Properties

Label 31.19.b.a.30.1
Level $31$
Weight $19$
Character 31.30
Self dual yes
Analytic conductor $63.670$
Analytic rank $0$
Dimension $1$
CM discriminant -31
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [31,19,Mod(30,31)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(31, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 19, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("31.30");
 
S:= CuspForms(chi, 19);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 19 \)
Character orbit: \([\chi]\) \(=\) 31.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.6697026900\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 30.1
Character \(\chi\) \(=\) 31.30

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-495.000 q^{2} -17119.0 q^{4} -3.35569e6 q^{5} +7.22602e7 q^{7} +1.38235e8 q^{8} +3.87420e8 q^{9} +O(q^{10})\) \(q-495.000 q^{2} -17119.0 q^{4} -3.35569e6 q^{5} +7.22602e7 q^{7} +1.38235e8 q^{8} +3.87420e8 q^{9} +1.66106e9 q^{10} -3.57688e10 q^{14} -6.39388e10 q^{16} -1.91773e11 q^{18} -3.01506e11 q^{19} +5.74460e10 q^{20} +7.44593e12 q^{25} -1.23702e12 q^{28} -2.64396e13 q^{31} -4.58783e12 q^{32} -2.42483e14 q^{35} -6.63225e12 q^{36} +1.49245e14 q^{38} -4.63874e14 q^{40} +6.40888e14 q^{41} -1.30006e15 q^{45} -4.84327e14 q^{47} +3.59312e15 q^{49} -3.68574e15 q^{50} +9.98890e15 q^{56} -1.47537e16 q^{59} +1.30876e16 q^{62} +2.79951e16 q^{63} +1.90321e16 q^{64} +3.38863e16 q^{67} +1.20029e17 q^{70} -8.62604e16 q^{71} +5.35551e16 q^{72} +5.16148e15 q^{76} +2.14558e17 q^{80} +1.50095e17 q^{81} -3.17239e17 q^{82} +6.43530e17 q^{90} +2.39742e17 q^{94} +1.01176e18 q^{95} +1.38834e18 q^{97} -1.77860e18 q^{98} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −495.000 −0.966797 −0.483398 0.875400i \(-0.660598\pi\)
−0.483398 + 0.875400i \(0.660598\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −17119.0 −0.0653038
\(5\) −3.35569e6 −1.71811 −0.859056 0.511882i \(-0.828948\pi\)
−0.859056 + 0.511882i \(0.828948\pi\)
\(6\) 0 0
\(7\) 7.22602e7 1.79068 0.895338 0.445388i \(-0.146934\pi\)
0.895338 + 0.445388i \(0.146934\pi\)
\(8\) 1.38235e8 1.02993
\(9\) 3.87420e8 1.00000
\(10\) 1.66106e9 1.66106
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −3.57688e10 −1.73122
\(15\) 0 0
\(16\) −6.39388e10 −0.930432
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −1.91773e11 −0.966797
\(19\) −3.01506e11 −0.934358 −0.467179 0.884163i \(-0.654730\pi\)
−0.467179 + 0.884163i \(0.654730\pi\)
\(20\) 5.74460e10 0.112199
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 7.44593e12 1.95191
\(26\) 0 0
\(27\) 0 0
\(28\) −1.23702e12 −0.116938
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −2.64396e13 −1.00000
\(32\) −4.58783e12 −0.130394
\(33\) 0 0
\(34\) 0 0
\(35\) −2.42483e14 −3.07658
\(36\) −6.63225e12 −0.0653038
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.49245e14 0.903334
\(39\) 0 0
\(40\) −4.63874e14 −1.76954
\(41\) 6.40888e14 1.95762 0.978808 0.204782i \(-0.0656486\pi\)
0.978808 + 0.204782i \(0.0656486\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −1.30006e15 −1.71811
\(46\) 0 0
\(47\) −4.84327e14 −0.432771 −0.216386 0.976308i \(-0.569427\pi\)
−0.216386 + 0.976308i \(0.569427\pi\)
\(48\) 0 0
\(49\) 3.59312e15 2.20652
\(50\) −3.68574e15 −1.88710
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 9.98890e15 1.84427
\(57\) 0 0
\(58\) 0 0
\(59\) −1.47537e16 −1.70308 −0.851538 0.524293i \(-0.824330\pi\)
−0.851538 + 0.524293i \(0.824330\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 1.30876e16 0.966797
\(63\) 2.79951e16 1.79068
