Properties

Label 31.2.g.a.14.2
Level 31
Weight 2
Character 31.14
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 14.2
Root \(0.333129i\)
Character \(\chi\) = 31.14
Dual form 31.2.g.a.20.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.640321 - 1.97070i) q^{2}\) \(+(-1.43153 + 1.58988i) q^{3}\) \(+(-1.85563 - 1.34820i) q^{4}\) \(+(-1.17396 + 2.03335i) q^{5}\) \(+(2.21654 + 3.83916i) q^{6}\) \(+(0.384094 - 3.65441i) q^{7}\) \(+(-0.492333 + 0.357701i) q^{8}\) \(+(-0.164841 - 1.56836i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.640321 - 1.97070i) q^{2}\) \(+(-1.43153 + 1.58988i) q^{3}\) \(+(-1.85563 - 1.34820i) q^{4}\) \(+(-1.17396 + 2.03335i) q^{5}\) \(+(2.21654 + 3.83916i) q^{6}\) \(+(0.384094 - 3.65441i) q^{7}\) \(+(-0.492333 + 0.357701i) q^{8}\) \(+(-0.164841 - 1.56836i) q^{9}\) \(+(3.25543 + 3.61552i) q^{10}\) \(+(-3.91056 + 1.74109i) q^{11}\) \(+(4.79986 - 1.02024i) q^{12}\) \(+(2.04159 + 0.433953i) q^{13}\) \(+(-6.95582 - 3.09693i) q^{14}\) \(+(-1.55222 - 4.77725i) q^{15}\) \(+(-1.02791 - 3.16357i) q^{16}\) \(+(1.94411 + 0.865573i) q^{17}\) \(+(-3.19632 - 0.679399i) q^{18}\) \(+(0.606466 - 0.128908i) q^{19}\) \(+(4.91979 - 2.19043i) q^{20}\) \(+(5.26022 + 5.84207i) q^{21}\) \(+(0.927168 + 8.82142i) q^{22}\) \(+(2.71334 - 1.97136i) q^{23}\) \(+(0.136090 - 1.29481i) q^{24}\) \(+(-0.256344 - 0.444001i) q^{25}\) \(+(2.16247 - 3.74550i) q^{26}\) \(+(-2.46294 - 1.78943i) q^{27}\) \(+(-5.63960 + 6.26341i) q^{28}\) \(+(-0.425645 + 1.31000i) q^{29}\) \(-10.4085 q^{30}\) \(+(-1.44334 + 5.37743i) q^{31}\) \(-8.10976 q^{32}\) \(+(2.82997 - 8.70975i) q^{33}\) \(+(2.95064 - 3.27702i) q^{34}\) \(+(6.97979 + 5.07112i) q^{35}\) \(+(-1.80857 + 3.13253i) q^{36}\) \(+(-0.137239 - 0.237704i) q^{37}\) \(+(0.134293 - 1.27771i) q^{38}\) \(+(-3.61253 + 2.62466i) q^{39}\) \(+(-0.149354 - 1.42101i) q^{40}\) \(+(-2.86248 - 3.17911i) q^{41}\) \(+(14.8812 - 6.62555i) q^{42}\) \(+(-0.263799 + 0.0560722i) q^{43}\) \(+(9.60390 + 2.04137i) q^{44}\) \(+(3.38254 + 1.50600i) q^{45}\) \(+(-2.14756 - 6.60950i) q^{46}\) \(+(1.66225 + 5.11589i) q^{47}\) \(+(6.50117 + 2.89451i) q^{48}\) \(+(-6.36016 - 1.35189i) q^{49}\) \(+(-1.03914 + 0.220875i) q^{50}\) \(+(-4.15921 + 1.85180i) q^{51}\) \(+(-3.20338 - 3.55772i) q^{52}\) \(+(-0.993928 - 9.45659i) q^{53}\) \(+(-5.10351 + 3.70792i) q^{54}\) \(+(1.05057 - 9.99551i) q^{55}\) \(+(1.11808 + 1.93658i) q^{56}\) \(+(-0.663228 + 1.14874i) q^{57}\) \(+(2.30908 + 1.67764i) q^{58}\) \(+(-3.89932 + 4.33063i) q^{59}\) \(+(-3.56032 + 10.9575i) q^{60}\) \(+2.22719 q^{61}\) \(+(9.67313 + 6.28768i) q^{62}\) \(-5.79474 q^{63}\) \(+(-3.13704 + 9.65481i) q^{64}\) \(+(-3.27911 + 3.64182i) q^{65}\) \(+(-15.3522 - 11.1541i) q^{66}\) \(+(6.80719 - 11.7904i) q^{67}\) \(+(-2.44059 - 4.22722i) q^{68}\) \(+(-0.750018 + 7.13595i) q^{69}\) \(+(14.4630 - 10.5080i) q^{70}\) \(+(0.139642 + 1.32861i) q^{71}\) \(+(0.642159 + 0.713189i) q^{72}\) \(+(-12.9413 + 5.76184i) q^{73}\) \(+(-0.556321 + 0.118250i) q^{74}\) \(+(1.07287 + 0.228046i) q^{75}\) \(+(-1.29917 - 0.578429i) q^{76}\) \(+(4.86065 + 14.9595i) q^{77}\) \(+(2.85925 + 8.79986i) q^{78}\) \(+(7.92648 + 3.52910i) q^{79}\) \(+(7.63936 + 1.62380i) q^{80}\) \(+(10.9984 - 2.33777i) q^{81}\) \(+(-8.09799 + 3.60546i) q^{82}\) \(+(-3.46976 - 3.85356i) q^{83}\) \(+(-1.88479 - 17.9325i) q^{84}\) \(+(-4.04231 + 2.93691i) q^{85}\) \(+(-0.0584142 + 0.555774i) q^{86}\) \(+(-1.47342 - 2.55203i) q^{87}\) \(+(1.30251 - 2.25601i) q^{88}\) \(+(-4.05526 - 2.94632i) q^{89}\) \(+(5.13379 - 5.70166i) q^{90}\) \(+(2.37001 - 7.29413i) q^{91}\) \(-7.69274 q^{92}\) \(+(-6.48327 - 9.99270i) q^{93}\) \(+11.1463 q^{94}\) \(+(-0.449849 + 1.38449i) q^{95}\) \(+(11.6094 - 12.8935i) q^{96}\) \(+(-5.43173 - 3.94638i) q^{97}\) \(+(-6.73673 + 11.6684i) q^{98}\) \(+(3.37528 + 5.84615i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{11}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.640321 1.97070i 0.452775 1.39350i −0.420952 0.907083i \(-0.638304\pi\)
0.873727 0.486416i \(-0.161696\pi\)
\(3\) −1.43153 + 1.58988i −0.826496 + 0.917916i −0.997732 0.0673137i \(-0.978557\pi\)
0.171236 + 0.985230i \(0.445224\pi\)
\(4\) −1.85563 1.34820i −0.927816 0.674098i
\(5\) −1.17396 + 2.03335i −0.525009 + 0.909342i 0.474567 + 0.880219i \(0.342605\pi\)
−0.999576 + 0.0291228i \(0.990729\pi\)
\(6\) 2.21654 + 3.83916i 0.904898 + 1.56733i
\(7\) 0.384094 3.65441i 0.145174 1.38124i −0.643038 0.765834i \(-0.722326\pi\)
0.788212 0.615404i \(-0.211007\pi\)
\(8\) −0.492333 + 0.357701i −0.174066 + 0.126466i
\(9\) −0.164841 1.56836i −0.0549470 0.522786i
\(10\) 3.25543 + 3.61552i 1.02946 + 1.14333i
\(11\) −3.91056 + 1.74109i −1.17908 + 0.524960i −0.900247 0.435380i \(-0.856614\pi\)
−0.278832 + 0.960340i \(0.589947\pi\)
\(12\) 4.79986 1.02024i 1.38560 0.294519i
\(13\) 2.04159 + 0.433953i 0.566235 + 0.120357i 0.482130 0.876100i \(-0.339863\pi\)
0.0841053 + 0.996457i \(0.473197\pi\)
\(14\) −6.95582 3.09693i −1.85902 0.827690i
\(15\) −1.55222 4.77725i −0.400782 1.23348i
\(16\) −1.02791 3.16357i −0.256976 0.790892i
\(17\) 1.94411 + 0.865573i 0.471516 + 0.209932i 0.628717 0.777634i \(-0.283580\pi\)
−0.157201 + 0.987567i \(0.550247\pi\)
\(18\) −3.19632 0.679399i −0.753380 0.160136i
\(19\) 0.606466 0.128908i 0.139133 0.0295736i −0.137819 0.990457i \(-0.544009\pi\)
0.276952 + 0.960884i \(0.410676\pi\)
\(20\) 4.91979 2.19043i 1.10010 0.489795i
\(21\) 5.26022 + 5.84207i 1.14788 + 1.27484i
\(22\) 0.927168 + 8.82142i 0.197673 + 1.88073i
\(23\) 2.71334 1.97136i 0.565771 0.411057i −0.267796 0.963476i \(-0.586295\pi\)
0.833567 + 0.552419i \(0.186295\pi\)
\(24\) 0.136090 1.29481i 0.0277792 0.264302i
\(25\) −0.256344 0.444001i −0.0512688 0.0888002i
\(26\) 2.16247 3.74550i 0.424094 0.734553i
\(27\) −2.46294 1.78943i −0.473993 0.344376i
\(28\) −5.63960 + 6.26341i −1.06578 + 1.18367i
\(29\) −0.425645 + 1.31000i −0.0790403 + 0.243261i −0.982767 0.184849i \(-0.940820\pi\)
0.903727 + 0.428110i \(0.140820\pi\)
\(30\) −10.4085 −1.90032
\(31\) −1.44334 + 5.37743i −0.259231 + 0.965815i
\(32\) −8.10976 −1.43362
\(33\) 2.82997 8.70975i 0.492634 1.51617i
\(34\) 2.95064 3.27702i 0.506031 0.562004i
