.258925 + 2.46351i
\(385\) 0.306923 + 2.92018i 0.0156422 + 0.148826i
\(386\) −57.9268 + 12.3127i −2.94840 + 0.626701i
\(387\) −0.646208 + 0.469497i −0.0328486 + 0.0238659i
\(388\) −33.0563 + 24.0168i −1.67818 + 1.21927i
\(389\) −5.15587 + 1.09591i −0.261413 + 0.0555651i −0.336754 0.941593i \(-0.609329\pi\)
0.0753405 + 0.997158i \(0.475996\pi\)
\(390\) 2.90526 + 27.6417i 0.147114 + 1.39969i
\(391\) −3.25851 + 31.0027i −0.164790 + 1.56787i
\(392\) 13.2573 + 2.81793i 0.669597 + 0.142327i
\(393\) 18.6304 8.29480i 0.939781 0.418417i
\(394\) −9.56640 10.6246i −0.481949 0.535258i
\(395\) −3.49587 + 10.7592i −0.175897 + 0.541354i
\(396\) 5.65604 6.28167i 0.284227 0.315666i
\(397\) −8.46275 14.6579i −0.424733 0.735660i 0.571662 0.820489i \(-0.306299\pi\)
−0.996395 + 0.0848295i \(0.972965\pi\)
\(398\) 5.27193 9.13124i 0.264258 0.457708i
\(399\) 5.83773 + 17.9667i 0.292252 + 0.899460i
\(400\) 0.458652 + 0.204205i 0.0229326 + 0.0102103i
\(401\) −30.7747 22.3591i −1.53682 1.11656i −0.952293 0.305186i \(-0.901281\pi\)
−0.584524 0.811377i \(-0.698719\pi\)
\(402\) −28.3195 −1.41245
\(403\) −4.30705 + 9.63773i −0.214549 + 0.480089i
\(404\) 24.4175 1.21482
\(405\) −14.9314 10.8483i −0.741945 0.539055i
\(406\) −0.435402 0.193854i −0.0216087 0.00962079i
\(407\) 1.91107 + 5.88166i 0.0947281 + 0.291543i
\(408\) −17.0187 + 29.4772i −0.842550 + 1.45934i
\(409\) −0.249342 0.431873i −0.0123292 0.0213547i 0.859795 0.510639i \(-0.170591\pi\)
−0.872124 + 0.489285i \(0.837258\pi\)
\(410\) 28.4467 31.5933i 1.40488 1.56028i
\(411\) 12.9465 39.8453i 0.638605 1.96542i
\(412\) 12.4330 + 13.8082i 0.612529 + 0.680283i
\(413\) 13.9076 6.19208i 0.684350 0.304692i
\(414\) 55.6796 + 11.8351i 2.73650 + 0.581662i
\(415\) 0.697389 6.63521i 0.0342335 0.325710i
\(416\) −1.02677 9.76908i −0.0503416 0.478968i
\(417\) 18.2553 3.88028i 0.893966 0.190018i
\(418\) 6.35229 4.61521i 0.310701 0.225737i
\(419\) −10.9298 + 7.94098i −0.533957 + 0.387942i −0.821836 0.569725i \(-0.807050\pi\)
0.287879 + 0.957667i \(0.407050\pi\)
\(420\) −33.0945 + 7.03444i −1.61484 + 0.343246i
\(421\) 3.23151 + 30.7458i 0.157494 + 1.49846i 0.732758 + 0.680489i \(0.238233\pi\)
−0.575264 + 0.817968i \(0.695101\pi\)
\(422\) 4.49041 42.7234i 0.218590 2.07974i
\(423\) 27.2415 + 5.79037i 1.32453 + 0.281537i
\(424\) 16.0127 7.12930i 0.777644 0.346229i
\(425\) −3.64029 4.04295i −0.176580 0.196112i
\(426\) 6.17373 19.0008i 0.299118 0.920591i
\(427\) −8.40390 + 9.33347i −0.406693 + 0.451678i
\(428\) −3.03237 5.25223i −0.146575 0.253876i
\(429\) −1.76846 + 3.06306i −0.0853820 + 0.147886i
\(430\) −0.410636 1.26381i −0.0198026 0.0609462i
\(431\) −11.0126 4.90313i −0.530458 0.236175i 0.123988 0.992284i \(-0.460432\pi\)
−0.654446 + 0.756108i \(0.727098\pi\)