\(64\) 1.90321e16 1.05650
\(65\) 0 0
\(66\) 0 0
\(67\) 3.38863e16 1.24552 0.622761 0.782412i \(-0.286011\pi\)
0.622761 + 0.782412i \(0.286011\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.20029e17 2.97443
\(71\) −8.62604e16 −1.88142 −0.940712 0.339207i \(-0.889841\pi\)
−0.940712 + 0.339207i \(0.889841\pi\)
\(72\) 5.35551e16 1.02993
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 5.16148e15 0.0610171
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 2.14558e17 1.59859
\(81\) 1.50095e17 1.00000
\(82\) −3.17239e17 −1.89262
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 6.43530e17 1.66106
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 2.39742e17 0.418402
\(95\) 1.01176e18 1.60533
\(96\) 0 0
\(97\) 1.38834e18 1.82621 0.913104 0.407726i \(-0.133678\pi\)
0.913104 + 0.407726i \(0.133678\pi\)
\(98\) −1.77860e18 −2.13325
\(99\) 0 0
\(100\) −1.27467e17 −0.127467
\(101\) −2.14631e18 −1.96246 −0.981230 0.192839i \(-0.938231\pi\)
−0.981230 + 0.192839i \(0.938231\pi\)
\(102\) 0 0
\(103\) 1.85003e18 1.41789 0.708946 0.705262i \(-0.249171\pi\)
0.708946 + 0.705262i \(0.249171\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.50705e17 −0.299547 −0.149774 0.988720i \(-0.547854\pi\)
−0.149774 + 0.988720i \(0.547854\pi\)
\(108\) 0 0
\(109\) 9.97975e17 0.459496 0.229748 0.973250i \(-0.426210\pi\)
0.229748 + 0.973250i \(0.426210\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.62023e18 −1.66610
\(113\) 5.97094e18 1.98764 0.993818 0.111020i \(-0.0354119\pi\)
0.993818 + 0.111020i \(0.0354119\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 7.30310e18 1.64653
\(119\) 0 0
\(120\) 0 0
\(121\) 5.55992e18 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 4.52620e17 0.0653038
\(125\) −1.21853e19 −1.63548
\(126\) −1.38576e19 −1.73122
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −8.21824e18 −0.891023
\(129\) 0 0
\(130\) 0 0
\(131\) −2.18370e19 −1.92199 −0.960994 0.276568i \(-0.910803\pi\)
−0.960994 + 0.276568i \(0.910803\pi\)
\(132\) 0 0
\(133\) −2.17869e19 −1.67313
\(134\) −1.67737e19 −1.20417
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 4.15106e18 0.200912
\(141\) 0 0
\(142\) 4.26989e19 1.81895
\(143\) 0 0
\(144\) −2.47712e19 −0.930432
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.84284e19 −0.509109 −0.254554 0.967058i \(-0.581929\pi\)
−0.254554 + 0.967058i \(0.581929\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −4.16787e19 −0.962325
\(153\) 0 0
\(154\) 0 0
\(155\) 8.87231e19 1.71811
\(156\) 0 0
\(157\) 2.33197e19 0.402371 0.201185 0.979553i \(-0.435521\pi\)
0.201185 + 0.979553i \(0.435521\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.53953e19 0.224031
\(161\) 0 0
\(162\) −7.42968e19 −0.966797
\(163\) 9.72517e19 1.19732 0.598658 0.801005i \(-0.295701\pi\)
0.598658 + 0.801005i \(0.295701\pi\)
\(164\) −1.09714e19 −0.127840
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.12455e20 1.00000
\(170\) 0 0
\(171\) −1.16810e20 −0.934358
\(172\) 0 0
\(173\) 2.16429e20 1.55920 0.779599 0.626279i \(-0.215423\pi\)
0.779599 + 0.626279i \(0.215423\pi\)
\(174\) 0 0
\(175\) 5.38045e20 3.49523
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 2.22558e19 0.112199
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 8.29120e18 0.0282616
\(189\) 0 0
\(190\) −5.00821e20 −1.55203
\(191\) 6.42984e20 1.90064 0.950319 0.311277i \(-0.100757\pi\)
0.950319 + 0.311277i \(0.100757\pi\)
\(192\) 0 0
\(193\) −7.24969e20 −1.95121 −0.975605 0.219534i \(-0.929546\pi\)
−0.975605 + 0.219534i \(0.929546\pi\)
\(194\) −6.87229e20 −1.76557
\(195\) 0 0
\(196\) −6.15107e19 −0.144094
