Properties

Label 31.13.b.a.30.1
Level $31$
Weight $13$
Character 31.30
Self dual yes
Analytic conductor $28.334$
Analytic rank $0$
Dimension $1$
CM discriminant -31
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [31,13,Mod(30,31)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(31, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 13, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("31.30");
 
S:= CuspForms(chi, 13);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 31.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.3338083356\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 30.1
Character \(\chi\) \(=\) 31.30

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+97.0000 q^{2} +5313.00 q^{4} +29266.0 q^{5} -50398.0 q^{7} +118049. q^{8} +531441. q^{9} +O(q^{10})\) \(q+97.0000 q^{2} +5313.00 q^{4} +29266.0 q^{5} -50398.0 q^{7} +118049. q^{8} +531441. q^{9} +2.83880e6 q^{10} -4.88861e6 q^{14} -1.03113e7 q^{16} +5.15498e7 q^{18} +1.86502e7 q^{19} +1.55490e8 q^{20} +6.12358e8 q^{25} -2.67765e8 q^{28} +8.87504e8 q^{31} -1.48372e9 q^{32} -1.47495e9 q^{35} +2.82355e9 q^{36} +1.80907e9 q^{38} +3.45482e9 q^{40} -5.83294e9 q^{41} +1.55532e10 q^{45} +7.96025e9 q^{47} -1.13013e10 q^{49} +5.93987e10 q^{50} -5.94943e9 q^{56} -6.56353e10 q^{59} +8.60879e10 q^{62} -2.67836e10 q^{63} -1.01686e11 q^{64} -1.63049e11 q^{67} -1.43070e11 q^{70} -1.75443e11 q^{71} +6.27361e10 q^{72} +9.90883e10 q^{76} -3.01770e11 q^{80} +2.82430e11 q^{81} -5.65795e11 q^{82} +1.50866e12 q^{90} +7.72144e11 q^{94} +5.45816e11 q^{95} +1.60108e12 q^{97} -1.09623e12 q^{98} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 97.0000 1.51562 0.757812 0.652472i \(-0.226268\pi\)
0.757813 + 0.652472i \(0.226268\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 5313.00 1.29712
\(5\) 29266.0 1.87302 0.936512 0.350636i \(-0.114034\pi\)
0.936512 + 0.350636i \(0.114034\pi\)
\(6\) 0 0
\(7\) −50398.0 −0.428376 −0.214188 0.976792i \(-0.568711\pi\)
−0.214188 + 0.976792i \(0.568711\pi\)
\(8\) 118049. 0.450321
\(9\) 531441. 1.00000
\(10\) 2.83880e6 2.83880
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −4.88861e6 −0.649257
\(15\) 0 0
\(16\) −1.03113e7 −0.614601
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 5.15498e7 1.51562
\(19\) 1.86502e7 0.396425 0.198212 0.980159i \(-0.436486\pi\)
0.198212 + 0.980159i \(0.436486\pi\)
\(20\) 1.55490e8 2.42954
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 6.12358e8 2.50822
\(26\) 0 0
\(27\) 0 0
\(28\) −2.67765e8 −0.555655
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 8.87504e8 1.00000
\(32\) −1.48372e9 −1.38183
\(33\) 0 0
\(34\) 0 0
\(35\) −1.47495e9 −0.802358
\(36\) 2.82355e9 1.29712
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.80907e9 0.600832
\(39\) 0 0
\(40\) 3.45482e9 0.843462
\(41\) −5.83294e9 −1.22796 −0.613980 0.789322i \(-0.710432\pi\)
−0.613980 + 0.789322i \(0.710432\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 1.55532e10 1.87302
\(46\) 0 0
\(47\) 7.96025e9 0.738481 0.369240 0.929334i \(-0.379618\pi\)
0.369240 + 0.929334i \(0.379618\pi\)
\(48\) 0 0
\(49\) −1.13013e10 −0.816494
\(50\) 5.93987e10 3.80152
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −5.94943e9 −0.192907
\(57\) 0 0
\(58\) 0 0
\(59\) −6.56353e10 −1.55606 −0.778029 0.628229i \(-0.783780\pi\)
−0.778029 + 0.628229i \(0.783780\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 8.60879e10 1.51562
\(63\) −2.67836e10 −0.428376
\(64\) −1.01686e11 −1.47973
\(65\) 0 0
\(66\) 0 0
\(67\) −1.63049e11 −1.80248 −0.901238 0.433324i \(-0.857341\pi\)