\(432\) 0.386948 + 0.281134i 0.0186170 + 0.0135261i
\(433\) −32.3919 −1.55665 −0.778327 0.627860i \(-0.783931\pi\)
−0.778327 + 0.627860i \(0.783931\pi\)
\(434\) −19.5644 6.38693i −0.939122 0.306583i
\(435\) −0.819136 −0.0392745
\(436\) −31.6454 22.9917i −1.51554 1.10110i
\(437\) 30.1613 + 13.4287i 1.44281 + 0.642380i
\(438\) −4.88102 15.0222i −0.233224 0.717790i
\(439\) −6.18408 + 10.7111i −0.295150 + 0.511215i −0.975020 0.222118i \(-0.928703\pi\)
0.679870 + 0.733333i \(0.262036\pi\)
\(440\) 2.80151 + 4.85236i 0.133557 + 0.231327i
\(441\) −10.2817 + 11.4190i −0.489604 + 0.543760i
\(442\) 5.92053 18.2215i 0.281611 0.866709i
\(443\) −3.16058 3.51017i −0.150163 0.166773i 0.663370 0.748292i \(-0.269126\pi\)
−0.813533 + 0.581518i \(0.802459\pi\)
\(444\) −65.0998 + 28.9843i −3.08950 + 1.37553i
\(445\) −5.38771 1.14519i −0.255402 0.0542873i
\(446\) −1.49906 + 14.2626i −0.0709826 + 0.675354i
\(447\) −1.69092 16.0880i −0.0799777 0.760937i
\(448\) 19.9986 4.25083i 0.944844 0.200833i
\(449\) 12.9315 9.39528i 0.610275 0.443390i −0.239236 0.970961i \(-0.576897\pi\)
0.849511 + 0.527571i \(0.176897\pi\)
\(450\) −8.03692 + 5.83917i −0.378864 + 0.275261i
\(451\) 5.29175 1.12480i 0.249179 0.0529646i
\(452\) −3.84171 36.5515i −0.180699 1.71924i
\(453\) −1.46840 + 13.9709i −0.0689916 + 0.656411i
\(454\) 29.4502 + 6.25984i 1.38217 + 0.293789i
\(455\) 6.93210 3.08637i 0.324982 0.144691i
\(456\) 24.1213 + 26.7894i 1.12958 + 1.25453i
\(457\) 1.40842 4.33468i 0.0658832 0.202768i −0.912696 0.408640i \(-0.866003\pi\)
0.978579 + 0.205872i \(0.0660032\pi\)
\(458\) 23.5897 26.1990i 1.10227 1.22420i
\(459\) −2.59141 4.48846i −0.120957 0.209503i
\(460\) −29.5650 + 51.2081i −1.37848 + 2.38759i
\(461\) −5.25050 16.1594i −0.244540 0.752618i −0.995712 0.0925105i \(-0.970511\pi\)
0.751171 0.660107i \(-0.229489\pi\)
\(462\) −6.29939 2.80467i −0.293074 0.130485i
\(463\) −22.1896 16.1217i −1.03124 0.749239i −0.0626822 0.998034i \(-0.519965\pi\)
−0.968556 + 0.248795i \(0.919965\pi\)
\(464\) −0.0521088 −0.00241909
\(465\) −35.1827 + 3.64844i −1.63156 + 0.169192i
\(466\) 30.1392 1.39617
\(467\) 18.5350 + 13.4665i 0.857697 + 0.623153i 0.927257 0.374425i \(-0.122160\pi\)
−0.0695608 + 0.997578i \(0.522160\pi\)
\(468\) −19.9559 8.88495i −0.922463 0.410707i
\(469\) 2.38919 + 7.35318i 0.110323 + 0.339538i
\(470\) −23.1663 + 40.1253i −1.06858 + 1.85084i
\(471\) 10.1639 + 17.6043i 0.468327 + 0.811165i
\(472\) 19.4385 21.5886i 0.894728 0.993696i
\(473\) 0.0522553 0.160825i 0.00240270 0.00739476i
\(474\) −17.7770 19.7433i −0.816524 0.906841i
\(475\) −5.26368 + 2.34354i −0.241514 + 0.107529i
\(476\) 22.8130 + 4.84905i 1.04563 + 0.222256i
\(477\) −2.07716 + 19.7628i −0.0951065 + 0.904878i