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 1.02929e21 2.01033
\(201\) 0 0
\(202\) 1.06243e21 1.89730
\(203\) 0 0
\(204\) 0 0
\(205\) −2.15062e21 −3.36340
\(206\) −9.15764e20 −1.37081
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.38850e21 1.67496 0.837480 0.546469i \(-0.184028\pi\)
0.837480 + 0.546469i \(0.184028\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 2.72599e20 0.289601
\(215\) 0 0
\(216\) 0 0
\(217\) −1.91053e21 −1.79068
\(218\) −4.93998e20 −0.444239
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −3.31518e20 −0.233493
\(225\) 2.88471e21 1.95191
\(226\) −2.95562e21 −1.92164
\(227\) 2.76142e21 1.72544 0.862720 0.505682i \(-0.168759\pi\)
0.862720 + 0.505682i \(0.168759\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.78653e21 −0.882685 −0.441343 0.897339i \(-0.645498\pi\)
−0.441343 + 0.897339i \(0.645498\pi\)
\(234\) 0 0
\(235\) 1.62525e21 0.743549
\(236\) 2.52569e20 0.111217
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −2.75216e21 −0.966797
\(243\) 0 0
\(244\) 0 0
\(245\) −1.20574e22 −3.79104
\(246\) 0 0
\(247\) 0 0
\(248\) −3.65489e21 −1.02993
\(249\) 0 0
\(250\) 6.03171e21 1.58118
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −4.79248e20 −0.116938
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −9.21134e20 −0.195058
\(257\) 9.68560e21 1.98029 0.990144 0.140053i \(-0.0447274\pi\)
0.990144 + 0.140053i \(0.0447274\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.08093e22 1.85817
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.07845e22 1.61758
\(267\) 0 0
\(268\) −5.80100e20 −0.0813373
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −1.02433e22 −1.00000
\(280\) −3.35196e22 −3.16867
\(281\) −1.99984e22 −1.83079 −0.915396 0.402554i \(-0.868123\pi\)
−0.915396 + 0.402554i \(0.868123\pi\)
\(282\) 0 0
\(283\) 1.26496e22 1.08642 0.543209 0.839597i \(-0.317209\pi\)
0.543209 + 0.839597i \(0.317209\pi\)
\(284\) 1.47669e21 0.122864
\(285\) 0 0
\(286\) 0 0
\(287\) 4.63107e22 3.50545
\(288\) −1.77742e21 −0.130394
\(289\) 1.40631e22 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.12984e22 1.96659 0.983293 0.182031i \(-0.0582670\pi\)
0.983293 + 0.182031i \(0.0582670\pi\)
\(294\) 0 0
\(295\) 4.95089e22 2.92607
\(296\) 0 0
\(297\) 0 0
\(298\) 9.12204e21 0.492205
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.92779e22 0.869356
\(305\) 0 0
\(306\) 0 0
\(307\) −3.50067e22 −1.44512 −0.722562 0.691306i \(-0.757036\pi\)
−0.722562 + 0.691306i \(0.757036\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4.39179e22 −1.66106
\(311\) −3.25646e22 −1.19647 −0.598236 0.801320i \(-0.704131\pi\)
−0.598236 + 0.801320i \(0.704131\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −1.15433e22 −0.389011
\(315\) −9.39427e22 −3.07658
\(316\) 0 0
\(317\) 4.84386e22 1.49850 0.749252 0.662285i \(-0.230413\pi\)
0.749252 + 0.662285i \(0.230413\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −6.38659e22 −1.81518
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −2.56947e21 −0.0653038
\(325\) 0 0
\(326\) −4.81396e22 −1.15756
\(327\) 0 0
\(328\) 8.85932e22 2.01621
\(329\) −3.49976e22 −0.774952
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.13712e23 −2.13995
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −5.56654e22 −0.966797
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 5.78207e22 0.903334
\(343\) 1.41970e23 2.16048
\(344\) 0 0
\(345\) 0 0
\(346\) −1.07132e23 −1.50743
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 7.35446e22 0.957463 0.478731 0.877961i \(-0.341097\pi\)
0.478731 + 0.877961i \(0.341097\pi\)