−0.901238 + 0.433324i \(0.857341\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −1.43070e11 −1.21607
\(71\) −1.75443e11 −1.36958 −0.684789 0.728741i \(-0.740106\pi\)
−0.684789 + 0.728741i \(0.740106\pi\)
\(72\) 6.27361e10 0.450321
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 9.90883e10 0.514210
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −3.01770e11 −1.15116
\(81\) 2.82430e11 1.00000
\(82\) −5.65795e11 −1.86113
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 1.50866e12 2.83880
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 7.72144e11 1.11926
\(95\) 5.45816e11 0.742513
\(96\) 0 0
\(97\) 1.60108e12 1.92212 0.961062 0.276332i \(-0.0891188\pi\)
0.961062 + 0.276332i \(0.0891188\pi\)
\(98\) −1.09623e12 −1.23750
\(99\) 0 0
\(100\) 3.25346e12 3.25346
\(101\) −8.15453e11 −0.768193 −0.384097 0.923293i \(-0.625487\pi\)
−0.384097 + 0.923293i \(0.625487\pi\)
\(102\) 0 0
\(103\) −2.06608e12 −1.73031 −0.865156 0.501503i \(-0.832781\pi\)
−0.865156 + 0.501503i \(0.832781\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.98640e12 −1.98996 −0.994982 0.100058i \(-0.968097\pi\)
−0.994982 + 0.100058i \(0.968097\pi\)
\(108\) 0 0
\(109\) −3.31422e12 −1.97616 −0.988082 0.153931i \(-0.950807\pi\)
−0.988082 + 0.153931i \(0.950807\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 5.19669e11 0.263280
\(113\) 4.15246e12 1.99450 0.997251 0.0740986i \(-0.0236079\pi\)
0.997251 + 0.0740986i \(0.0236079\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −6.36663e12 −2.35840
\(119\) 0 0
\(120\) 0 0
\(121\) 3.13843e12 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 4.71531e12 1.29712
\(125\) 1.07763e13 2.82493
\(126\) −2.59801e12 −0.649257
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −3.78623e12 −0.860888
\(129\) 0 0
\(130\) 0 0
\(131\) 9.93196e12 1.96520 0.982601 0.185729i \(-0.0594647\pi\)
0.982601 + 0.185729i \(0.0594647\pi\)
\(132\) 0 0
\(133\) −9.39931e11 −0.169819
\(134\) −1.58158e13 −2.73188
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −7.83640e12 −1.04075
\(141\) 0 0
\(142\) −1.70180e13 −2.07577
\(143\) 0 0
\(144\) −5.47984e12 −0.614601
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.54559e12 0.689566 0.344783 0.938682i \(-0.387953\pi\)
0.344783 + 0.938682i \(0.387953\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 2.20163e12 0.178519
\(153\) 0 0
\(154\) 0 0
\(155\) 2.59737e13 1.87302
\(156\) 0 0
\(157\) 1.13474e13 0.757700 0.378850 0.925458i \(-0.376320\pi\)
0.378850 + 0.925458i \(0.376320\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −4.34227e13 −2.58819
\(161\) 0 0
\(162\) 2.73957e13 1.51562
\(163\) −3.41290e13 −1.81969 −0.909846 0.414946i \(-0.863801\pi\)
−0.909846 + 0.414946i \(0.863801\pi\)
\(164\) −3.09904e13 −1.59281
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 2.32981e13 1.00000
\(170\) 0 0
\(171\) 9.91146e12 0.396425
\(172\) 0 0
\(173\) 4.82522e13 1.79987 0.899933 0.436029i \(-0.143615\pi\)
0.899933 + 0.436029i \(0.143615\pi\)
\(174\) 0 0
\(175\) −3.08616e13 −1.07446
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 8.26339e13 2.42954
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 4.22928e13 0.957898
\(189\) 0 0
\(190\) 5.29441e13 1.12537
\(191\) 9.49484e13 1.95563 0.977817 0.209461i \(-0.0671711\pi\)
0.977817 + 0.209461i \(0.0671711\pi\)
\(192\) 0 0
\(193\) −6.42820e13 −1.24378 −0.621892 0.783103i \(-0.713636\pi\)
−0.621892 + 0.783103i \(0.713636\pi\)
\(194\) 1.55304e14 2.91322
\(195\) 0 0
\(196\) −6.00440e13 −1.05909
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 7.22883e13 1.12950