\(478\) 5.65432 + 53.7972i 0.258622 + 2.46063i
\(479\) −8.84935 + 1.88099i −0.404337 + 0.0859445i −0.405591 0.914055i \(-0.632934\pi\)
0.00125373 + 0.999999i \(0.499601\pi\)
\(480\) 26.6278 19.3462i 1.21539 0.883031i
\(481\) 12.9298 9.39403i 0.589547 0.428331i
\(482\) −55.7777 + 11.8559i −2.54060 + 0.540022i
\(483\) −3.03075 28.8356i −0.137904 1.31207i
\(484\) 3.63570 34.5914i 0.165259 1.57234i
\(485\) 30.0347 + 6.38408i 1.36381 + 0.289886i
\(486\) 47.0800 20.9614i 2.13559 0.950828i
\(487\) −15.8066 17.5551i −0.716268 0.795496i 0.269609 0.962970i \(-0.413106\pi\)
−0.985876 + 0.167474i \(0.946439\pi\)
\(488\) −7.40594 + 22.7931i −0.335251 + 1.03180i
\(489\) 29.0353 32.2470i 1.31302 1.45826i
\(490\) −12.7815 22.1383i −0.577411 1.00011i
\(491\) −4.61346 + 7.99074i −0.208202 + 0.360617i −0.951148 0.308734i \(-0.900095\pi\)
0.742946 + 0.669351i \(0.233428\pi\)
\(492\) 19.2634 + 59.2867i 0.868462 + 2.67285i
\(493\) 0.515838 + 0.229666i 0.0232322 + 0.0103436i
\(494\) −16.4161 11.9270i −0.738596 0.536621i
\(495\) −6.35220 −0.285510
\(496\) −2.23813 + 0.232093i −0.100495 + 0.0104213i
\(497\) −5.45442 −0.244664
\(498\) 12.6757 + 9.20943i 0.568011 + 0.412684i
\(499\) 25.9574 + 11.5570i 1.16201 + 0.517362i 0.894884 0.446298i \(-0.147258\pi\)
0.267130 + 0.963660i \(0.413925\pi\)
\(500\) 9.64554 + 29.6859i 0.431362 + 1.32759i
\(501\) −30.9859 + 53.6692i −1.38435 + 2.39776i
\(502\) 26.7606 + 46.3506i 1.19438 + 2.06873i
\(503\) 12.2304 13.5833i 0.545327 0.605647i −0.405984 0.913880i \(-0.633071\pi\)
0.951311 + 0.308233i \(0.0997377\pi\)
\(504\) 5.24359 16.1381i 0.233568 0.718848i
\(505\) −12.2782 13.6363i −0.546373 0.606808i
\(506\) −11.0092 + 4.90161i −0.489419 + 0.217903i
\(507\) −23.3924 4.97221i −1.03889 0.220824i
\(508\) 0.447274 4.25553i 0.0198446 0.188809i
\(509\) −1.08567 10.3295i −0.0481215 0.457845i −0.991877 0.127201i \(-0.959401\pi\)
0.943756 0.330644i \(-0.107266\pi\)
\(510\) 62.7945 13.3474i 2.78059 0.591032i
\(511\) −3.48875 + 2.53472i −0.154333 + 0.112130i
\(512\) 3.69272 2.68292i 0.163197 0.118569i
\(513\) −5.36915 + 1.14125i −0.237054 + 0.0503873i
\(514\) −3.70152 35.2176i −0.163267 1.55338i
\(515\) 1.45956 13.8868i 0.0643159 0.611924i
\(516\) 1.90594 + 0.405120i 0.0839042 + 0.0178344i
\(517\) −5.38631 + 2.39814i −0.236890 + 0.105470i
\(518\) 20.8491 + 23.1553i 0.916058 + 1.01739i
\(519\) −7.05096 + 21.7006i −0.309503 + 0.952552i
\(520\) 9.68888 10.7606i 0.424885 0.471883i
\(521\) −4.62522 8.01111i −0.202635 0.350973i 0.746742 0.665114i \(-0.231617\pi\)
−0.949376 + 0.314141i \(0.898284\pi\)
\(522\) 0.515537 0.892937i 0.0225645 0.0390828i
\(523\) −2.03184 6.25335i −0.0888461 0.273440i 0.896755 0.442527i \(-0.145918\pi\)
−0.985601 + 0.169087i \(0.945918\pi\)