\(350\) −2.66332e23 −3.37918
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 2.89463e23 3.23249
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.17272e22 0.522238 0.261119 0.965307i \(-0.415908\pi\)
0.261119 + 0.965307i \(0.415908\pi\)
\(360\) −1.79714e23 −1.76954
\(361\) −1.32216e22 −0.126976
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 2.48293e23 1.95762
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.81191e23 1.29645 0.648226 0.761448i \(-0.275511\pi\)
0.648226 + 0.761448i \(0.275511\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.69511e22 −0.445725
\(377\) 0 0
\(378\) 0 0
\(379\) 3.09640e23 1.91913 0.959563 0.281493i \(-0.0908297\pi\)
0.959563 + 0.281493i \(0.0908297\pi\)
\(380\) −1.73203e22 −0.104834
\(381\) 0 0
\(382\) −3.18277e23 −1.83753
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.58860e23 1.88642
\(387\) 0 0
\(388\) −2.37670e22 −0.119258
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 4.96696e23 2.27256
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.88400e23 1.17728 0.588642 0.808394i \(-0.299663\pi\)
0.588642 + 0.808394i \(0.299663\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −4.76084e23 −1.81612
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 3.67428e22 0.128156
\(405\) −5.03670e23 −1.71811
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 1.06456e24 3.25173
\(411\) 0 0
\(412\) −3.16706e22 −0.0925938
\(413\) −1.06611e24 −3.04966
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.97712e23 −0.999177 −0.499588 0.866263i \(-0.666515\pi\)
−0.499588 + 0.866263i \(0.666515\pi\)
\(420\) 0 0
\(421\) 1.51229e23 0.363995 0.181998 0.983299i \(-0.441744\pi\)
0.181998 + 0.983299i \(0.441744\pi\)
\(422\) −6.87308e23 −1.61935
\(423\) −1.87638e23 −0.432771
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 9.42752e21 0.0195616
\(429\) 0 0
\(430\) 0 0
\(431\) 1.78560e23 0.347928 0.173964 0.984752i \(-0.444342\pi\)
0.173964 + 0.984752i \(0.444342\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 9.45714e23 1.73122
\(435\) 0 0
\(436\) −1.70843e22 −0.0300068
\(437\) 0 0
\(438\) 0 0
\(439\) −9.80551e23 −1.61916 −0.809580 0.587010i \(-0.800305\pi\)
−0.809580 + 0.587010i \(0.800305\pi\)
\(440\) 0 0
\(441\) 1.39205e24 2.20652
\(442\) 0 0
\(443\) −9.29782e23 −1.41497 −0.707486 0.706728i \(-0.750171\pi\)
−0.707486 + 0.706728i \(0.750171\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 1.37527e24 1.89184
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.42793e24 −1.88710
\(451\) 0 0
\(452\) −1.02217e23 −0.129800
\(453\) 0 0
\(454\) −1.36690e24 −1.66815
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 8.84330e23 0.853377
\(467\) 1.82772e24 1.73005 0.865025 0.501729i \(-0.167302\pi\)
0.865025 + 0.501729i \(0.167302\pi\)
\(468\) 0 0
\(469\) 2.44863e24 2.23033
\(470\) −8.04499e23 −0.718861
\(471\) 0 0
\(472\) −2.03949e24 −1.75405
\(473\) 0 0
\(474\) 0 0
\(475\) −2.24499e24 −1.82378
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.26203e24 −1.70403 −0.852017 0.523514i \(-0.824621\pi\)
−0.852017 + 0.523514i \(0.824621\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −9.51802e22 −0.0653038
\(485\) −4.65883e24 −3.13763
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 5.96841e24 3.66517
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 1.69052e24 0.930432
\(497\) −6.23320e24 −3.36902
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 2.08600e23 0.106803
\(501\) 0 0
\(502\) 0 0
\(503\) 4.05523e24 1.96745 0.983724 0.179684i \(-0.0575077\pi\)
0.983724 + 0.179684i \(0.0575077\pi\)