\(201\) 0 0
\(202\) −7.90989e13 −1.16429
\(203\) 0 0
\(204\) 0 0
\(205\) −1.70707e14 −2.30000
\(206\) −2.00410e14 −2.62250
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −2.43085e13 −0.275463 −0.137732 0.990470i \(-0.543981\pi\)
−0.137732 + 0.990470i \(0.543981\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −2.89681e14 −3.01604
\(215\) 0 0
\(216\) 0 0
\(217\) −4.47284e13 −0.428376
\(218\) −3.21480e14 −2.99512
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 7.47767e13 0.591941
\(225\) 3.25432e14 2.50822
\(226\) 4.02788e14 3.02292
\(227\) −4.63363e13 −0.338662 −0.169331 0.985559i \(-0.554161\pi\)
−0.169331 + 0.985559i \(0.554161\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.05268e14 −1.90786 −0.953928 0.300035i \(-0.903002\pi\)
−0.953928 + 0.300035i \(0.903002\pi\)
\(234\) 0 0
\(235\) 2.32965e14 1.38319
\(236\) −3.48721e14 −2.01839
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 3.04428e14 1.51562
\(243\) 0 0
\(244\) 0 0
\(245\) −3.30745e14 −1.52931
\(246\) 0 0
\(247\) 0 0
\(248\) 1.04769e14 0.450321
\(249\) 0 0
\(250\) 1.04530e15 4.28153
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −1.42301e14 −0.555655
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 4.92427e13 0.174945
\(257\) −3.33556e14 −1.15763 −0.578816 0.815458i \(-0.696485\pi\)
−0.578816 + 0.815458i \(0.696485\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 9.63400e14 2.97851
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −9.11733e13 −0.257382
\(267\) 0 0
\(268\) −8.66280e14 −2.33803
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 4.71656e14 1.00000
\(280\) −1.74116e14 −0.361319
\(281\) 9.47299e14 1.92420 0.962098 0.272705i \(-0.0879183\pi\)
0.962098 + 0.272705i \(0.0879183\pi\)
\(282\) 0 0
\(283\) 1.44145e14 0.280595 0.140298 0.990109i \(-0.455194\pi\)
0.140298 + 0.990109i \(0.455194\pi\)
\(284\) −9.32131e14 −1.77651
\(285\) 0 0
\(286\) 0 0
\(287\) 2.93968e14 0.526028
\(288\) −7.88512e14 −1.38183
\(289\) 5.82622e14 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.61410e14 −1.20341 −0.601704 0.798719i \(-0.705511\pi\)
−0.601704 + 0.798719i \(0.705511\pi\)
\(294\) 0 0
\(295\) −1.92088e15 −2.91453
\(296\) 0 0
\(297\) 0 0
\(298\) 7.31923e14 1.04512
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −1.92307e14 −0.243643
\(305\) 0 0
\(306\) 0 0
\(307\) −2.46722e13 −0.0294699 −0.0147349 0.999891i \(-0.504690\pi\)
−0.0147349 + 0.999891i \(0.504690\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.51945e15 2.83880
\(311\) 1.73580e14 0.191839 0.0959195 0.995389i \(-0.469421\pi\)
0.0959195 + 0.995389i \(0.469421\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 1.10070e15 1.14839
\(315\) −7.83848e14 −0.802358
\(316\) 0 0
\(317\) 1.79772e15 1.77160 0.885802 0.464063i \(-0.153609\pi\)
0.885802 + 0.464063i \(0.153609\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.97595e15 −2.77157
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.50055e15 1.29712
\(325\) 0 0
\(326\) −3.31051e15 −2.75797
\(327\) 0 0
\(328\) −6.88572e14 −0.552976
\(329\) −4.01180e14 −0.316347
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.77179e15 −3.37608
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 2.25991e15 1.51562
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 9.61412e14 0.600832
\(343\) 1.26714e15 0.778142
\(344\) 0 0
\(345\) 0 0
\(346\) 4.68046e15 2.72792
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 6.85340e14 0.379274 0.189637 0.981854i \(-0.439269\pi\)
0.189637 + 0.981854i \(0.439269\pi\)
\(350\) −2.99358e15 −1.62848