\(524\) −24.3598 10.8457i −1.06416 0.473796i
\(525\) 4.09367 + 2.97422i 0.178662 + 0.129806i
\(526\) −15.7047 −0.684759
\(527\) 23.1787 + 7.56684i 1.00968 + 0.329617i
\(528\) −0.753909 −0.0328097
\(529\) −22.3875 16.2655i −0.973371 0.707195i
\(530\) −30.2013 13.4465i −1.31186 0.584077i
\(531\) 10.1774 + 31.3227i 0.441660 + 1.35929i
\(532\) 12.3504 21.3916i 0.535460 0.927443i
\(533\) −6.99044 12.1078i −0.302790 0.524447i
\(534\) 8.65534 9.61273i 0.374553 0.415983i
\(535\) −1.40837 + 4.33453i −0.0608893 + 0.187398i
\(536\) 9.87206 + 10.9640i 0.426408 + 0.473574i
\(537\) 26.2267 11.6769i 1.13176 0.503894i
\(538\) −23.7439 5.04692i −1.02367 0.217588i
\(539\) 0.340034 3.23520i 0.0146463 0.139350i
\(540\) −1.02760 9.77697i −0.0442209 0.420734i
\(541\) 2.15513 0.458087i 0.0926562 0.0196947i −0.161350 0.986897i \(-0.551585\pi\)
0.254006 + 0.967203i \(0.418252\pi\)
\(542\) 2.94425 2.13912i 0.126466 0.0918831i
\(543\) −30.7353 + 22.3305i −1.31898 + 0.958294i
\(544\) −22.1927 + 4.71720i −0.951503 + 0.202248i
\(545\) 3.07262 + 29.2341i 0.131617 + 1.25225i
\(546\) −1.86270 + 17.7224i −0.0797162 + 0.758449i
\(547\) 4.75717 + 1.01117i 0.203402 + 0.0432344i 0.308486 0.951229i \(-0.400178\pi\)
−0.105084 + 0.994463i \(0.533511\pi\)
\(548\) −50.0440 + 22.2810i −2.13777 + 0.951797i
\(549\) −18.1807 20.1917i −0.775933 0.861761i
\(550\) 0.649903 2.00019i 0.0277119 0.0852886i
\(551\) 0.400155 0.444417i 0.0170472 0.0189328i
\(552\) −27.6639 47.9152i −1.17745 2.03941i
\(553\) −3.62661 + 6.28147i −0.154219 + 0.267115i
\(554\) 8.62905 + 26.5575i 0.366613 + 1.12832i
\(555\) 48.9218 + 21.7814i 2.07661 + 0.924568i
\(556\) −19.7421 14.3435i −0.837251 0.608298i
\(557\) 11.0363 0.467623 0.233811 0.972282i \(-0.424880\pi\)
0.233811 + 0.972282i \(0.424880\pi\)
\(558\) 18.1657 40.6488i 0.769016 1.72080i
\(559\) −0.437007 −0.0184834
\(560\) 1.30854 + 0.950708i 0.0552958 + 0.0401748i
\(561\) 7.46313 + 3.32280i 0.315094 + 0.140289i
\(562\) −15.3115 47.1238i −0.645875 1.98780i
\(563\) 5.59621 9.69292i 0.235852 0.408508i −0.723668 0.690148i \(-0.757545\pi\)
0.959520 + 0.281641i \(0.0908786\pi\)
\(564\) −33.9694 58.8366i −1.43037 2.47747i
\(565\) −18.4809 + 20.5251i −0.777498 + 0.863499i
\(566\) −0.491164 + 1.51165i −0.0206452 + 0.0635393i
\(567\) −7.91790 8.79372i −0.332521 0.369301i
\(568\) −9.50839 + 4.23341i −0.398963 + 0.177630i
\(569\) 45.8966 + 9.75563i 1.92409 + 0.408977i 0.999616 + 0.0277250i \(0.00882627\pi\)
0.924471 + 0.381252i \(0.124507\pi\)
\(570\) 7.10700 67.6185i 0.297679 2.83223i
\(571\) 2.13862 + 20.3476i 0.0894983 + 0.851520i 0.943527 + 0.331295i \(0.107485\pi\)
−0.854029 + 0.520225i \(0.825848\pi\)
\(572\) 4.52355 0.961511i 0.189139 0.0402028i
\(573\) 4.65097 3.37913i 0.194297 0.141165i