\(504\) 3.86991e24 1.84427
\(505\) 7.20236e24 3.37173
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 2.61032e24 1.07960
\(513\) 0 0
\(514\) −4.79437e24 −1.91454
\(515\) −6.20812e24 −2.43610
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.80252e24 1.34441 0.672205 0.740365i \(-0.265347\pi\)
0.672205 + 0.740365i \(0.265347\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 3.73827e23 0.125513
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 3.24415e24 1.00000
\(530\) 0 0
\(531\) −5.71590e24 −1.70308
\(532\) 3.72969e23 0.109262
\(533\) 0 0
\(534\) 0 0
\(535\) 1.84799e24 0.514655
\(536\) 4.68429e24 1.28280
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.79616e24 1.20814 0.604071 0.796931i \(-0.293544\pi\)
0.604071 + 0.796931i \(0.293544\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.34889e24 −0.789464
\(546\) 0 0
\(547\) −1.64032e24 −0.374148 −0.187074 0.982346i \(-0.559900\pi\)
−0.187074 + 0.982346i \(0.559900\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 5.07041e24 0.966797
\(559\) 0 0
\(560\) 1.55040e25 2.86255
\(561\) 0 0
\(562\) 9.89923e24 1.77000
\(563\) 1.07900e25 1.89865 0.949327 0.314289i \(-0.101766\pi\)
0.949327 + 0.314289i \(0.101766\pi\)
\(564\) 0 0
\(565\) −2.00366e25 −3.41498
\(566\) −6.26153e24 −1.05035
\(567\) 1.08459e25 1.79068
\(568\) −1.19242e25 −1.93774
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −2.29238e25 −3.38906
\(575\) 0 0
\(576\) 7.37344e24 1.05650
\(577\) −1.14591e25 −1.61647 −0.808237 0.588858i \(-0.799578\pi\)
−0.808237 + 0.588858i \(0.799578\pi\)
\(578\) −6.96123e24 −0.966797
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.54927e25 −1.90129
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 7.97170e24 0.934358
\(590\) −2.45069e25 −2.82892
\(591\) 0 0
\(592\) 0 0
\(593\) −1.79575e25 −1.98040 −0.990202 0.139640i \(-0.955406\pi\)
−0.990202 + 0.139640i \(0.955406\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.15475e23 0.0332467
\(597\) 0 0
\(598\) 0 0
\(599\) 1.60900e25 1.62074 0.810372 0.585915i \(-0.199265\pi\)
0.810372 + 0.585915i \(0.199265\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 1.31283e25 1.24552
\(604\) 0 0
\(605\) −1.86573e25 −1.71811
\(606\) 0 0
\(607\) −1.28013e25 −1.14434 −0.572170 0.820135i \(-0.693898\pi\)
−0.572170 + 0.820135i \(0.693898\pi\)
\(608\) 1.38326e24 0.121835
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 1.73283e25 1.39714
\(615\) 0 0
\(616\) 0 0
\(617\) 1.01842e25 0.785890 0.392945 0.919562i \(-0.371456\pi\)
0.392945 + 0.919562i \(0.371456\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) −1.51885e24 −0.112199
\(621\) 0 0
\(622\) 1.61195e25 1.15674
\(623\) 0 0
\(624\) 0 0
\(625\) 1.24860e25 0.858032
\(626\) 0 0
\(627\) 0 0
\(628\) −3.99210e23 −0.0262763
\(629\) 0 0
\(630\) 4.65016e25 2.97443
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −2.39771e25 −1.44875
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3.34191e25 −1.88142
\(640\) 2.75778e25 1.53088
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 2.07484e25 1.02993
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.66485e24 −0.0781893
\(653\) −1.11850e25 −0.518106 −0.259053 0.965863i \(-0.583410\pi\)
−0.259053 + 0.965863i \(0.583410\pi\)
\(654\) 0 0
\(655\) 7.32780e25 3.30219
\(656\) −4.09776e25 −1.82143
\(657\) 0 0
\(658\) 1.73238e25 0.749222
\(659\) −4.49960e25 −1.91958 −0.959788 0.280727i \(-0.909425\pi\)
−0.959788 + 0.280727i \(0.909425\pi\)
\(660\) 0 0
\(661\) −4.54205e25 −1.88555 −0.942776 0.333427i \(-0.891795\pi\)