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −5.13453e15 −2.56525
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.45797e15 0.681055 0.340527 0.940235i \(-0.389394\pi\)
0.340527 + 0.940235i \(0.389394\pi\)
\(360\) 1.83603e15 0.843462
\(361\) −1.86549e15 −0.842847
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) −3.09986e15 −1.22796
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.51411e15 1.67617 0.838087 0.545537i \(-0.183674\pi\)
0.838087 + 0.545537i \(0.183674\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 9.39699e14 0.332554
\(377\) 0 0
\(378\) 0 0
\(379\) 5.82048e15 1.96392 0.981960 0.189088i \(-0.0605531\pi\)
0.981960 + 0.189088i \(0.0605531\pi\)
\(380\) 2.89992e15 0.963128
\(381\) 0 0
\(382\) 9.21000e15 2.96401
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.23535e15 −1.88511
\(387\) 0 0
\(388\) 8.50652e15 2.49322
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.33411e15 −0.367685
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6.33802e15 1.61886 0.809432 0.587214i \(-0.199775\pi\)
0.809432 + 0.587214i \(0.199775\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −6.31421e15 −1.54155
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −4.33250e15 −0.996438
\(405\) 8.26558e15 1.87302
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) −1.65586e16 −3.48593
\(411\) 0 0
\(412\) −1.09771e16 −2.24442
\(413\) 3.30789e15 0.666578
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.28806e15 1.53168 0.765841 0.643030i \(-0.222323\pi\)
0.765841 + 0.643030i \(0.222323\pi\)
\(420\) 0 0
\(421\) −1.10530e16 −1.98513 −0.992566 0.121709i \(-0.961162\pi\)
−0.992566 + 0.121709i \(0.961162\pi\)
\(422\) −2.35793e15 −0.417499
\(423\) 4.23040e15 0.738481
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −1.58667e16 −2.58122
\(429\) 0 0
\(430\) 0 0
\(431\) −1.27332e16 −1.98643 −0.993214 0.116305i \(-0.962895\pi\)
−0.993214 + 0.116305i \(0.962895\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) −4.33866e15 −0.649257
\(435\) 0 0
\(436\) −1.76085e16 −2.56332
\(437\) 0 0
\(438\) 0 0
\(439\) 1.30819e16 1.82761 0.913805 0.406153i \(-0.133130\pi\)
0.913805 + 0.406153i \(0.133130\pi\)
\(440\) 0 0
\(441\) −6.00599e15 −0.816494
\(442\) 0 0
\(443\) −5.40015e12 −0.000714470 0 −0.000357235 1.00000i \(-0.500114\pi\)
−0.000357235 1.00000i \(0.500114\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 5.12478e15 0.633880
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 3.15669e16 3.80152
\(451\) 0 0
\(452\) 2.20620e16 2.58711
\(453\) 0 0
\(454\) −4.49462e15 −0.513284
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −2.96110e16 −2.89159
\(467\) −3.57527e15 −0.344674 −0.172337 0.985038i \(-0.555132\pi\)
−0.172337 + 0.985038i \(0.555132\pi\)
\(468\) 0 0
\(469\) 8.21735e15 0.772137
\(470\) 2.25976e16 2.09640
\(471\) 0 0
\(472\) −7.74819e15 −0.700726
\(473\) 0 0
\(474\) 0 0
\(475\) 1.14206e16 0.994321
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.87856e16 −1.55529 −0.777646 0.628703i \(-0.783586\pi\)
−0.777646 + 0.628703i \(0.783586\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.66745e16 1.29712
\(485\) 4.68571e16 3.60019
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −3.20822e16 −2.31786
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −9.15131e15 −0.614601
\(497\) 8.84200e15 0.586695
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 5.72542e16 3.66427
\(501\) 0 0
\(502\) 0 0
\(503\) 3.21573e16 1.98551 0.992755 0.120153i \(-0.0383384\pi\)
0.992755 + 0.120153i \(0.0383384\pi\)
\(504\) −3.16177e15 −0.192907
\(505\) −2.38650e16 −1.43884