\(35\) 6.97979 + 5.07112i 1.17980 + 0.857175i
\(36\) −1.80857 + 3.13253i −0.301428 + 0.522089i
\(37\) −0.137239 0.237704i −0.0225619 0.0390783i 0.854524 0.519412i \(-0.173849\pi\)
−0.877086 + 0.480334i \(0.840516\pi\)
\(38\) 0.134293 1.27771i 0.0217851 0.207272i
\(39\) −3.61253 + 2.62466i −0.578468 + 0.420282i
\(40\) −0.149354 1.42101i −0.0236150 0.224681i
\(41\) −2.86248 3.17911i −0.447045 0.496494i 0.476933 0.878940i \(-0.341748\pi\)
−0.923978 + 0.382446i \(0.875082\pi\)
\(42\) 14.8812 6.62555i 2.29622 1.02234i
\(43\) −0.263799 + 0.0560722i −0.0402290 + 0.00855093i −0.227982 0.973665i \(-0.573213\pi\)
0.187753 + 0.982216i \(0.439879\pi\)
\(44\) 9.60390 + 2.04137i 1.44784 + 0.307748i
\(45\) 3.38254 + 1.50600i 0.504239 + 0.224502i
\(46\) −2.14756 6.60950i −0.316640 0.974517i
\(47\) 1.66225 + 5.11589i 0.242464 + 0.746229i 0.996043 + 0.0888711i \(0.0283259\pi\)
−0.753579 + 0.657358i \(0.771674\pi\)
\(48\) 6.50117 + 2.89451i 0.938363 + 0.417786i
\(49\) −6.36016 1.35189i −0.908595 0.193128i
\(50\) −1.03914 + 0.220875i −0.146956 + 0.0312365i
\(51\) −4.15921 + 1.85180i −0.582406 + 0.259304i
\(52\) −3.20338 3.55772i −0.444229 0.493367i
\(53\) −0.993928 9.45659i −0.136527 1.29896i −0.821422 0.570321i \(-0.806819\pi\)
0.684895 0.728642i \(-0.259848\pi\)
\(54\) −5.10351 + 3.70792i −0.694500 + 0.504584i
\(55\) 1.05057 9.99551i 0.141659 1.34779i
\(56\) 1.11808 + 1.93658i 0.149410 + 0.258786i
\(57\) −0.663228 + 1.14874i −0.0878467 + 0.152155i
\(58\) 2.30908 + 1.67764i 0.303196 + 0.220285i
\(59\) −3.89932 + 4.33063i −0.507648 + 0.563800i −0.941426 0.337220i \(-0.890513\pi\)
0.433778 + 0.901020i \(0.357180\pi\)
\(60\) −3.56032 + 10.9575i −0.459635 + 1.41461i
\(61\) 2.22719 0.285162 0.142581 0.989783i \(-0.454460\pi\)
0.142581 + 0.989783i \(0.454460\pi\)
\(62\) 9.67313 + 6.28768i 1.22849 + 0.798536i
\(63\) −5.79474 −0.730068
\(64\) −3.13704 + 9.65481i −0.392130 + 1.20685i
\(65\) −3.27911 + 3.64182i −0.406724 + 0.451713i
\(66\) −15.3522 11.1541i −1.88973 1.37297i
\(67\) 6.80719 11.7904i 0.831631 1.44043i −0.0651129 0.997878i \(-0.520741\pi\)
0.896744 0.442550i \(-0.145926\pi\)
\(68\) −2.44059 4.22722i −0.295965 0.512626i
\(69\) −0.750018 + 7.13595i −0.0902916 + 0.859067i
\(70\) 14.4630 10.5080i 1.72866 1.25594i
\(71\) 0.139642 + 1.32861i 0.0165725 + 0.157676i 0.999678 0.0253613i \(-0.00807361\pi\)
−0.983106 + 0.183038i \(0.941407\pi\)
\(72\) 0.642159 + 0.713189i 0.0756791 + 0.0840502i
\(73\) −12.9413 + 5.76184i −1.51466 + 0.674372i −0.984797 0.173708i \(-0.944425\pi\)
−0.529868 + 0.848080i \(0.677758\pi\)
\(74\) −0.556321 + 0.118250i −0.0646710 + 0.0137463i
\(75\) 1.07287 + 0.228046i 0.123885 + 0.0263325i
\(76\) −1.29917 0.578429i −0.149025 0.0663503i
\(77\) 4.86065 + 14.9595i 0.553922 + 1.70480i
\(78\) 2.85925 + 8.79986i 0.323746 + 0.996388i
\(79\) 7.92648 + 3.52910i 0.891799 + 0.397054i 0.800895 0.598805i \(-0.204358\pi\)
0.0909042 + 0.995860i \(0.471024\pi\)
\(80\) 7.63936 + 1.62380i 0.854106 + 0.181546i
\(81\) 10.9984 2.33777i 1.22204 0.259753i
\(82\) −8.09799 + 3.60546i −0.894274 + 0.398156i
\(83\) −3.46976 3.85356i −0.380856 0.422983i 0.521987 0.852953i \(-0.325191\pi\)
−0.902843 + 0.429970i \(0.858524\pi\)
\(84\) −1.88479 17.9325i −0.205647 1.95660i
\(85\) −4.04231 + 2.93691i −0.438450 + 0.318553i
\(86\) −0.0584142 + 0.555774i −0.00629897 + 0.0599307i
\(87\) −1.47342 2.55203i −0.157967 0.273607i
\(88\) 1.30251 2.25601i 0.138848 0.240491i
\(89\) −4.05526 2.94632i −0.429857 0.312309i 0.351735 0.936100i \(-0.385592\pi\)
−0.781592 + 0.623790i \(0.785592\pi\)
\(90\) 5.13379 5.70166i 0.541149 0.601007i
\(91\) 2.37001 7.29413i 0.248444 0.764632i
\(92\) −7.69274 −0.802024
\(93\) −6.48327 9.99270i −0.672284 1.03619i
\(94\) 11.1463 1.14965
\(95\) −0.449849 + 1.38449i −0.0461535 + 0.142046i
\(96\) 11.6094 12.8935i 1.18488 1.31594i
\(97\) −5.43173 3.94638i −0.551508 0.400694i 0.276833 0.960918i \(-0.410715\pi\)
−0.828341 + 0.560224i \(0.810715\pi\)
\(98\) −6.73673 + 11.6684i −0.680512 + 1.17868i
\(99\) 3.37528 + 5.84615i 0.339228 + 0.587560i
\(100\) −0.122920 + 1.16950i −0.0122920 + 0.116950i
\(101\) 14.6130 10.6169i 1.45404 1.05642i 0.469177 0.883104i \(-0.344550\pi\)
0.984866 0.173320i \(-0.0554495\pi\)
\(102\) 0.986121 + 9.38232i 0.0976406 + 0.928988i
\(103\) 2.61986 + 2.90965i 0.258142 + 0.286696i 0.858260 0.513216i \(-0.171546\pi\)
−0.600117 + 0.799912i \(0.704879\pi\)
\(104\) −1.16037 + 0.516628i −0.113783 + 0.0506596i
\(105\) −18.0543 + 3.83755i −1.76191 + 0.374506i
\(106\) −19.2726 4.09652i −1.87192 0.397889i
\(107\) 10.1546 + 4.52113i 0.981685 + 0.437074i 0.833882 0.551943i \(-0.186113\pi\)
0.147803 + 0.989017i \(0.452780\pi\)
\(108\) 2.15781 + 6.64105i 0.207635 + 0.639036i
\(109\) 5.59116 + 17.2078i 0.535536 + 1.64821i 0.742488 + 0.669860i \(0.233646\pi\)
−0.206951 + 0.978351i \(0.566354\pi\)
\(110\) −19.0255 8.47070i −1.81401 0.807649i
\(111\) 0.574382 + 0.122089i 0.0545179 + 0.0115881i
\(112\) −11.9558 + 2.54128i −1.12972 + 0.240129i
\(113\) 16.0224 7.13365i 1.50727 0.671078i 0.523745 0.851875i \(-0.324535\pi\)
0.983520 + 0.180798i \(0.0578679\pi\)
\(114\) 1.83916 + 2.04259i 0.172253 + 0.191306i
\(115\) 0.823120 + 7.83147i 0.0767564 + 0.730288i
\(116\) 2.55598 1.85703i 0.237317 0.172421i
\(117\) 0.344056 3.27347i 0.0318080 0.302633i
\(118\) 6.03758 + 10.4574i 0.555804 + 0.962681i
\(119\) 3.90988 6.77211i 0.358418 0.620798i
\(120\) 2.47304 + 1.79677i 0.225756 + 0.164022i
\(121\) 4.90064 5.44271i 0.445513 0.494792i
\(122\) 1.42611 4.38913i 0.129114 0.397373i
\(123\) 9.15213 0.825220
\(124\) 9.92814 8.03263i 0.891573 0.721352i
\(125\) −10.5358 −0.942352
\(126\) −3.71049 + 11.4197i −0.330557 + 1.01735i
\(127\) −9.50050 + 10.5514i −0.843033 + 0.936283i −0.998671 0.0515308i \(-0.983590\pi\)
0.155638 + 0.987814i \(0.450257\pi\)
\(128\) 3.89620 + 2.83075i 0.344378 + 0.250205i
\(129\) 0.288489 0.499677i 0.0254000 0.0439941i
\(130\) 5.07728 + 8.79410i 0.445307 + 0.771294i
\(131\) −0.751404 + 7.14913i −0.0656505 + 0.624623i 0.911386 + 0.411552i \(0.135013\pi\)
−0.977037 + 0.213071i \(0.931654\pi\)
\(132\) −16.9938 + 12.3467i −1.47912 + 1.07465i
\(133\) −0.238144 2.26579i −0.0206497 0.196469i
\(134\) −18.8766 20.9646i −1.63069 1.81107i