−0.942776 + 0.333427i \(0.891795\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.31099e25 2.87463
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 5.62874e25 2.06889
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −1.92512e24 −0.0653038
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 1.00322e26 3.27015
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.07431e24 0.0641339 0.0320669 0.999486i \(-0.489791\pi\)
0.0320669 + 0.999486i \(0.489791\pi\)
\(684\) 1.99966e24 0.0610171
\(685\) 0 0
\(686\) −7.02754e25 −2.08875
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −7.17238e25 −1.99692 −0.998461 0.0554562i \(-0.982339\pi\)
−0.998461 + 0.0554562i \(0.982339\pi\)
\(692\) −3.70505e24 −0.101822
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −3.64046e25 −0.925672
\(699\) 0 0
\(700\) −9.21078e24 −0.228252
\(701\) 8.07205e25 1.97479 0.987396 0.158268i \(-0.0505909\pi\)
0.987396 + 0.158268i \(0.0505909\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.55093e26 −3.51413
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) −1.43284e26 −3.12517
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −2.56050e25 −0.504899
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 8.31243e25 1.59859
\(721\) 1.33683e26 2.53899
\(722\) 6.54471e24 0.122760
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −9.21230e25 −1.62390 −0.811948 0.583729i \(-0.801593\pi\)
−0.811948 + 0.583729i \(0.801593\pi\)
\(728\) 0 0
\(729\) 5.81497e25 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 2.51738e25 0.412109 0.206055 0.978541i \(-0.433938\pi\)
0.206055 + 0.978541i \(0.433938\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1.22905e26 −1.89262
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 6.18398e25 0.874705
\(746\) −8.96894e25 −1.25341
\(747\) 0 0
\(748\) 0 0
\(749\) −3.97941e25 −0.536392
\(750\) 0 0
\(751\) 6.55355e25 0.862417 0.431208 0.902252i \(-0.358087\pi\)
0.431208 + 0.902252i \(0.358087\pi\)
\(752\) 3.09673e25 0.402664
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −1.53272e26 −1.85541
\(759\) 0 0
\(760\) 1.39861e26 1.65338
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 7.21139e25 0.822807
\(764\) −1.10072e25 −0.124119
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.50203e26 1.59713 0.798565 0.601908i \(-0.205593\pi\)
0.798565 + 0.601908i \(0.205593\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.24108e25 0.127421
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −1.96868e26 −1.95191
\(776\) 1.91917e26 1.88087
\(777\) 0 0
\(778\) 0 0
\(779\) −1.93231e26 −1.82911
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −2.29740e26 −2.05301
\(785\) −7.82537e25 −0.691318
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.31462e26 3.55921
\(792\) 0 0
\(793\) 0 0
\(794\) −1.42758e26 −1.13819
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −3.41607e25 −0.254517
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −2.96696e26 −2.02120
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 2.49317e26 1.66106
\(811\) 2.36134e26 1.55586 0.777929 0.628352i \(-0.216270\pi\)
0.777929 + 0.628352i \(0.216270\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.26346e26 −2.05712
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 3.68164e25 0.219643
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 2.55739e26 1.46033
\(825\) 0 0
\(826\) 5.27724e26 2.94840
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 1.96867e26 0.966001
\(839\) −1.31365e26 −0.637710 −0.318855 0.947804i \(-0.603298\pi\)
−0.318855 + 0.947804i \(0.603298\pi\)
\(840\) 0 0
\(841\) 2.10457e26 1.00000