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 2.02849e16 1.12604
\(513\) 0 0
\(514\) −3.23550e16 −1.75454
\(515\) −6.04660e16 −3.24091
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.52656e16 −1.76329 −0.881647 0.471909i \(-0.843565\pi\)
−0.881647 + 0.471909i \(0.843565\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 5.27685e16 2.54910
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 2.19146e16 1.00000
\(530\) 0 0
\(531\) −3.48813e16 −1.55606
\(532\) −4.99385e15 −0.220275
\(533\) 0 0
\(534\) 0 0
\(535\) −8.73999e16 −3.72725
\(536\) −1.92478e16 −0.811693
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.09616e16 1.63378 0.816890 0.576793i \(-0.195696\pi\)
0.816890 + 0.576793i \(0.195696\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.69941e16 −3.70140
\(546\) 0 0
\(547\) 3.23819e16 1.20887 0.604433 0.796656i \(-0.293400\pi\)
0.604433 + 0.796656i \(0.293400\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 4.57506e16 1.51562
\(559\) 0 0
\(560\) 1.52086e16 0.493130
\(561\) 0 0
\(562\) 9.18880e16 2.91636
\(563\) −4.27926e16 −1.34375 −0.671875 0.740665i \(-0.734511\pi\)
−0.671875 + 0.740665i \(0.734511\pi\)
\(564\) 0 0
\(565\) 1.21526e17 3.73575
\(566\) 1.39821e16 0.425277
\(567\) −1.42339e16 −0.428376
\(568\) −2.07109e16 −0.616750
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 2.85149e16 0.797262
\(575\) 0 0
\(576\) −5.40402e16 −1.47973
\(577\) −7.64981e15 −0.207298 −0.103649 0.994614i \(-0.533052\pi\)
−0.103649 + 0.994614i \(0.533052\pi\)
\(578\) 5.65144e16 1.51562
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −7.38568e16 −1.82392
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 1.65521e16 0.396425
\(590\) −1.86326e17 −4.41734
\(591\) 0 0
\(592\) 0 0
\(593\) −3.62701e16 −0.834106 −0.417053 0.908882i \(-0.636937\pi\)
−0.417053 + 0.908882i \(0.636937\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.00897e16 0.894449
\(597\) 0 0
\(598\) 0 0
\(599\) −9.79808e15 −0.212119 −0.106060 0.994360i \(-0.533823\pi\)
−0.106060 + 0.994360i \(0.533823\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −8.66510e16 −1.80248
\(604\) 0 0
\(605\) 9.18492e16 1.87302
\(606\) 0 0
\(607\) −9.19012e16 −1.83734 −0.918669 0.395029i \(-0.870734\pi\)
−0.918669 + 0.395029i \(0.870734\pi\)
\(608\) −2.76717e16 −0.547790
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −2.39321e15 −0.0446653
\(615\) 0 0
\(616\) 0 0
\(617\) 7.86005e16 1.42467 0.712335 0.701839i \(-0.247637\pi\)
0.712335 + 0.701839i \(0.247637\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 1.37998e17 2.42954
\(621\) 0 0
\(622\) 1.68372e16 0.290756
\(623\) 0 0
\(624\) 0 0
\(625\) 1.65876e17 2.78294
\(626\) 0 0
\(627\) 0 0
\(628\) 6.02886e16 0.982827
\(629\) 0 0
\(630\) −7.60332e16 −1.21607
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.74379e17 2.68509
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −9.32378e16 −1.36958
\(640\) −1.10808e17 −1.61246
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 3.33405e16 0.450321
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.81327e17 −2.36036
\(653\) 9.96919e16 1.28582 0.642911 0.765941i \(-0.277726\pi\)
0.642911 + 0.765941i \(0.277726\pi\)
\(654\) 0 0
\(655\) 2.90669e17 3.68087
\(656\) 6.01451e16 0.754705
\(657\) 0 0
\(658\) −3.89145e16 −0.479464
\(659\) 1.60872e17 1.96412 0.982061 0.188565i \(-0.0603836\pi\)
0.982061 + 0.188565i \(0.0603836\pi\)
\(660\) 0 0
\(661\) −4.88153e16 −0.585257 −0.292629 0.956226i \(-0.594530\pi\)
−0.292629 + 0.956226i \(0.594530\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.75080e16 −0.318075