\(135\) 6.52993 2.90731i 0.562007 0.250221i
\(136\) −1.26676 + 0.269259i −0.108624 + 0.0230888i
\(137\) −7.41206 1.57548i −0.633255 0.134603i −0.119910 0.992785i \(-0.538261\pi\)
−0.513345 + 0.858182i \(0.671594\pi\)
\(138\) 13.5826 + 6.04736i 1.15623 + 0.514785i
\(139\) −6.21069 19.1145i −0.526784 1.62127i −0.760761 0.649032i \(-0.775174\pi\)
0.233977 0.972242i \(-0.424826\pi\)
\(140\) −6.11507 18.8203i −0.516818 1.59060i
\(141\) −10.5132 4.68078i −0.885371 0.394193i
\(142\) 2.70771 + 0.575541i 0.227226 + 0.0482983i
\(143\) −8.73931 + 1.85760i −0.730818 + 0.155340i
\(144\) −4.79216 + 2.13361i −0.399347 + 0.177801i
\(145\) −2.16400 2.40337i −0.179711 0.199589i
\(146\) 3.06830 + 29.1929i 0.253934 + 2.41602i
\(147\) 11.2541 8.17660i 0.928225 0.674395i
\(148\) −0.0658074 + 0.626116i −0.00540934 + 0.0514664i
\(149\) −6.15749 10.6651i −0.504441 0.873717i −0.999987 0.00513554i \(-0.998365\pi\)
0.495546 0.868582i \(-0.334968\pi\)
\(150\) 1.13639 1.96829i 0.0927862 0.160710i
\(151\) 16.0808 + 11.6834i 1.30864 + 0.950781i 1.00000 0.000399262i \(-0.000127089\pi\)
0.308637 + 0.951180i \(0.400127\pi\)
\(152\) −0.252473 + 0.280399i −0.0204782 + 0.0227434i
\(153\) 1.03706 3.19174i 0.0838412 0.258037i
\(154\) 32.5932 2.62644
\(155\) −9.23979 9.24768i −0.742158 0.742792i
\(156\) 10.2421 0.820023
\(157\) −1.79373 + 5.52052i −0.143155 + 0.440585i −0.996769 0.0803203i \(-0.974406\pi\)
0.853614 + 0.520906i \(0.174406\pi\)
\(158\) 12.0303 13.3610i 0.957079 1.06294i
\(159\) 16.4577 + 11.9572i 1.30518 + 0.948267i
\(160\) 9.52050 16.4900i 0.752662 1.30365i
\(161\) −6.16198 10.6729i −0.485632 0.841139i
\(162\) 2.43542 23.1714i 0.191344 1.82052i
\(163\) −14.3870 + 10.4528i −1.12688 + 0.818725i −0.985237 0.171194i \(-0.945238\pi\)
−0.141640 + 0.989918i \(0.545238\pi\)
\(164\) 1.02565 + 9.75845i 0.0800901 + 0.762007i
\(165\) 14.3877 + 15.9792i 1.12008 + 1.24398i
\(166\) −9.81599 + 4.37036i −0.761869 + 0.339206i
\(167\) −2.13435 + 0.453670i −0.165161 + 0.0351060i −0.289750 0.957102i \(-0.593572\pi\)
0.124589 + 0.992208i \(0.460239\pi\)
\(168\) −4.67949 0.994657i −0.361031 0.0767394i
\(169\) −7.89632 3.51567i −0.607409 0.270436i
\(170\) 3.19941 + 9.84677i 0.245383 + 0.755212i
\(171\) −0.302145 0.929907i −0.0231056 0.0711117i
\(172\) 0.565110 + 0.251603i 0.0430892 + 0.0191846i
\(173\) 5.38757 + 1.14516i 0.409609 + 0.0870651i 0.408108 0.912934i \(-0.366189\pi\)
0.00150131 + 0.999999i \(0.499522\pi\)
\(174\) −5.97276 + 1.26955i −0.452794 + 0.0962443i
\(175\) −1.72102 + 0.766249i −0.130097 + 0.0579230i
\(176\) 9.52776 + 10.5816i 0.718182 + 0.797621i
\(177\) −1.30317 12.3989i −0.0979526 0.931956i
\(178\) −8.40300 + 6.10514i −0.629831 + 0.457599i
\(179\) −1.26834 + 12.0674i −0.0947999 + 0.901961i 0.838992 + 0.544144i \(0.183146\pi\)
−0.933792 + 0.357817i \(0.883521\pi\)
\(180\) −4.24636 7.35491i −0.316505 0.548202i
\(181\) −4.82344 + 8.35444i −0.358523 + 0.620980i −0.987714 0.156270i \(-0.950053\pi\)
0.629191 + 0.777251i \(0.283386\pi\)
\(182\) −12.8570 9.34116i −0.953025 0.692413i
\(183\) −3.18829 + 3.54096i −0.235685 + 0.261755i
\(184\) −0.630711 + 1.94113i −0.0464966 + 0.143102i
\(185\) 0.644448 0.0473808
\(186\) −23.8440 + 6.37808i −1.74833 + 0.467663i
\(187\) −9.10960 −0.666160
\(188\) 3.81269 11.7342i 0.278069 0.855808i
\(189\) −7.48532 + 8.31329i −0.544477 + 0.604703i
\(190\) 2.44038 + 1.77304i 0.177044 + 0.128630i
\(191\) −5.23270 + 9.06331i −0.378625 + 0.655798i −0.990862 0.134876i \(-0.956936\pi\)
0.612237 + 0.790674i \(0.290270\pi\)
\(192\) −10.8592 18.8087i −0.783695 1.35740i
\(193\) 0.187174 1.78084i 0.0134731 0.128188i −0.985718 0.168405i \(-0.946138\pi\)
0.999191 + 0.0402173i \(0.0128050\pi\)
\(194\) −11.2552 + 8.17738i −0.808076 + 0.587102i
\(195\) −1.09590 10.4268i −0.0784789 0.746677i
\(196\) 9.97950 + 11.0834i 0.712822 + 0.791669i
\(197\) 5.84391 2.60188i 0.416361 0.185376i −0.187854 0.982197i \(-0.560153\pi\)
0.604216 + 0.796821i \(0.293487\pi\)
\(198\) 13.6823 2.90826i 0.972359 0.206681i
\(199\) −0.906896 0.192767i −0.0642881 0.0136649i 0.175655 0.984452i \(-0.443796\pi\)
−0.239943 + 0.970787i \(0.577129\pi\)
\(200\) 0.285026 + 0.126902i 0.0201544 + 0.00897331i
\(201\) 9.00059 + 27.7010i 0.634852 + 1.95387i
\(202\) −11.5659 35.5961i −0.813771 2.50453i
\(203\) 4.62379 + 2.05865i 0.324527 + 0.144489i
\(204\) 10.2146 + 2.17117i 0.715162 + 0.152012i
\(205\) 9.82467 2.08830i 0.686185 0.145853i
\(206\) 7.41161 3.29986i 0.516391 0.229912i
\(207\) −3.53906 3.93053i −0.245982 0.273191i
\(208\) −0.725720 6.90477i −0.0503197 0.478759i
\(209\) −2.14718 + 1.56002i −0.148524 + 0.107909i
\(210\) −3.99784 + 38.0369i −0.275877 + 2.62479i
\(211\) 3.09072 + 5.35328i 0.212774 + 0.368535i 0.952582 0.304283i \(-0.0984169\pi\)
−0.739808 + 0.672818i \(0.765084\pi\)
\(212\) −10.9050 + 18.8880i −0.748957 + 1.29723i
\(213\) −2.31222 1.67993i −0.158431 0.115107i
\(214\) 15.4120 17.1168i 1.05354 1.17008i
\(215\) 0.195674 0.602222i 0.0133448 0.0410712i
\(216\) 1.85267 0.126058
\(217\) 19.0970 + 7.34000i 1.29639 + 0.498272i
\(218\) 37.4917 2.53926
\(219\) 9.36527 28.8233i 0.632846 1.94770i
\(220\) −15.4254 + 17.1316i −1.03998 + 1.15501i
\(221\) 3.59345 + 2.61080i 0.241722 + 0.175621i
\(222\) 0.608389 1.05376i 0.0408324 0.0707238i
\(223\) −7.94891 13.7679i −0.532298 0.921968i −0.999289 0.0377054i \(-0.987995\pi\)
0.466991 0.884262i \(-0.345338\pi\)
\(224\) −3.11491 + 29.6364i −0.208124 + 1.98017i
\(225\) −0.654096 + 0.475229i −0.0436064 + 0.0316819i
\(226\) −3.79882 36.1433i −0.252694 2.40422i
\(227\) −3.10808 3.45188i −0.206291 0.229109i 0.631117 0.775688i \(-0.282597\pi\)
−0.837408 + 0.546578i \(0.815930\pi\)
\(228\) 2.77944 1.23749i 0.184073 0.0819545i
\(229\) 18.9940 4.03731i 1.25516 0.266793i 0.468104 0.883673i \(-0.344937\pi\)
0.787057 + 0.616881i \(0.211604\pi\)
\(230\) 15.9606 + 3.39252i 1.05241 + 0.223696i
\(231\) −30.7420 13.6872i −2.02268 0.900554i
\(232\) −0.259029 0.797210i −0.0170061 0.0523394i
\(233\) −4.40302 13.5511i −0.288452 0.887763i −0.985343 0.170586i \(-0.945434\pi\)
0.696891 0.717177i \(-0.254566\pi\)
\(234\) −6.23074 2.77411i −0.407316 0.181349i
\(235\) −12.3538 2.62588i −0.805873 0.171294i