\(842\) −7.48582e25 −0.351909
\(843\) 0 0
\(844\) −2.37698e25 −0.109381
\(845\) −3.77365e26 −1.71811
\(846\) 9.28810e25 0.418402
\(847\) 4.01761e26 1.79068
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 3.47267e26 1.45252 0.726259 0.687421i \(-0.241257\pi\)
0.726259 + 0.687421i \(0.241257\pi\)
\(854\) 0 0
\(855\) 3.91976e26 1.60533
\(856\) −7.61268e25 −0.308513
\(857\) −4.93332e26 −1.97839 −0.989196 0.146600i \(-0.953167\pi\)
−0.989196 + 0.146600i \(0.953167\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −8.83873e25 −0.336376
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −7.26269e26 −2.67887
\(866\) 0 0
\(867\) 0 0
\(868\) 3.27064e25 0.116938
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.37955e26 0.473249
\(873\) 5.37872e26 1.82621
\(874\) 0 0
\(875\) −8.80511e26 −2.92862
\(876\) 0 0
\(877\) −1.92960e26 −0.628740 −0.314370 0.949300i \(-0.601793\pi\)
−0.314370 + 0.949300i \(0.601793\pi\)
\(878\) 4.85373e26 1.56540
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −6.89065e26 −2.13325
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 4.60242e26 1.36799
\(887\) 1.87744e26 0.552400 0.276200 0.961100i \(-0.410925\pi\)
0.276200 + 0.961100i \(0.410925\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.46027e26 0.404363
\(894\) 0 0
\(895\) 0 0
\(896\) −5.93852e26 −1.59553
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −4.93833e25 −0.127467
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 8.25394e26 2.04713
\(905\) 0 0
\(906\) 0 0
\(907\) 5.17762e26 1.24642 0.623211 0.782054i \(-0.285828\pi\)
0.623211 + 0.782054i \(0.285828\pi\)
\(908\) −4.72728e25 −0.112678
\(909\) −8.31526e26 −1.96246
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.57794e27 −3.44166
\(918\) 0 0
\(919\) −4.71308e26 −1.00801 −0.504006 0.863700i \(-0.668141\pi\)
−0.504006 + 0.863700i \(0.668141\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7.16739e26 1.41789
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −1.08335e27 −2.06168
\(932\) 3.05835e25 0.0576427
\(933\) 0 0
\(934\) −9.04723e26 −1.67261
\(935\) 0 0
\(936\) 0 0
\(937\) −5.61547e26 −1.00862 −0.504312 0.863521i \(-0.668254\pi\)
−0.504312 + 0.863521i \(0.668254\pi\)
\(938\) −1.21207e27 −2.15627
\(939\) 0 0
\(940\) −2.78227e25 −0.0485566
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 9.43336e26 1.58460
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 1.11127e27 1.76322
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) −2.15765e27 −3.26551
\(956\) 0 0
\(957\) 0 0
\(958\) 1.11970e27 1.64745
\(959\) 0 0
\(960\) 0 0
\(961\) 6.99054e26 1.00000
\(962\) 0 0
\(963\) −2.13355e26 −0.299547
\(964\) 0 0
\(965\) 2.43277e27 3.35240
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 7.68576e26 1.02993
\(969\) 0 0
\(970\) 2.30612e27 3.03345
\(971\) 7.80188e26 1.01678 0.508389 0.861128i \(-0.330241\pi\)
0.508389 + 0.861128i \(0.330241\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.13144e27 1.39502 0.697510 0.716575i \(-0.254291\pi\)
0.697510 + 0.716575i \(0.254291\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 2.06411e26 0.247570
\(981\) 3.86636e26 0.459496
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 1.21301e26 0.130394
\(993\) 0 0
\(994\) 3.08543e27 3.25716
\(995\) 0 0
\(996\) 0 0
\(997\) −1.94573e27 −1.99906 −0.999531 0.0306324i \(-0.990248\pi\)
−0.999531 + 0.0306324i \(0.990248\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.19.b.a.30.1 1
31.30 odd 2 CM 31.19.b.a.30.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.19.b.a.30.1 1 1.1 even 1 trivial
31.19.b.a.30.1 1 31.30 odd 2 CM