Properties

Label 31.2.g
Level 31
Weight 2
Character orbit g
Rep. character \(\chi_{31}(7,\cdot)\)
Character field \(\Q(\zeta_{15})\)
Dimension 16
Newforms 1
Sturm bound 5
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 31 \)
Character field: \(\Q(\zeta_{15})\)
Newforms: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(31, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 16 16 0
Eisenstein series 16 16 0

Trace form

\( 16q - 6q^{2} - 12q^{3} - 14q^{4} - 3q^{5} + 11q^{6} + 2q^{7} + 17q^{8} - 10q^{9} + O(q^{10}) \) \( 16q - 6q^{2} - 12q^{3} - 14q^{4} - 3q^{5} + 11q^{6} + 2q^{7} + 17q^{8} - 10q^{9} - 2q^{10} - 7q^{11} + 5q^{12} - 7q^{13} - 6q^{14} + 14q^{15} - 2q^{16} - 6q^{17} - 3q^{18} + 16q^{19} + 37q^{20} + 9q^{21} + 9q^{22} + q^{23} - 20q^{24} - 13q^{25} + 9q^{26} + 9q^{27} - 30q^{28} - 14q^{29} - 22q^{30} + 15q^{31} - 42q^{32} - 13q^{33} - 32q^{34} - 9q^{35} + q^{36} - 8q^{37} + 8q^{38} - 3q^{39} - q^{40} - 8q^{41} + 69q^{42} + 23q^{43} + 39q^{44} + 65q^{45} + 34q^{46} + 14q^{47} + 34q^{48} + 2q^{49} + 3q^{50} - 42q^{51} + 29q^{52} + 6q^{53} - 46q^{54} - 7q^{55} - 30q^{56} - 17q^{57} - 15q^{58} + 4q^{59} - 75q^{60} - 60q^{61} - 25q^{62} - 46q^{63} + 23q^{64} - 12q^{65} - 30q^{66} + 13q^{67} + 30q^{68} + 38q^{69} + 12q^{70} - 14q^{71} + 37q^{72} + 2q^{73} + 13q^{74} + 13q^{75} - 12q^{76} + 18q^{77} - 15q^{78} + 18q^{79} + 36q^{80} + 23q^{81} + 14q^{82} - 16q^{83} + 8q^{84} + 37q^{85} - 26q^{86} + 15q^{87} - 17q^{88} + q^{89} - 23q^{90} + 8q^{91} - 64q^{92} + 17q^{93} + 44q^{94} - 22q^{95} + 8q^{96} + 3q^{97} - 10q^{98} + 6q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(31, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
31.2.g.a \(16\) \(0.248\) \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None \(-6\) \(-12\) \(-3\) \(2\) \(q+(-1-\beta _{1}+\beta _{3}-\beta _{4}+\beta _{5}+\beta _{6}+\cdots)q^{2}+\cdots\)