Properties

Label 31.2.a
Level $31$
Weight $2$
Character orbit 31.a
Rep. character $\chi_{31}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $5$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 31.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(31))\).

Total New Old
Modular forms 3 3 0
Cusp forms 2 2 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(31\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(-\)\(3\)\(3\)\(0\)\(2\)\(2\)\(0\)\(1\)\(1\)\(0\)

Trace form

\( 2 q + q^{2} - 2 q^{3} - q^{4} + 2 q^{5} - 6 q^{6} - 4 q^{7} + 6 q^{9} + q^{10} + 4 q^{11} - 4 q^{12} - 2 q^{13} + 3 q^{14} - 2 q^{15} - 3 q^{16} + 6 q^{17} + 13 q^{18} - q^{20} - 6 q^{21} + 2 q^{22}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 31
31.2.a.a 31.a 1.a $2$ $0.248$ \(\Q(\sqrt{5}) \) None 31.2.a.a \(1\) \(-2\) \(2\) \(-4\) $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-2\beta q^{3}+(-1+\beta )q^{4}+q^{5}+\cdots\)