Properties

Label 31.2.g
Level $31$
Weight $2$
Character orbit 31.g
Rep. character $\chi_{31}(7,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $16$
Newform subspaces $1$
Sturm bound $5$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 31.g (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{15})\)
Newform subspaces: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(31, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 16 16 0
Eisenstein series 16 16 0

Trace form

\( 16 q - 6 q^{2} - 12 q^{3} - 14 q^{4} - 3 q^{5} + 11 q^{6} + 2 q^{7} + 17 q^{8} - 10 q^{9} - 2 q^{10} - 7 q^{11} + 5 q^{12} - 7 q^{13} - 6 q^{14} + 14 q^{15} - 2 q^{16} - 6 q^{17} - 3 q^{18} + 16 q^{19}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(31, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
31.2.g.a 31.g 31.g $16$ $0.248$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(-6\) \(-12\) \(-3\) \(2\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-1-\beta _{1}+\beta _{3}-\beta _{4}+\beta _{5}+\beta _{6}+\cdots)q^{2}+\cdots\)