\(236\) 13.0742 2.77901i 0.851060 0.180898i
\(237\) −16.9578 + 7.55012i −1.10153 + 0.490433i
\(238\) −10.8423 12.0415i −0.702799 0.780537i
\(239\) 0.710952 + 6.76426i 0.0459877 + 0.437544i 0.993155 + 0.116804i \(0.0372648\pi\)
−0.947167 + 0.320740i \(0.896068\pi\)
\(240\) −13.5176 + 9.82113i −0.872559 + 0.633951i
\(241\) 1.20261 11.4421i 0.0774671 0.737050i −0.884989 0.465612i \(-0.845834\pi\)
0.962456 0.271438i \(-0.0874992\pi\)
\(242\) −7.58800 13.1428i −0.487775 0.844851i
\(243\) −7.46119 + 12.9232i −0.478636 + 0.829021i
\(244\) −4.13284 3.00269i −0.264578 0.192227i
\(245\) 10.2154 11.3454i 0.652640 0.724830i
\(246\) 5.86030 18.0362i 0.373639 1.14994i
\(247\) 1.29410 0.0823413
\(248\) −1.21291 3.16377i −0.0770197 0.200899i
\(249\) 11.0938 0.703039
\(250\) −6.74630 + 20.7630i −0.426673 + 1.31317i
\(251\) −4.88091 + 5.42080i −0.308080 + 0.342158i −0.877225 0.480080i \(-0.840608\pi\)
0.569145 + 0.822237i \(0.307274\pi\)
\(252\) 10.7529 + 7.81244i 0.677369 + 0.492137i
\(253\) −7.17837 + 12.4333i −0.451300 + 0.781675i
\(254\) 14.7103 + 25.4790i 0.923005 + 1.59869i
\(255\) 1.11737 10.6311i 0.0699724 0.665743i
\(256\) −8.35235 + 6.06834i −0.522022 + 0.379271i
\(257\) 2.57722 + 24.5206i 0.160763 + 1.52955i 0.716140 + 0.697956i \(0.245907\pi\)
−0.555378 + 0.831598i \(0.687426\pi\)
\(258\) −0.799991 0.888480i −0.0498053 0.0553143i
\(259\) −0.921381 + 0.410225i −0.0572518 + 0.0254902i
\(260\) 10.9947 2.33700i 0.681864 0.144935i
\(261\) 2.12471 + 0.451622i 0.131516 + 0.0279547i
\(262\) 13.6077 + 6.05853i 0.840686 + 0.374297i
\(263\) −8.12313 25.0004i −0.500894 1.54159i −0.807566 0.589777i \(-0.799215\pi\)
0.306672 0.951815i \(-0.400785\pi\)
\(264\) 1.72220 + 5.30037i 0.105994 + 0.326215i
\(265\) 20.3954 + 9.08062i 1.25288 + 0.557818i
\(266\) −4.61769 0.981521i −0.283129 0.0601809i
\(267\) 10.4895 2.22962i 0.641949 0.136450i
\(268\) −28.5274 + 12.7012i −1.74259 + 0.775851i
\(269\) −13.9713 15.5167i −0.851846 0.946071i 0.147228 0.989103i \(-0.452965\pi\)
−0.999074 + 0.0430321i \(0.986298\pi\)
\(270\) −1.54820 14.7302i −0.0942206 0.896450i
\(271\) 16.9981 12.3499i 1.03256 0.750201i 0.0637431 0.997966i \(-0.479696\pi\)
0.968820 + 0.247765i \(0.0796962\pi\)
\(272\) 0.739939 7.04005i 0.0448654 0.426866i
\(273\) 8.20403 + 14.2098i 0.496530 + 0.860016i
\(274\) −7.85091 + 13.5982i −0.474291 + 0.821496i
\(275\) 1.77550 + 1.28997i 0.107066 + 0.0777883i
\(276\) 11.0124 12.2305i 0.662869 0.736191i
\(277\) −1.47070 + 4.52635i −0.0883657 + 0.271962i −0.985468 0.169861i \(-0.945668\pi\)
0.897102 + 0.441823i \(0.145668\pi\)
\(278\) −41.6459 −2.49776
\(279\) 8.67165 + 1.37725i 0.519158 + 0.0824539i
\(280\) −5.25032 −0.313767
\(281\) −2.05645 + 6.32910i −0.122678 + 0.377563i −0.993471 0.114087i \(-0.963606\pi\)
0.870793 + 0.491649i \(0.163606\pi\)
\(282\) −15.9563 + 17.7212i −0.950181 + 1.05528i
\(283\) 5.86234 + 4.25924i 0.348480 + 0.253185i 0.748231 0.663438i \(-0.230904\pi\)
−0.399751 + 0.916624i \(0.630904\pi\)
\(284\) 1.53210 2.65367i 0.0909132 0.157466i
\(285\) −1.55720 2.69715i −0.0922406 0.159765i
\(286\) −1.93519 + 18.4121i −0.114430 + 1.08873i
\(287\) −12.7172 + 9.23961i −0.750675 + 0.545397i
\(288\) 1.33682 + 12.7190i 0.0787729 + 0.749474i
\(289\) −8.34488 9.26793i −0.490875 0.545172i
\(290\) −6.12199 + 2.72568i −0.359495 + 0.160058i
\(291\) 14.0500 2.98641i 0.823623 0.175066i
\(292\) 31.7824 + 6.75555i 1.85992 + 0.395339i
\(293\) 12.3434 + 5.49563i 0.721108 + 0.321058i 0.734272 0.678855i \(-0.237524\pi\)
−0.0131637 + 0.999913i \(0.504190\pi\)
\(294\) −8.90741 27.4142i −0.519491 1.59883i
\(295\) −4.22807 13.0126i −0.246168 0.757626i
\(296\) 0.152594 + 0.0679392i 0.00886934 + 0.00394888i
\(297\) 12.7471 + 2.70947i 0.739659 + 0.157219i
\(298\) −24.9605 + 5.30552i −1.44592 + 0.307340i
\(299\) 6.39501 2.84724i 0.369833 0.164660i
\(300\) −1.68341 1.86961i −0.0971915 0.107942i
\(301\) 0.103587 + 0.985567i 0.00597067 + 0.0568071i
\(302\) 33.3214 24.2094i 1.91743 1.39309i
\(303\) −4.03929 + 38.4313i −0.232051 + 2.20782i
\(304\) −1.03120 1.78609i −0.0591434 0.102439i
\(305\) −2.61462 + 4.52866i −0.149713 + 0.259310i
\(306\) −5.62592 4.08747i −0.321613 0.233665i
\(307\) −15.2065 + 16.8886i −0.867883 + 0.963882i −0.999624 0.0274020i \(-0.991277\pi\)
0.131741 + 0.991284i \(0.457943\pi\)
\(308\) 11.1488 34.3125i 0.635263 1.95514i
\(309\) −8.37640 −0.476517
\(310\) −24.1409 + 12.2874i −1.37111 + 0.697878i
\(311\) 9.49330 0.538315 0.269158 0.963096i \(-0.413255\pi\)
0.269158 + 0.963096i \(0.413255\pi\)
\(312\) 0.839726 2.58441i 0.0475401 0.146313i
\(313\) 18.8006 20.8802i 1.06267 1.18022i 0.0796330 0.996824i \(-0.474625\pi\)
0.983040 0.183393i \(-0.0587082\pi\)
\(314\) 9.73075 + 7.06981i 0.549138 + 0.398972i
\(315\) 6.80276 11.7827i 0.383292 0.663882i
\(316\) −9.95072 17.2352i −0.559772 0.969553i
\(317\) 1.65331 15.7302i 0.0928591 0.883495i −0.844600 0.535398i \(-0.820161\pi\)
0.937459 0.348096i \(-0.113172\pi\)
\(318\) 34.1023 24.7768i 1.91236 1.38941i
\(319\) −0.616323 5.86393i −0.0345075 0.328317i
\(320\) −15.9489 17.7130i −0.891569 0.990188i
\(321\) −21.7247 + 9.67247i −1.21256 + 0.539865i
\(322\) −24.9787 + 5.30938i −1.39201 + 0.295880i
\(323\) 1.29062 + 0.274329i 0.0718118 + 0.0152641i
\(324\) −23.5607 10.4899i −1.30893 0.582772i
\(325\) −0.330674 1.01771i −0.0183425 0.0564523i
\(326\) 11.3870 + 35.0457i 0.630669 + 1.94100i
\(327\) −35.3623 15.7443i −1.95554 0.870662i
\(328\) 2.54646 + 0.541267i 0.140605 + 0.0298865i
\(329\) 19.3340 4.10957i 1.06592 0.226568i
\(330\) 40.7030 18.1221i 2.24063 0.997591i
\(331\) 8.66131 + 9.61936i 0.476069 + 0.528728i 0.932567 0.360996i \(-0.117563\pi\)
−0.456499 + 0.889724i \(0.650897\pi\)
\(332\) 1.24325 + 11.8287i 0.0682321 + 0.649185i
\(333\) −0.350182 + 0.254422i −0.0191899 + 0.0139423i
\(334\) −0.472618 + 4.49666i −0.0258605 + 0.246046i
\(335\) 15.9827 + 27.6828i 0.873228 + 1.51247i
\(336\) 13.0748 22.6462i 0.713287 1.23545i
\(337\) 22.5443 + 16.3794i 1.22807 + 0.892243i 0.996744 0.0806338i \(-0.0256944\pi\)
0.231323 + 0.972877i \(0.425694\pi\)
\(338\) −11.9845 + 13.3102i −0.651872 + 0.723977i
\(339\) −11.5950 + 35.6858i −0.629755 + 1.93819i
\(340\) 11.4606 0.621537