\(574\) 22.0514 16.0213i 0.920407 0.668715i
\(575\) 8.65001 1.83862i 0.360731 0.0766756i
\(576\) 4.62337 + 43.9885i 0.192641 + 1.83285i
\(577\) −0.381356 + 3.62836i −0.0158761 + 0.151051i −0.999588 0.0287013i \(-0.990863\pi\)
0.983712 + 0.179752i \(0.0575295\pi\)
\(578\) −4.91538 1.04480i −0.204453 0.0434578i
\(579\) −59.6153 + 26.5425i −2.47753 + 1.10307i
\(580\) 0.716667 + 0.795939i 0.0297580 + 0.0330496i
\(581\) 1.32184 4.06822i 0.0548393 0.168778i
\(582\) −48.2507 + 53.5879i −2.00006 + 2.22129i
\(583\) −2.10348 3.64334i −0.0871173 0.150892i
\(584\) −4.11443 + 7.12641i −0.170256 + 0.294893i
\(585\) 5.07279 + 15.6124i 0.209734 + 0.645494i
\(586\) 18.9973 + 8.45815i 0.784772 + 0.349403i
\(587\) 18.5043 + 13.4442i 0.763755 + 0.554901i 0.900060 0.435766i \(-0.143523\pi\)
−0.136305 + 0.990667i \(0.543523\pi\)
\(588\) 37.4838 1.54580
\(589\) 15.2076 20.8705i 0.626620 0.859954i
\(590\) −54.7914 −2.25573
\(591\) −12.7452 9.25996i −0.524269 0.380904i
\(592\) 3.11213 + 1.38561i 0.127908 + 0.0569482i
\(593\) −6.01340 18.5073i −0.246941 0.760005i −0.995311 0.0967243i \(-0.969163\pi\)
0.748371 0.663281i \(-0.230837\pi\)
\(594\) 1.00179 1.73515i 0.0411040 0.0711943i
\(595\) −8.76336 15.1786i −0.359263 0.622261i
\(596\) −14.1530 + 15.7185i −0.579731 + 0.643856i
\(597\) 3.59033 11.0499i 0.146942 0.452242i
\(598\) 20.8390 + 23.1440i 0.852169 + 0.946430i
\(599\) 32.1311 14.3057i 1.31284 0.584514i 0.373541 0.927614i \(-0.378143\pi\)
0.939299 + 0.343099i \(0.111477\pi\)
\(600\) 9.44469 + 2.00753i 0.385578 + 0.0819571i
\(601\) −0.615470 + 5.85580i −0.0251055 + 0.238863i 0.974772 + 0.223204i \(0.0716515\pi\)
−0.999877 + 0.0156596i \(0.995015\pi\)
\(602\) −0.0890566 0.847317i −0.00362968 0.0345341i
\(603\) −16.3607 + 3.47758i −0.666261 + 0.141618i
\(604\) 14.8600 10.7964i 0.604645 0.439300i
\(605\) −21.1463 + 15.3637i −0.859719 + 0.624622i
\(606\) 42.1504 8.95935i 1.71224 0.363949i
\(607\) −4.06457 38.6718i −0.164976 1.56964i −0.693332 0.720618i \(-0.743858\pi\)
0.528356 0.849023i \(-0.322809\pi\)
\(608\) −2.51174 + 23.8976i −0.101864 + 0.969175i
\(609\) −0.513709 0.109192i −0.0208166 0.00442469i
\(610\) 41.2942 18.3854i 1.67195 0.744402i
\(611\) 10.1956 + 11.3233i 0.412469 + 0.458093i
\(612\) −15.5916 + 47.9859i −0.630252 + 1.93972i
\(613\) −30.5139 + 33.8892i −1.23245 + 1.36877i −0.326602 + 0.945162i \(0.605904\pi\)
−0.905845 + 0.423609i \(0.860763\pi\)
\(614\) 36.1505 + 62.6144i 1.45891 + 2.52691i
\(615\) 23.4231 40.5699i 0.944509 1.63594i
\(616\) 1.11010 + 3.41654i 0.0447272 + 0.137656i
\(617\) −6.05359 2.69523i −0.243708 0.108506i 0.281248 0.959635i \(-0.409252\pi\)
−0.524956 + 0.851129i \(0.675918\pi\)
\(618\) 26.5288 + 19.2743i 1.06715 + 0.775328i
\(619\) 41.5360 1.66947 0.834736 0.550650i \(-0.185620\pi\)