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) −4.62864e17 −5.11687
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 1.23783e17 1.29712
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) −8.06910e16 −0.823392
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.02981e17 −1.99954 −0.999771 0.0213800i \(-0.993194\pi\)
−0.999771 + 0.0213800i \(0.993194\pi\)
\(684\) 5.26596e16 0.514210
\(685\) 0 0
\(686\) 1.22912e17 1.17937
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.01813e17 −0.935262 −0.467631 0.883924i \(-0.654892\pi\)
−0.467631 + 0.883924i \(0.654892\pi\)
\(692\) 2.56364e17 2.33464
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 6.64780e16 0.574838
\(699\) 0 0
\(700\) −1.63968e17 −1.39370
\(701\) −9.62592e16 −0.811211 −0.405606 0.914048i \(-0.632939\pi\)
−0.405606 + 0.914048i \(0.632939\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.10972e16 0.329076
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) −4.98049e17 −3.88796
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 1.41423e17 1.03222
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −1.60373e17 −1.15116
\(721\) 1.04126e17 0.741224
\(722\) −1.80952e17 −1.27744
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −2.38308e17 −1.61410 −0.807052 0.590481i \(-0.798938\pi\)
−0.807052 + 0.590481i \(0.798938\pi\)
\(728\) 0 0
\(729\) 1.50095e17 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −3.07244e17 −1.98089 −0.990443 0.137920i \(-0.955958\pi\)
−0.990443 + 0.137920i \(0.955958\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −3.00687e17 −1.86113
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 2.20829e17 1.29157
\(746\) 4.37869e17 2.54045
\(747\) 0 0
\(748\) 0 0
\(749\) 1.50508e17 0.852452
\(750\) 0 0
\(751\) 2.62546e17 1.46341 0.731705 0.681622i \(-0.238725\pi\)
0.731705 + 0.681622i \(0.238725\pi\)
\(752\) −8.20804e16 −0.453871
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 5.64587e17 2.97657
\(759\) 0 0
\(760\) 6.44330e16 0.334370
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 1.67030e17 0.846541
\(764\) 5.04461e17 2.53669
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −3.37440e17 −1.63169 −0.815846 0.578269i \(-0.803728\pi\)
−0.815846 + 0.578269i \(0.803728\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.41530e17 −1.61334
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 5.43470e17 2.50822
\(776\) 1.89005e17 0.865574
\(777\) 0 0
\(778\) 0 0
\(779\) −1.08785e17 −0.486794
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.16531e17 0.501818
\(785\) 3.32092e17 1.41919
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.09276e17 −0.854397
\(792\) 0 0
\(793\) 0 0
\(794\) 6.14788e17 2.45359
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −9.08571e17 −3.46592
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −9.62634e16 −0.345934
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 8.01762e17 2.83880
\(811\) −4.71505e17 −1.65715 −0.828573 0.559881i \(-0.810847\pi\)
−0.828573 + 0.559881i \(0.810847\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.98819e17 −3.40833
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −9.06965e17 −2.98337
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) −2.43899e17 −0.779196
\(825\) 0 0
\(826\) 3.20865e17 1.01028
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 8.03941e17 2.32145
\(839\) −6.81330e17 −1.95338 −0.976688 0.214664i \(-0.931134\pi\)
−0.976688 + 0.214664i \(0.931134\pi\)
\(840\) 0 0
\(841\) 3.53815e17 1.00000
\(842\) −1.07215e18 −3.00872