\(341\) −3.71834 23.5418i −0.201360 1.27486i
\(342\) −2.02604 −0.109556
\(343\) 0.565190 1.73948i 0.0305174 0.0939229i
\(344\) 0.109820 0.121967i 0.00592108 0.00657603i
\(345\) −13.6294 9.90233i −0.733782 0.533124i
\(346\) 5.70655 9.88403i 0.306786 0.531369i
\(347\) −2.66175 4.61029i −0.142890 0.247493i 0.785693 0.618616i \(-0.212306\pi\)
−0.928584 + 0.371123i \(0.878973\pi\)
\(348\) −0.706520 + 6.72209i −0.0378734 + 0.360342i
\(349\) 3.31528 2.40869i 0.177463 0.128934i −0.495508 0.868603i \(-0.665018\pi\)
0.672971 + 0.739669i \(0.265018\pi\)
\(350\) 0.408043 + 3.88227i 0.0218108 + 0.207516i
\(351\) −4.25178 4.72208i −0.226943 0.252046i
\(352\) 31.7137 14.1199i 1.69035 0.752591i
\(353\) −21.3132 + 4.53026i −1.13439 + 0.241122i −0.736582 0.676348i \(-0.763562\pi\)
−0.397806 + 0.917470i \(0.630228\pi\)
\(354\) −25.2690 5.37109i −1.34303 0.285470i
\(355\) −2.86546 1.27578i −0.152083 0.0677115i
\(356\) 3.55286 + 10.9346i 0.188301 + 0.579531i
\(357\) 5.16971 + 15.9107i 0.273610 + 0.842085i
\(358\) 22.9692 + 10.2265i 1.21396 + 0.540489i
\(359\) 6.92668 + 1.47231i 0.365576 + 0.0777057i 0.387037 0.922064i \(-0.373498\pi\)
−0.0214610 + 0.999770i \(0.506832\pi\)
\(360\) −2.20403 + 0.468481i −0.116163 + 0.0246911i
\(361\) −17.0062 + 7.57164i −0.895062 + 0.398507i
\(362\) 13.3756 + 14.8551i 0.703005 + 0.780766i
\(363\) 1.63782 + 15.5828i 0.0859634 + 0.817887i
\(364\) −14.2318 + 10.3400i −0.745947 + 0.541963i
\(365\) 3.47668 33.0784i 0.181977 1.73140i
\(366\) 4.93665 + 8.55053i 0.258043 + 0.446943i
\(367\) 8.05884 13.9583i 0.420668 0.728619i −0.575337 0.817917i \(-0.695129\pi\)
0.996005 + 0.0892980i \(0.0284624\pi\)
\(368\) −9.02559 6.55747i −0.470491 0.341832i
\(369\) −4.51412 + 5.01344i −0.234996 + 0.260989i
\(370\) 0.412653 1.27002i 0.0214528 0.0660250i
\(371\) −34.9401 −1.81400
\(372\) −1.44155 + 27.2835i −0.0747409 + 1.41458i
\(373\) −9.81895 −0.508406 −0.254203 0.967151i \(-0.581813\pi\)
−0.254203 + 0.967151i \(0.581813\pi\)
\(374\) −5.83306 + 17.9523i −0.301621 + 0.928293i
\(375\) 15.0824 16.7507i 0.778849 0.865000i
\(376\) −2.64834 1.92413i −0.136578 0.0992294i
\(377\) −1.43747 + 2.48977i −0.0740335 + 0.128230i
\(378\) 11.5900 + 20.0745i 0.596127 + 1.03252i
\(379\) 1.44413 13.7399i 0.0741798 0.705773i −0.892719 0.450614i \(-0.851205\pi\)
0.966899 0.255160i \(-0.0821281\pi\)
\(380\) 2.70132 1.96262i 0.138575 0.100680i
\(381\) −3.17512 30.2093i −0.162666 1.54767i
\(382\) 14.5105 + 16.1155i 0.742421 + 0.824542i
\(383\) 9.41502 4.19184i 0.481085 0.214193i −0.151841 0.988405i \(-0.548520\pi\)
0.632926 + 0.774212i \(0.281854\pi\)
\(384\) −10.0781 + 2.14216i −0.514295 + 0.109317i
\(385\) −36.1242 7.67843i −1.84106 0.391329i
\(386\) −3.38966 1.50917i −0.172529 0.0768149i
\(387\) 0.131426 + 0.404488i 0.00668076 + 0.0205613i
\(388\) 4.75879 + 14.6461i 0.241591 + 0.743541i
\(389\) −23.1725 10.3170i −1.17489 0.523095i −0.275952 0.961171i \(-0.588993\pi\)
−0.898938 + 0.438077i \(0.855660\pi\)
\(390\) −21.2498 4.51679i −1.07603 0.228717i
\(391\) 6.98139 1.48394i 0.353064 0.0750460i
\(392\) 3.61489 1.60945i 0.182579 0.0812896i
\(393\) −10.2906 11.4289i −0.519091 0.576509i
\(394\) −1.38555 13.1827i −0.0698032 0.664133i
\(395\) −16.4812 + 11.9743i −0.829261 + 0.602493i
\(396\) 1.61848 15.3988i 0.0813319 0.773821i
\(397\) −8.37941 14.5136i −0.420550 0.728415i 0.575443 0.817842i \(-0.304830\pi\)
−0.995993 + 0.0894272i \(0.971496\pi\)
\(398\) −0.960590 + 1.66379i −0.0481500 + 0.0833983i
\(399\) 3.94324 + 2.86493i 0.197409 + 0.143426i
\(400\) −1.14113 + 1.26735i −0.0570565 + 0.0633677i
\(401\) −8.53615 + 26.2716i −0.426275 + 1.31194i 0.475493 + 0.879720i \(0.342270\pi\)
−0.901768 + 0.432220i \(0.857730\pi\)
\(402\) 60.3537 3.01017
\(403\) −5.28026 + 10.3522i −0.263028 + 0.515678i
\(404\) −41.4300 −2.06122
\(405\) −8.15807 + 25.1080i −0.405378 + 1.24763i
\(406\) 7.01769 7.79394i 0.348282 0.386807i
\(407\) 0.950545 + 0.690611i 0.0471168 + 0.0342323i
\(408\) 1.38532 2.39945i 0.0685838 0.118791i
\(409\) 11.3053 + 19.5814i 0.559013 + 0.968239i 0.997579 + 0.0695399i \(0.0221531\pi\)
−0.438566 + 0.898699i \(0.644514\pi\)
\(410\) 2.17552 20.6987i 0.107441 1.02224i
\(411\) 13.1154 9.52892i 0.646936 0.470027i
\(412\) −0.938720 8.93132i −0.0462474 0.440015i
\(413\) 14.3282 + 15.9131i 0.705045 + 0.783031i
\(414\) −10.0120 + 4.45765i −0.492065 + 0.219082i
\(415\) 11.9090 2.53133i 0.584589 0.124258i
\(416\) −16.5568 3.51926i −0.811764 0.172546i
\(417\) 39.2806 + 17.4888i 1.92358 + 0.856432i
\(418\) 1.69945 + 5.23038i 0.0831229 + 0.255826i
\(419\) −1.91312 5.88796i −0.0934618 0.287646i 0.893388 0.449286i \(-0.148322\pi\)
−0.986850 + 0.161640i \(0.948322\pi\)
\(420\) 38.6758 + 17.2196i 1.88719 + 0.840230i
\(421\) −6.41600 1.36376i −0.312697 0.0664657i 0.0488901 0.998804i \(-0.484432\pi\)
−0.361587 + 0.932338i \(0.617765\pi\)
\(422\) 12.5288 2.66308i 0.609892 0.129637i
\(423\) 7.74953 3.45031i 0.376795 0.167760i
\(424\) 3.87197 + 4.30026i 0.188040 + 0.208839i
\(425\) −0.114046 1.08507i −0.00553202 0.0526337i
\(426\) −4.79121 + 3.48102i −0.232135 + 0.168656i
\(427\) 0.855450 8.13906i 0.0413981 0.393877i
\(428\) −12.7479 22.0800i −0.616192 1.06728i
\(429\) 9.55725 16.5536i 0.461428 0.799217i
\(430\) −1.06151 0.771231i −0.0511905 0.0371920i
\(431\) 15.7030 17.4399i 0.756385 0.840051i −0.234868 0.972027i \(-0.575466\pi\)
0.991253 + 0.131977i \(0.0421324\pi\)
\(432\) −3.12932 + 9.63105i −0.150559 + 0.463374i
\(433\) 24.3130 1.16841 0.584203 0.811607i \(-0.301407\pi\)
0.584203 + 0.811607i \(0.301407\pi\)
\(434\) 26.6932 32.9345i 1.28131 1.58091i
\(435\) 6.91890 0.331736
\(436\) 12.8244 39.4694i 0.614176 1.89024i
\(437\) 1.39143 1.54534i 0.0665610 0.0739234i
\(438\) −50.8055 36.9124i −2.42758 1.76374i
\(439\) −7.25318 + 12.5629i −0.346175 + 0.599593i −0.985567 0.169288i \(-0.945853\pi\)
0.639391 + 0.768881i \(0.279186\pi\)
\(440\) 3.05817 + 5.29690i 0.145792 + 0.252520i
\(441\) −1.07184 + 10.1979i −0.0510399 + 0.485612i
\(442\) 7.44607 5.40989i 0.354173 0.257322i
\(443\) 1.73162 + 16.4752i 0.0822716 + 0.782762i 0.955409 + 0.295287i \(0.0954153\pi\)
−0.873137 + 0.487475i \(0.837918\pi\)
\(444\) −0.901242 1.00093i −0.0427711 0.0475021i