0.834736 + 0.550650i \(0.185620\pi\)
\(620\) 34.3267 + 30.9944i 1.37859 + 1.24476i
\(621\) 8.42469 0.338071
\(622\) 33.0689 + 24.0260i 1.32594 + 0.963353i
\(623\) −3.22617 1.43638i −0.129254 0.0575474i
\(624\) 0.602062 + 1.85296i 0.0241018 + 0.0741776i
\(625\) 14.8341 25.6934i 0.593364 1.02774i
\(626\) 25.0006 + 43.3022i 0.999223 + 1.73071i
\(627\) 5.78944 6.42982i 0.231208 0.256782i
\(628\) 8.21338 25.2782i 0.327750 1.00871i
\(629\) −24.7008 27.4330i −0.984884 1.09382i
\(630\) −29.2373 + 13.0173i −1.16484 + 0.518622i
\(631\) −10.9012 2.31712i −0.433969 0.0922429i −0.0142529 0.999898i \(-0.504537\pi\)
−0.419716 + 0.907655i \(0.637870\pi\)
\(632\) −1.44675 + 13.7649i −0.0575486 + 0.547538i
\(633\) −4.94810 47.0780i −0.196669 1.87118i
\(634\) −2.29332 + 0.487460i −0.0910794 + 0.0193595i
\(635\) −2.60147 + 1.89008i −0.103236 + 0.0750056i
\(636\) 39.2177 28.4934i 1.55508 1.12983i
\(637\) −8.22302 + 1.74786i −0.325808 + 0.0692526i
\(638\) 0.0228170 + 0.217089i 0.000903334 + 0.00859464i
\(639\) 1.23343 11.7353i 0.0487936 0.464240i
\(640\) −46.6533 9.91646i −1.84413 0.391983i
\(641\) 16.0357 7.13957i 0.633374 0.281996i −0.0648289 0.997896i \(-0.520650\pi\)
0.698203 + 0.715900i \(0.253983\pi\)
\(642\) −7.16176 7.95394i −0.282652 0.313917i
\(643\) −0.678617 + 2.08857i −0.0267621 + 0.0823651i −0.963545 0.267545i \(-0.913788\pi\)
0.936783 + 0.349910i \(0.113788\pi\)
\(644\) −25.3674 + 28.1734i −0.999617 + 1.11019i
\(645\) −0.732145 1.26811i −0.0288282 0.0499318i
\(646\) −23.4341 + 40.5891i −0.922003 + 1.59696i
\(647\) −10.0259 30.8566i −0.394160 1.21310i −0.929614 0.368535i \(-0.879860\pi\)
0.535454 0.844564i \(-0.320140\pi\)
\(648\) −20.6280 9.18418i −0.810345 0.360789i
\(649\) −5.64084 4.09831i −0.221422 0.160873i
\(650\) −5.43508 −0.213181
\(651\) −22.5507 2.40186i −0.883832 0.0941362i
\(652\) −56.7370 −2.22199
\(653\) −13.3407 9.69256i −0.522061 0.379299i 0.295319 0.955399i \(-0.404574\pi\)
−0.817380 + 0.576099i \(0.804574\pi\)
\(654\) −63.0636 28.0777i −2.46598 1.09793i
\(655\) 6.19225 + 19.0578i 0.241951 + 0.744649i
\(656\) 1.49004 2.58083i 0.0581764 0.100764i
\(657\) −4.66457 8.07927i −0.181982 0.315202i
\(658\) −19.8772 + 22.0759i −0.774894 + 0.860607i
\(659\) −6.10043 + 18.7752i −0.237639 + 0.731377i 0.759122 + 0.650949i \(0.225629\pi\)
−0.996760 + 0.0804282i \(0.974371\pi\)
\(660\) 10.3687 + 11.5156i 0.403602 + 0.448245i
\(661\) 10.7623 4.79169i 0.418605 0.186375i −0.186615 0.982433i \(-0.559752\pi\)
0.605220 + 0.796058i \(0.293085\pi\)
\(662\) −60.2408 12.8046i −2.34132 0.497664i
\(663\) 2.20681 20.9964i 0.0857055 0.815433i
\(664\) −0.853219 8.11783i −0.0331113 0.315033i
\(665\) −18.1568 + 3.85935i −0.704091 + 0.149659i