\(843\) 0 0
\(844\) −1.29151e17 −0.357309
\(845\) 6.81842e17 1.87302
\(846\) 4.10349e17 1.11926
\(847\) −1.58171e17 −0.428376
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1.41061e16 −0.0366195 −0.0183097 0.999832i \(-0.505828\pi\)
−0.0183097 + 0.999832i \(0.505828\pi\)
\(854\) 0 0
\(855\) 2.90069e17 0.742513
\(856\) −3.52541e17 −0.896123
\(857\) −4.61467e17 −1.16481 −0.582406 0.812898i \(-0.697889\pi\)
−0.582406 + 0.812898i \(0.697889\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.23512e18 −3.01068
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 1.41215e18 3.37119
\(866\) 0 0
\(867\) 0 0
\(868\) −2.37642e17 −0.555655
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −3.91241e17 −0.889908
\(873\) 8.50877e17 1.92212
\(874\) 0 0
\(875\) −5.43102e17 −1.21013
\(876\) 0 0
\(877\) −8.89369e17 −1.95472 −0.977360 0.211584i \(-0.932138\pi\)
−0.977360 + 0.211584i \(0.932138\pi\)
\(878\) 1.26894e18 2.76997
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −5.82581e17 −1.23750
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −5.23815e14 −0.00108287
\(887\) 6.35021e17 1.30391 0.651953 0.758259i \(-0.273950\pi\)
0.651953 + 0.758259i \(0.273950\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.48460e17 0.292752
\(894\) 0 0
\(895\) 0 0
\(896\) 1.90818e17 0.368784
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.72902e18 3.25346
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 4.90193e17 0.898166
\(905\) 0 0
\(906\) 0 0
\(907\) 8.34732e16 0.149935 0.0749675 0.997186i \(-0.476115\pi\)
0.0749675 + 0.997186i \(0.476115\pi\)
\(908\) −2.46185e17 −0.439285
\(909\) −4.33365e17 −0.768193
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.00551e17 −0.841845
\(918\) 0 0
\(919\) 2.05550e17 0.341213 0.170606 0.985339i \(-0.445427\pi\)
0.170606 + 0.985339i \(0.445427\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.09800e18 −1.73031
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −2.10772e17 −0.323679
\(932\) −1.62189e18 −2.47472
\(933\) 0 0
\(934\) −3.46802e17 −0.522396
\(935\) 0 0
\(936\) 0 0
\(937\) −1.27036e18 −1.87710 −0.938550 0.345142i \(-0.887831\pi\)
−0.938550 + 0.345142i \(0.887831\pi\)
\(938\) 7.97083e17 1.17027
\(939\) 0 0
\(940\) 1.23774e18 1.79417
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 6.76785e17 0.956355
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 1.10780e18 1.50702
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 2.77876e18 3.66295
\(956\) 0 0
\(957\) 0 0
\(958\) −1.82220e18 −2.35724
\(959\) 0 0
\(960\) 0 0
\(961\) 7.87663e17 1.00000
\(962\) 0 0
\(963\) −1.58709e18 −1.98996
\(964\) 0 0
\(965\) −1.88128e18 −2.32964
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 3.70488e17 0.450321
\(969\) 0 0
\(970\) 4.54514e18 5.45653
\(971\) 1.29105e18 1.54038 0.770191 0.637813i \(-0.220161\pi\)
0.770191 + 0.637813i \(0.220161\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.56323e16 0.0179744 0.00898720 0.999960i \(-0.497139\pi\)
0.00898720 + 0.999960i \(0.497139\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.75725e18 −1.98370
\(981\) −1.76131e18 −1.97616
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −1.31681e18 −1.38183
\(993\) 0 0
\(994\) 8.57674e17 0.889209
\(995\) 0 0
\(996\) 0 0
\(997\) −9.47187e17 −0.964417 −0.482209 0.876056i \(-0.660165\pi\)
−0.482209 + 0.876056i \(0.660165\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.13.b.a.30.1 1
31.30 odd 2 CM 31.13.b.a.30.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.13.b.a.30.1 1 1.1 even 1 trivial
31.13.b.a.30.1 1 31.30 odd 2 CM