\(445\) 10.7516 4.78692i 0.509675 0.226922i
\(446\) −32.2223 + 6.84907i −1.52577 + 0.324313i
\(447\) 25.7708 + 5.47775i 1.21892 + 0.259089i
\(448\) 34.0777 + 15.1724i 1.61002 + 0.716828i
\(449\) 2.10667 + 6.48365i 0.0994197 + 0.305982i 0.988380 0.152001i \(-0.0485718\pi\)
−0.888961 + 0.457984i \(0.848572\pi\)
\(450\) 0.517704 + 1.59333i 0.0244048 + 0.0751102i
\(451\) 16.7290 + 7.44825i 0.787740 + 0.350724i
\(452\) −39.3493 8.36396i −1.85084 0.393408i
\(453\) −41.5953 + 8.84136i −1.95432 + 0.415403i
\(454\) −8.79280 + 3.91481i −0.412667 + 0.183731i
\(455\) 12.0492 + 13.3820i 0.564877 + 0.627359i
\(456\) −0.0843778 0.802801i −0.00395135 0.0375946i
\(457\) −17.3354 + 12.5949i −0.810916 + 0.589165i −0.914096 0.405497i \(-0.867098\pi\)
0.103180 + 0.994663i \(0.467098\pi\)
\(458\) 4.20594 40.0168i 0.196530 1.86986i
\(459\) −3.23934 5.61070i −0.151200 0.261885i
\(460\) 9.03094 15.6420i 0.421070 0.729314i
\(461\) 7.01782 + 5.09875i 0.326853 + 0.237472i 0.739094 0.673602i \(-0.235254\pi\)
−0.412241 + 0.911075i \(0.635254\pi\)
\(462\) −46.6582 + 51.8192i −2.17074 + 2.41085i
\(463\) 1.12787 3.47124i 0.0524167 0.161322i −0.921421 0.388565i \(-0.872971\pi\)
0.973838 + 0.227243i \(0.0729710\pi\)
\(464\) 4.58180 0.212705
\(465\) 27.9297 1.45178i 1.29521 0.0673245i
\(466\) −29.5246 −1.36770
\(467\) −0.952115 + 2.93031i −0.0440586 + 0.135599i −0.970666 0.240431i \(-0.922711\pi\)
0.926607 + 0.376030i \(0.122711\pi\)
\(468\) −5.05172 + 5.61051i −0.233516 + 0.259346i
\(469\) −40.4724 29.4049i −1.86884 1.35779i
\(470\) −13.0852 + 22.6643i −0.603577 + 1.04543i
\(471\) −6.20917 10.7546i −0.286104 0.495546i
\(472\) 0.370692 3.52690i 0.0170625 0.162339i
\(473\) 0.933975 0.678572i 0.0429442 0.0312008i
\(474\) 4.02060 + 38.2534i 0.184672 + 1.75704i
\(475\) −0.212700 0.236227i −0.00975933 0.0108388i
\(476\) −16.3854 + 7.29526i −0.751025 + 0.334378i
\(477\) −14.6675 + 3.11767i −0.671578 + 0.142748i
\(478\) 13.7856 + 2.93022i 0.630538 + 0.134025i
\(479\) −15.9050 7.08138i −0.726720 0.323556i 0.00981912 0.999952i \(-0.496874\pi\)
−0.736539 + 0.676395i \(0.763541\pi\)
\(480\) 12.5882 + 38.7424i 0.574568 + 1.76834i
\(481\) −0.177032 0.544849i −0.00807197 0.0248430i
\(482\) −21.7789 9.69661i −0.992003 0.441668i
\(483\) 25.7896 + 5.48175i 1.17347 + 0.249428i
\(484\) −16.4316 + 3.49265i −0.746892 + 0.158757i
\(485\) 14.4010 6.41173i 0.653915 0.291142i
\(486\) 20.6902 + 22.9788i 0.938526 + 1.04234i
\(487\) −3.00766 28.6160i −0.136290 1.29671i −0.822272 0.569095i \(-0.807294\pi\)
0.685981 0.727619i \(-0.259373\pi\)
\(488\) −1.09652 + 0.796666i −0.0496370 + 0.0360634i
\(489\) 3.97684 37.8371i 0.179839 1.71105i
\(490\) −15.8172 27.3963i −0.714550 1.23764i
\(491\) 4.91284 8.50929i 0.221713 0.384019i −0.733615 0.679565i \(-0.762168\pi\)
0.955328 + 0.295546i \(0.0955017\pi\)
\(492\) −16.9830 12.3389i −0.765652 0.556279i
\(493\) −1.96140 + 2.17836i −0.0883371 + 0.0981083i
\(494\) 0.828636 2.55028i 0.0372821 0.114743i
\(495\) −15.8497 −0.712391
\(496\) 18.4955 0.961388i 0.830472 0.0431676i
\(497\) 4.90891 0.220195
\(498\) 7.10357 21.8625i 0.318319 0.979684i
\(499\) −7.25874 + 8.06164i −0.324946 + 0.360889i −0.883378 0.468661i \(-0.844736\pi\)
0.558432 + 0.829550i \(0.311403\pi\)
\(500\) 19.5506 + 14.2043i 0.874329 + 0.635237i
\(501\) 2.33411 4.04280i 0.104280 0.180619i
\(502\) 7.55745 + 13.0899i 0.337305 + 0.584230i
\(503\) −0.894863 + 8.51405i −0.0399000 + 0.379623i 0.956290 + 0.292418i \(0.0944600\pi\)
−0.996190 + 0.0872044i \(0.972207\pi\)
\(504\) 2.85294 2.07278i 0.127080 0.0923290i
\(505\) 4.43299 + 42.1771i 0.197265 + 1.87685i
\(506\) 19.9059 + 22.1077i 0.884925 + 0.982809i
\(507\) 16.8933 7.52139i 0.750259 0.334037i
\(508\) 31.8548 6.77094i 1.41333 0.300412i
\(509\) 38.7174 + 8.22963i 1.71612 + 0.364772i 0.957871 0.287197i \(-0.0927236\pi\)
0.758245 + 0.651969i \(0.226057\pi\)
\(510\) −20.2352 9.00930i −0.896030 0.398938i
\(511\) 16.0855 + 49.5059i 0.711579 + 2.19001i
\(512\) 9.58715 + 29.5062i 0.423696 + 1.30400i
\(513\) −1.72436 0.767736i −0.0761325 0.0338964i
\(514\) 49.9732 + 10.6221i 2.20422 + 0.468522i
\(515\) −8.99194 + 1.91130i −0.396232 + 0.0842217i
\(516\) −1.20899 + 0.538278i −0.0532229 + 0.0236964i
\(517\) −15.4076 17.1119i −0.677625 0.752578i
\(518\) 0.218453 + 2.07845i 0.00959830 + 0.0913217i
\(519\) −9.53314 + 6.92623i −0.418458 + 0.304028i
\(520\) 0.311732 2.96593i 0.0136703 0.130065i
\(521\) 0.674660 + 1.16855i 0.0295574 + 0.0511949i 0.880426 0.474184i \(-0.157257\pi\)
−0.850868 + 0.525379i \(0.823924\pi\)
\(522\) 2.25051 3.89800i 0.0985022 0.170611i
\(523\) −23.0351 16.7360i −1.00725 0.731812i −0.0436219 0.999048i \(-0.513890\pi\)
−0.963631 + 0.267236i \(0.913890\pi\)
\(524\) 11.0328 12.2531i 0.481968 0.535280i
\(525\) 1.24546 3.83313i 0.0543562 0.167291i
\(526\) −54.4699 −2.37500
\(527\) −7.46057 + 9.20499i −0.324987 + 0.400976i
\(528\) −30.4628 −1.32572
\(529\) −3.63142 + 11.1764i −0.157888 + 0.485929i
\(530\) 30.9548 34.3788i 1.34459 1.49332i
\(531\) 7.43474 + 5.40166i 0.322640 + 0.234412i
\(532\) −2.61282 + 4.52554i −0.113280 + 0.196207i
\(533\) −4.46443 7.73262i −0.193376 0.334937i
\(534\) 2.32274 22.0994i 0.100515 0.956336i
\(535\) −21.1141 + 15.3403i −0.912843 + 0.663220i
\(536\) 0.866031 + 8.23974i 0.0374069 + 0.355902i
\(537\) −17.3701 19.2914i −0.749573 0.832485i
\(538\) −39.5250 + 17.5977i −1.70404 + 0.758689i
\(539\) 27.2256 5.78697i 1.17269 0.249263i
\(540\) −16.0368 3.40872i −0.690113 0.146688i
\(541\) −13.0725 5.82024i −0.562029 0.250232i 0.106000 0.994366i \(-0.466196\pi\)
−0.668030 + 0.744134i \(0.732862\pi\)
\(542\) −13.4537 41.4062i −0.577885 1.77855i
\(543\) −6.37763 19.6283i −0.273690 0.842332i
\(544\) −15.7663 7.01959i −0.675973 0.300962i
\(545\) −41.5533 8.83243i −1.77995 0.378340i
\(546\) 33.2565 7.06889i 1.42325 0.302521i
\(547\) 38.7041 17.2322i 1.65487 0.736795i 0.655044 0.755590i \(-0.272650\pi\)
0.999823 + 0.0187957i \(0.00598320\pi\)
\(548\) 11.6300 + 12.9164i 0.496809 + 0.551762i
\(549\) −0.367132 3.49303i −0.0156688 0.149079i
\(550\) 3.67904 2.67298i 0.156875 0.113976i
\(551\) −0.0892693 + 0.849341i −0.00380300 + 0.0361831i
\(552\) −2.18327 3.78154i −0.0929263 0.160953i