\(666\) −54.5336 + 39.6210i −2.11313 + 1.53528i
\(667\) −0.742554 + 0.539497i −0.0287518 + 0.0208894i
\(668\) 79.2591 16.8470i 3.06663 0.651832i
\(669\) 1.65185 + 15.7163i 0.0638644 + 0.607629i
\(670\) 2.90866 27.6741i 0.112371 1.06914i
\(671\) 5.62649 + 1.19595i 0.217208 + 0.0461690i
\(672\) 19.2781 8.58318i 0.743671 0.331104i
\(673\) 33.7122 + 37.4412i 1.29951 + 1.44325i 0.827293 + 0.561770i \(0.189880\pi\)
0.472217 + 0.881482i \(0.343454\pi\)
\(674\) 22.7764 70.0985i 0.877314 2.70009i
\(675\) −0.983796 + 1.09262i −0.0378663 + 0.0420548i
\(676\) 15.6348 + 27.0802i 0.601337 + 1.04155i
\(677\) 1.98998 3.44674i 0.0764810 0.132469i −0.825248 0.564770i \(-0.808965\pi\)
0.901729 + 0.432301i \(0.142298\pi\)
\(678\) −20.0433 61.6869i −0.769758 2.36907i
\(679\) 17.9849 + 8.00737i 0.690195 + 0.307295i
\(680\) −27.0574 19.6584i −1.03760 0.753864i
\(681\) 33.1770 1.27134
\(682\) 1.94693 + 9.22259i 0.0745519 + 0.353151i
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) 43.2314 + 31.4095i 1.65300 + 1.20097i
\(685\) 37.6075 + 16.7439i 1.43691 + 0.639753i
\(686\) −13.0604 40.1958i −0.498648 1.53468i
\(687\) 19.4238 33.6430i 0.741064 1.28356i
\(688\) −0.0465749 0.0806701i −0.00177565 0.00307552i
\(689\) −7.27477 + 8.07945i −0.277147 + 0.307803i
\(690\) −32.2468 + 99.2455i −1.22762 + 3.77821i
\(691\) 6.15301 + 6.83361i 0.234072 + 0.259963i 0.848725 0.528834i \(-0.177371\pi\)
−0.614653 + 0.788797i \(0.710704\pi\)
\(692\) 27.2550 12.1347i 1.03608 0.461293i
\(693\) −3.98369 0.846760i −0.151328 0.0321658i
\(694\) −0.752867 + 7.16305i −0.0285785 + 0.271906i
\(695\) 1.91687 + 18.2378i 0.0727110 + 0.691799i
\(696\) −0.980270 + 0.208363i −0.0371570 + 0.00789797i
\(697\) −26.1251 + 18.9810i −0.989560 + 0.718957i
\(698\) 41.1196 29.8751i 1.55640 1.13079i
\(699\) 32.4854 6.90499i 1.22871 0.261171i
\(700\) −0.691576 6.57991i −0.0261391 0.248697i
\(701\) 4.23908 40.3321i 0.160108 1.52332i −0.559434 0.828875i \(-0.688981\pi\)
0.719542 0.694449i \(-0.244352\pi\)
\(702\) −5.06468 1.07653i −0.191154 0.0406310i
\(703\) −35.7161 + 15.9018i −1.34706 + 0.599749i
\(704\) −6.26569 6.95876i −0.236147 0.262268i
\(705\) −15.7769 + 48.5564i −0.594193 + 1.82874i
\(706\) 7.61579 8.45820i 0.286624 0.318328i
\(707\) −5.88235 10.1885i −0.221229 0.383179i
\(708\) 40.1710 69.5782i 1.50972 2.61491i
\(709\) −11.5220 35.4612i −0.432719 1.33177i −0.895406 0.445250i \(-0.853115\pi\)
0.462687 0.886521i \(-0.346885\pi\)
\(710\) 17.9336 + 7.98457i 0.673038 + 0.299656i
\(711\) −12.6946 9.22314i −0.476083 0.345895i
\(712\) −6.73883 −0.252548
\(713\) −29.4906 + 26.4793i −1.10443 + 0.991658i
\(714\) 41.1599 1.54037
\(715\) −2.81161 2.04276i −0.105148 0.0763948i
\(716\) −34.2921 15.2678i −1.28156 0.570585i
\(717\) 18.4196 + 56.6897i 0.687893 + 2.11712i
\(718\) 0.416347 0.721134i 0.0155379 0.0269125i
\(719\) 9.28994 + 16.0906i 0.346456 + 0.600080i 0.985617 0.168993i \(-0.0540516\pi\)
−0.639161 + 0.769073i \(0.720718\pi\)
\(720\) −2.34136 + 2.60035i −0.0872575 + 0.0969093i
\(721\) 2.76647 8.51433i 0.103029 0.317090i
\(722\) 3.87752 + 4.30642i 0.144306 + 0.160268i
\(723\) −57.4036 + 25.5577i −2.13486 + 0.950501i
\(724\) 48.5887 + 10.3278i 1.80578 + 0.383831i
\(725\) 0.0167435 0.159303i 0.000621836 0.00591638i
\(726\) −6.41630 61.0470i −0.238131 2.26567i
\(727\) −16.0193 + 3.40501i −0.594123 + 0.126285i −0.495153 0.868806i \(-0.664888\pi\)
−0.0989697 + 0.995090i \(0.531555\pi\)
\(728\) 7.51065 5.45681i 0.278363 0.202243i
\(729\) 28.0140 20.3534i 1.03756 0.753829i
\(730\) 15.1812 3.22686i 0.561881 0.119432i
\(731\) 0.105509 + 1.00385i 0.00390238 + 0.0371287i
\(732\) −6.92826 + 65.9179i −0.256076 + 2.43640i
\(733\) 1.12618 + 0.239377i 0.0415964 + 0.00884158i 0.228663 0.973506i \(-0.426565\pi\)
−0.187067 + 0.982347i \(0.559898\pi\)
\(734\) −61.9485 + 27.5812i −2.28656 + 1.01804i
\(735\) −18.8485 20.9334i −0.695237 0.772139i
\(736\) 11.3966 35.0751i 0.420084 1.29289i
\(737\) 2.36943 2.63151i 0.0872789 0.0969331i
\(738\) 29.4834 + 51.0668i 1.08530 + 1.87979i
\(739\) 10.3579 17.9404i 0.381022 0.659949i −0.610187 0.792257i \(-0.708906\pi\)
0.991209 + 0.132309i \(0.0422390\pi\)
\(740\) −21.6374 66.5931i −0.795407 2.44801i
\(741\) −20.4266 9.09449i −0.750389 0.334095i
\(742\) −17.1479 12.4586i −0.629517 0.457371i
\(743\) −35.2367 −1.29271 −0.646354 0.763038i \(-0.723707\pi\)
−0.646354 + 0.763038i \(0.723707\pi\)
\(744\) −41.1756 + 13.3155i −1.50957 + 0.488171i
\(745\) 15.8950 0.582348
\(746\) −33.0959 24.0456i −1.21173 0.880370i
\(747\) 8.45390 + 3.76392i 0.309312 + 0.137715i
\(748\) −3.30083 10.1589i −0.120690 0.371447i
\(749\) −1.46104 + 2.53060i −0.0533853 + 0.0924660i
\(750\) 27.5429 + 47.7058i 1.00573 + 1.74197i
\(751\) −28.8702 + 32.0636i −1.05349 + 1.17002i −0.0684559 + 0.997654i \(0.521807\pi\)
−0.985033 + 0.172364i \(0.944859\pi\)
\(752\) −1.00364 + 3.08888i −0.0365989 + 0.112640i
\(753\) 39.4629 + 43.8279i 1.43811 + 1.59718i
\(754\) 0.515340 0.229444i 0.0187676 0.00835586i
\(755\) −13.5017 2.86987i −0.491377 0.104445i
\(756\) 0.658843 6.26847i 0.0239619 0.227982i
\(757\) 2.85766 + 27.1888i 0.103863 + 0.988194i 0.915032 + 0.403382i \(0.132165\pi\)
−0.811168 + 0.584813i \(0.801168\pi\)
\(758\) 5.55342 1.18042i 0.201709 0.0428746i
\(759\) −10.7433 + 7.80543i −0.389955 + 0.283319i
\(760\) −28.6563 + 20.8201i −1.03947 + 0.755223i
\(761\) −16.8163 + 3.57441i −0.609589 + 0.129572i −0.502355 0.864662i \(-0.667533\pi\)
−0.107235 + 0.994234i \(0.534200\pi\)
\(762\) −0.789351 7.51017i −0.0285952 0.272065i