\(553\) 15.9413 27.6111i 0.677893 1.17414i
\(554\) 7.97837 + 5.79663i 0.338969 + 0.246275i
\(555\) −0.922548 + 1.02459i −0.0391600 + 0.0434916i
\(556\) −14.2454 + 43.8428i −0.604139 + 1.85935i
\(557\) 27.3019 1.15682 0.578409 0.815747i \(-0.303674\pi\)
0.578409 + 0.815747i \(0.303674\pi\)
\(558\) 8.26679 16.2074i 0.349961 0.686113i
\(559\) −0.562902 −0.0238082
\(560\) 8.86825 27.2937i 0.374752 1.15337i
\(561\) 13.0407 14.4831i 0.550578 0.611479i
\(562\) 11.1560 + 8.10531i 0.470588 + 0.341902i
\(563\) −2.59399 + 4.49293i −0.109324 + 0.189354i −0.915497 0.402326i \(-0.868202\pi\)
0.806173 + 0.591680i \(0.201535\pi\)
\(564\) 13.1980 + 22.8597i 0.555737 + 0.962565i
\(565\) −4.30442 + 40.9539i −0.181088 + 1.72294i
\(566\) 12.1475 8.82566i 0.510596 0.370970i
\(567\) −4.31878 41.0905i −0.181372 1.72564i
\(568\) −0.543993 0.604166i −0.0228255 0.0253502i
\(569\) 2.16312 0.963083i 0.0906827 0.0403746i −0.360894 0.932607i \(-0.617528\pi\)
0.451577 + 0.892232i \(0.350862\pi\)
\(570\) −6.31239 + 1.34174i −0.264397 + 0.0561993i
\(571\) −19.9170 4.23348i −0.833500 0.177166i −0.228653 0.973508i \(-0.573432\pi\)
−0.604846 + 0.796342i \(0.706765\pi\)
\(572\) 18.7214 + 8.33528i 0.782779 + 0.348516i
\(573\) −6.91877 21.2938i −0.289036 0.889560i
\(574\) 10.0654 + 30.9782i 0.420123 + 1.29301i
\(575\) −1.57083 0.699381i −0.0655083 0.0291662i
\(576\) 15.6593 + 3.32849i 0.652471 + 0.138687i
\(577\) −25.0227 + 5.31874i −1.04171 + 0.221422i −0.696839 0.717228i \(-0.745411\pi\)
−0.344871 + 0.938650i \(0.612077\pi\)
\(578\) −23.6077 + 10.5108i −0.981953 + 0.437194i
\(579\) 2.56337 + 2.84691i 0.106530 + 0.118314i
\(580\) 0.775382 + 7.37727i 0.0321960 + 0.306324i
\(581\) −15.4152 + 11.1998i −0.639531 + 0.464646i
\(582\) 3.11115 29.6006i 0.128961 1.22698i
\(583\) 20.3516 + 35.2501i 0.842879 + 1.45991i
\(584\) 4.31041 7.46585i 0.178366 0.308939i
\(585\) 6.25221 + 4.54250i 0.258497 + 0.187809i
\(586\) 18.7340 20.8062i 0.773894 0.859497i
\(587\) 12.3489 38.0060i 0.509694 1.56868i −0.283040 0.959108i \(-0.591343\pi\)
0.792733 0.609568i \(-0.208657\pi\)
\(588\) −31.9072 −1.31583
\(589\) −0.182141 + 3.44729i −0.00750499 + 0.142043i
\(590\) −28.3514 −1.16721
\(591\) −4.22908 + 13.0158i −0.173961 + 0.535397i
\(592\) −0.610925 + 0.678501i −0.0251089 + 0.0278862i
\(593\) 16.9709 + 12.3301i 0.696911 + 0.506335i 0.878925 0.476961i \(-0.158262\pi\)
−0.182014 + 0.983296i \(0.558262\pi\)
\(594\) 13.5018 23.3857i 0.553984 0.959529i
\(595\) 9.18005 + 15.9003i 0.376345 + 0.651849i
\(596\) −2.95258 + 28.0920i −0.120943 + 1.15069i
\(597\) 1.60473 1.16590i 0.0656771 0.0477172i
\(598\) −1.51621 14.4258i −0.0620026 0.589915i
\(599\) 14.0125 + 15.5625i 0.572535 + 0.635865i 0.957969 0.286870i \(-0.0926149\pi\)
−0.385434 + 0.922735i \(0.625948\pi\)
\(600\) −0.609782 + 0.271492i −0.0248943 + 0.0110836i
\(601\) 16.2555 3.45522i 0.663076 0.140941i 0.135933 0.990718i \(-0.456597\pi\)
0.527143 + 0.849777i \(0.323263\pi\)
\(602\) 2.00859 + 0.426939i 0.0818640 + 0.0174007i
\(603\) −19.6137 8.73257i −0.798730 0.355618i
\(604\) −14.0886 43.3601i −0.573256 1.76430i
\(605\) 5.31381 + 16.3542i 0.216037 + 0.664894i
\(606\) 73.1503 + 32.5686i 2.97153 + 1.32301i
\(607\) −28.9056 6.14407i −1.17324 0.249380i −0.420249 0.907409i \(-0.638057\pi\)
−0.752993 + 0.658029i \(0.771390\pi\)
\(608\) −4.91830 + 1.04542i −0.199463 + 0.0423972i
\(609\) −9.89211 + 4.40425i −0.400848 + 0.178469i
\(610\) 7.25045 + 8.05244i 0.293562 + 0.326034i
\(611\) 1.17358 + 11.1659i 0.0474780 + 0.451723i
\(612\) −6.22749 + 4.52453i −0.251731 + 0.182893i
\(613\) −3.87799 + 36.8966i −0.156631 + 1.49024i 0.580373 + 0.814351i \(0.302907\pi\)
−0.737003 + 0.675889i \(0.763760\pi\)
\(614\) 23.5453 + 40.7817i 0.950212 + 1.64582i
\(615\) −10.7442 + 18.6095i −0.433248 + 0.750407i
\(616\) −7.74409 5.62641i −0.312018 0.226695i
\(617\) −17.6270 + 19.5768i −0.709636 + 0.788131i −0.984879 0.173244i \(-0.944575\pi\)
0.275243 + 0.961375i \(0.411242\pi\)
\(618\) −5.36358 + 16.5074i −0.215755 + 0.664026i
\(619\) −26.3796 −1.06029 −0.530144 0.847908i \(-0.677862\pi\)
−0.530144 + 0.847908i \(0.677862\pi\)
\(620\) 4.67796 + 29.6173i 0.187871 + 1.18946i
\(621\) −10.2104 −0.409730
\(622\) 6.07875 18.7085i 0.243736 0.750142i
\(623\) −12.3247 + 13.6879i −0.493778 + 0.548396i
\(624\) 12.0166 + 8.73059i 0.481050 + 0.349503i
\(625\) 13.6503 23.6430i 0.546012 0.945720i
\(626\) −29.1103 50.4204i −1.16348 2.01521i
\(627\) 0.593521 5.64698i 0.0237029 0.225518i
\(628\) 10.7712 7.82576i 0.429819 0.312282i
\(629\) −0.0610564 0.580913i −0.00243448 0.0231625i
\(630\) −18.8643 20.9510i −0.751573 0.834706i
\(631\) 18.2446 8.12304i 0.726308 0.323373i −0.0100649 0.999949i \(-0.503204\pi\)
0.736372 + 0.676576i \(0.236537\pi\)
\(632\) −5.16483 + 1.09782i −0.205446 + 0.0436688i
\(633\) −12.9355 2.74953i −0.514141 0.109284i
\(634\) −29.9409 13.3305i −1.18910 0.529423i
\(635\) −10.3015 31.7047i −0.408802 1.25816i
\(636\) −14.4187 44.3763i −0.571740 1.75964i
\(637\) −12.3982 5.52002i −0.491234 0.218711i
\(638\) −11.9507 2.54020i −0.473133 0.100568i
\(639\) 2.06071 0.438017i 0.0815204 0.0173277i
\(640\) −10.3299 + 4.59916i −0.408324 + 0.181798i
\(641\) 15.5874 + 17.3115i 0.615664 + 0.683764i 0.967666 0.252235i \(-0.0811657\pi\)
−0.352002 + 0.935999i \(0.614499\pi\)
\(642\) 5.15079 + 49.0065i 0.203285 + 1.93413i
\(643\) 31.4658 22.8612i 1.24089 0.901559i 0.243232 0.969968i \(-0.421792\pi\)
0.997657 + 0.0684089i \(0.0217922\pi\)
\(644\) −2.95474 + 28.1124i −0.116433 + 1.10779i
\(645\) 0.677346 + 1.17320i 0.0266705 + 0.0461946i
\(646\) 1.36703 2.36777i 0.0537851 0.0931585i
\(647\) 1.80444 + 1.31100i 0.0709399 + 0.0515408i 0.622690 0.782469i \(-0.286040\pi\)
−0.551750 + 0.834009i \(0.686040\pi\)
\(648\) −4.57863 + 5.08508i −0.179866 + 0.199761i
\(649\) 7.70848 23.7243i 0.302584 0.931259i
\(650\) −2.21734 −0.0869713
\(651\) −39.0076 + 19.8544i −1.52883 + 0.778155i
\(652\) 40.7894 1.59744
\(653\) −8.82960 + 27.1747i −0.345529 + 1.06343i 0.615771 + 0.787925i \(0.288845\pi\)
−0.961300 + 0.275504i \(0.911155\pi\)
\(654\) −53.6706 + 59.6072i −2.09869 + 2.33083i
\(655\) −13.6546 9.92063i −0.533529 0.387631i
\(656\) −7.11497 + 12.3235i −0.277793 + 0.481151i
\(657\) 11.1699 + 19.3468i 0.435778 + 0.754790i
\(658\) 4.28122 40.7331i 0.166899 1.58794i
\(659\) −4.15656 + 3.01991i −0.161916 + 0.117639i −0.665793 0.746136i \(-0.731907\pi\)
0.503877 + 0.863776i \(0.331907\pi\)
\(660\) −5.15525 49.0489i −0.200668 1.90923i
\(661\) −3.94482 4.38117i −0.153436 0.170408i 0.661526 0.749922i \(-0.269909\pi\)
−0.814962 + 0.579514i \(0.803242\pi\)
\(662\) 24.5029 10.9094i 0.952333 0.424006i
\(663\) −9.29499 + 1.97571i −0.360987 + 0.0767302i
\(664\) 3.08670 + 0.656098i 0.119787 + 0.0254615i
\(665\) 4.88672 + 2.17571i 0.189499 + 0.0843703i
\(666\) 0.277162 + 0.853018i 0.0107398 + 0.0330538i
\(667\) 1.42756 + 4.39358i 0.0552754 + 0.170120i
\(668\) 4.57220 + 2.03567i 0.176904 + 0.0787626i
\(669\) 33.2684 + 7.07142i 1.28623 + 0.273397i
\(670\) 64.7887 13.7713i 2.50301 0.532031i
\(671\) −8.70955 + 3.87774i −0.336229 + 0.149699i
\(672\) −42.6592 47.3778i −1.64561 1.82764i
\(673\) −2.84979 27.1140i −0.109851 1.04517i −0.901082 0.433649i \(-0.857226\pi\)
0.791231 0.611518i \(-0.209441\pi\)
\(674\) 46.7146 33.9401i 1.79938 1.30732i
\(675\) −0.163149 + 1.55226i −0.00627961 + 0.0597465i
\(676\) 9.91286 + 17.1696i 0.381264 + 0.660368i
\(677\) 1.31511 2.27784i 0.0505438 0.0875444i −0.839647 0.543133i \(-0.817238\pi\)
0.890190 + 0.455589i \(0.150571\pi\)
\(678\) 62.9016 + 45.7007i 2.41572 + 1.75512i
\(679\) −16.5080 + 18.3340i −0.633519 + 0.703594i
\(680\) 0.939627 2.89187i 0.0360330 0.110898i
\(681\) 9.93738 0.380801
\(682\) −48.7748 7.74652i −1.86768 0.296630i
\(683\) 29.5859 1.13207 0.566037 0.824380i \(-0.308476\pi\)
0.566037 + 0.824380i \(0.308476\pi\)
\(684\) −0.693026 + 2.13292i −0.0264985 + 0.0815540i
\(685\) 11.9049 13.2218i 0.454864 0.505178i
\(686\) −3.06609 2.22765i −0.117064 0.0850519i
\(687\) −20.7717 + 35.9777i −0.792492 + 1.37264i
\(688\) 0.448549 + 0.776909i 0.0171008 + 0.0296194i
\(689\) 2.07453 19.7378i 0.0790331 0.751950i
\(690\) −28.2418 + 20.5188i −1.07515 + 0.781139i
\(691\) −1.76087 16.7535i −0.0669866 0.637334i −0.975579 0.219650i \(-0.929508\pi\)
0.908592 0.417684i \(-0.137158\pi\)
\(692\) −8.45344 9.38849i −0.321351 0.356897i
\(693\) 22.6607 10.0892i 0.860808 0.383256i
\(694\) −10.7899 + 2.29346i −0.409579 + 0.0870587i
\(695\) 46.1576 + 9.81111i 1.75086 + 0.372157i
\(696\) 1.63827 + 0.729407i 0.0620986 + 0.0276481i
\(697\) −2.81323 8.65822i −0.106559 0.327954i
\(698\) −2.62397 8.07576i −0.0993189 0.305672i
\(699\) 27.8477 + 12.3986i 1.05330 + 0.468957i
\(700\) 4.22664 + 0.898400i 0.159752 + 0.0339563i
\(701\) −20.7605 + 4.41279i −0.784114 + 0.166669i −0.582537 0.812804i \(-0.697940\pi\)
−0.201577 + 0.979473i \(0.564607\pi\)
\(702\) −12.0283 + 5.35536i −0.453980 + 0.202125i
\(703\) −0.113873 0.126468i −0.00429479 0.00476985i
\(704\) −4.54235 43.2176i −0.171196 1.62882i
\(705\) 21.8597 15.8820i 0.823284 0.598151i
\(706\) −4.71948 + 44.9029i −0.177620 + 1.68994i
\(707\) −33.1859 57.4796i −1.24808 2.16174i
\(708\) −14.2979 + 24.7647i −0.537348 + 0.930714i
\(709\) −41.5383 30.1794i −1.56001 1.13341i −0.936005 0.351986i \(-0.885506\pi\)
−0.624000 0.781424i \(-0.714494\pi\)
\(710\) −4.34900 + 4.83006i −0.163215 + 0.181269i
\(711\) 4.22828 13.0133i 0.158573 0.488037i
\(712\) 3.05044 0.114320
\(713\) 6.68457 + 17.4362i 0.250339 + 0.652989i
\(714\) 34.6656 1.29733
\(715\) 6.48241 19.9508i 0.242429 0.746118i
\(716\) 18.6228 20.6827i 0.695967 0.772950i
\(717\) −11.7721 8.55293i −0.439637 0.319415i
\(718\) 7.33679 12.7077i 0.273807 0.474247i
\(719\) 20.0999 + 34.8141i 0.749601 + 1.29835i 0.948014 + 0.318229i \(0.103088\pi\)
−0.198413 + 0.980119i \(0.563579\pi\)
\(720\) 1.28741 12.2489i 0.0479790 0.456490i
\(721\) 11.6393 8.45647i 0.433471 0.314935i
\(722\) 4.03205 + 38.3624i 0.150058 + 1.42770i
\(723\) 16.4700 + 18.2917i 0.612524 + 0.680277i
\(724\) 20.2139 8.99983i 0.751245 0.334476i
\(725\) 0.690753 0.146824i 0.0256539 0.00545291i
\(726\) 31.7579 + 6.75035i 1.17865 + 0.250529i
\(727\) −19.6265 8.73827i −0.727906 0.324084i 0.00911160 0.999958i \(-0.497100\pi\)
−0.737017 + 0.675874i \(0.763766\pi\)
\(728\) 1.44228 + 4.43889i 0.0534545 + 0.164516i
\(729\) 0.558517 + 1.71894i 0.0206858 + 0.0636644i
\(730\) −62.9615 28.0323i −2.33031 1.03752i
\(731\) −0.561388 0.119327i −0.0207637 0.00441346i
\(732\) 10.6902 2.27227i 0.395121 0.0839856i
\(733\) 20.5286 9.13991i 0.758241 0.337590i 0.00906234 0.999959i \(-0.497115\pi\)
0.749178 + 0.662368i \(0.230449\pi\)
\(734\) −22.3475 24.8194i −0.824861 0.916101i
\(735\) 3.41405 + 32.4826i 0.125929 + 1.19814i
\(736\) −22.0046 + 15.9872i −0.811099 + 0.589298i
\(737\) −6.09174 + 57.9591i −0.224392 + 2.13495i
\(738\) 6.98953 + 12.1062i 0.257288 + 0.445636i
\(739\) −26.2750 + 45.5097i −0.966542 + 1.67410i −0.261129 + 0.965304i \(0.584095\pi\)
−0.705413 + 0.708797i \(0.749238\pi\)
\(740\) −1.19586 0.868842i −0.0439606 0.0319393i
\(741\) −1.85254 + 2.05745i −0.0680547 + 0.0755824i
\(742\) −22.3728 + 68.8565i −0.821333 + 2.52780i
\(743\) −17.4032 −0.638460 −0.319230 0.947677i \(-0.603424\pi\)
−0.319230 + 0.947677i \(0.603424\pi\)
\(744\) 6.76632 + 2.60066i 0.248065 + 0.0953449i
\(745\) 28.9145 1.05934
\(746\) −6.28728 + 19.3503i −0.230194 + 0.708463i
\(747\) −5.47180 + 6.07705i −0.200203 + 0.222348i
\(748\) 16.9041 + 12.2815i 0.618074 + 0.449057i
\(749\) 20.4224 35.3727i 0.746219 1.29249i
\(750\) −23.3530 40.4487i −0.852732 1.47698i
\(751\) 2.34603 22.3210i 0.0856080 0.814505i −0.864510 0.502615i \(-0.832371\pi\)
0.950118 0.311890i \(-0.100962\pi\)
\(752\) 14.4758 10.5173i 0.527879 0.383526i
\(753\) −1.63123 15.5201i −0.0594453 0.565584i
\(754\) 3.98616 + 4.42708i 0.145168 + 0.161225i
\(755\) −42.6346 + 18.9821i −1.55163 + 0.690831i
\(756\) 25.0979 5.33473i 0.912804 0.194022i
\(757\) 14.4696 + 3.07560i 0.525906 + 0.111785i 0.463211 0.886248i \(-0.346697\pi\)
0.0626946 + 0.998033i \(0.480031\pi\)
\(758\) −26.1527 11.6439i −0.949907 0.422926i
\(759\) −9.49136 29.2114i −0.344515 1.06031i
\(760\) −0.273758 0.842542i −0.00993026 0.0305622i
\(761\) −18.1807 8.09457i −0.659050 0.293428i 0.0498293 0.998758i \(-0.484132\pi\)
−0.708879 + 0.705330i \(0.750799\pi\)
\(762\) −61.5667 13.0864i −2.23032 0.474070i