Newspace parameters
Level: | \( N \) | \(=\) | \( 3087 = 3^{2} \cdot 7^{3} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3087.bj (of order \(42\), degree \(12\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.54061369400\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | \(\Q(\zeta_{21})\) |
Defining polynomial: |
\( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 441) |
Projective image: | \(D_{14}\) |
Projective field: | Galois closure of \(\mathbb{Q}[x]/(x^{14} - \cdots)\) |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3087\mathbb{Z}\right)^\times\).
\(n\) | \(344\) | \(2404\) |
\(\chi(n)\) | \(1\) | \(-\zeta_{42}^{20}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
460.1 |
|
0 | 0 | 0.733052 | − | 0.680173i | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
766.1 | 0 | 0 | −0.365341 | − | 0.930874i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
901.1 | 0 | 0 | −0.826239 | − | 0.563320i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1207.1 | 0 | 0 | −0.955573 | − | 0.294755i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1342.1 | 0 | 0 | −0.365341 | + | 0.930874i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1648.1 | 0 | 0 | −0.826239 | + | 0.563320i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1783.1 | 0 | 0 | 0.988831 | + | 0.149042i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
2089.1 | 0 | 0 | −0.0747301 | + | 0.997204i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
2224.1 | 0 | 0 | −0.0747301 | − | 0.997204i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
2530.1 | 0 | 0 | 0.733052 | + | 0.680173i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
2665.1 | 0 | 0 | −0.955573 | + | 0.294755i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
2971.1 | 0 | 0 | 0.988831 | − | 0.149042i | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-3}) \) |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
49.f | odd | 14 | 1 | inner |
49.h | odd | 42 | 1 | inner |
147.k | even | 14 | 1 | inner |
147.o | even | 42 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3087.1.bj.a | 12 | |
3.b | odd | 2 | 1 | CM | 3087.1.bj.a | 12 | |
7.b | odd | 2 | 1 | 3087.1.bj.b | 12 | ||
7.c | even | 3 | 1 | 3087.1.v.a | 6 | ||
7.c | even | 3 | 1 | inner | 3087.1.bj.a | 12 | |
7.d | odd | 6 | 1 | 441.1.v.a | ✓ | 6 | |
7.d | odd | 6 | 1 | 3087.1.bj.b | 12 | ||
21.c | even | 2 | 1 | 3087.1.bj.b | 12 | ||
21.g | even | 6 | 1 | 441.1.v.a | ✓ | 6 | |
21.g | even | 6 | 1 | 3087.1.bj.b | 12 | ||
21.h | odd | 6 | 1 | 3087.1.v.a | 6 | ||
21.h | odd | 6 | 1 | inner | 3087.1.bj.a | 12 | |
49.e | even | 7 | 1 | 3087.1.bj.b | 12 | ||
49.f | odd | 14 | 1 | inner | 3087.1.bj.a | 12 | |
49.g | even | 21 | 1 | 441.1.v.a | ✓ | 6 | |
49.g | even | 21 | 1 | 3087.1.bj.b | 12 | ||
49.h | odd | 42 | 1 | 3087.1.v.a | 6 | ||
49.h | odd | 42 | 1 | inner | 3087.1.bj.a | 12 | |
63.i | even | 6 | 1 | 3969.1.bz.a | 12 | ||
63.k | odd | 6 | 1 | 3969.1.bz.a | 12 | ||
63.s | even | 6 | 1 | 3969.1.bz.a | 12 | ||
63.t | odd | 6 | 1 | 3969.1.bz.a | 12 | ||
147.k | even | 14 | 1 | inner | 3087.1.bj.a | 12 | |
147.l | odd | 14 | 1 | 3087.1.bj.b | 12 | ||
147.n | odd | 42 | 1 | 441.1.v.a | ✓ | 6 | |
147.n | odd | 42 | 1 | 3087.1.bj.b | 12 | ||
147.o | even | 42 | 1 | 3087.1.v.a | 6 | ||
147.o | even | 42 | 1 | inner | 3087.1.bj.a | 12 | |
441.y | even | 21 | 1 | 3969.1.bz.a | 12 | ||
441.z | even | 21 | 1 | 3969.1.bz.a | 12 | ||
441.bi | odd | 42 | 1 | 3969.1.bz.a | 12 | ||
441.bm | odd | 42 | 1 | 3969.1.bz.a | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
441.1.v.a | ✓ | 6 | 7.d | odd | 6 | 1 | |
441.1.v.a | ✓ | 6 | 21.g | even | 6 | 1 | |
441.1.v.a | ✓ | 6 | 49.g | even | 21 | 1 | |
441.1.v.a | ✓ | 6 | 147.n | odd | 42 | 1 | |
3087.1.v.a | 6 | 7.c | even | 3 | 1 | ||
3087.1.v.a | 6 | 21.h | odd | 6 | 1 | ||
3087.1.v.a | 6 | 49.h | odd | 42 | 1 | ||
3087.1.v.a | 6 | 147.o | even | 42 | 1 | ||
3087.1.bj.a | 12 | 1.a | even | 1 | 1 | trivial | |
3087.1.bj.a | 12 | 3.b | odd | 2 | 1 | CM | |
3087.1.bj.a | 12 | 7.c | even | 3 | 1 | inner | |
3087.1.bj.a | 12 | 21.h | odd | 6 | 1 | inner | |
3087.1.bj.a | 12 | 49.f | odd | 14 | 1 | inner | |
3087.1.bj.a | 12 | 49.h | odd | 42 | 1 | inner | |
3087.1.bj.a | 12 | 147.k | even | 14 | 1 | inner | |
3087.1.bj.a | 12 | 147.o | even | 42 | 1 | inner | |
3087.1.bj.b | 12 | 7.b | odd | 2 | 1 | ||
3087.1.bj.b | 12 | 7.d | odd | 6 | 1 | ||
3087.1.bj.b | 12 | 21.c | even | 2 | 1 | ||
3087.1.bj.b | 12 | 21.g | even | 6 | 1 | ||
3087.1.bj.b | 12 | 49.e | even | 7 | 1 | ||
3087.1.bj.b | 12 | 49.g | even | 21 | 1 | ||
3087.1.bj.b | 12 | 147.l | odd | 14 | 1 | ||
3087.1.bj.b | 12 | 147.n | odd | 42 | 1 | ||
3969.1.bz.a | 12 | 63.i | even | 6 | 1 | ||
3969.1.bz.a | 12 | 63.k | odd | 6 | 1 | ||
3969.1.bz.a | 12 | 63.s | even | 6 | 1 | ||
3969.1.bz.a | 12 | 63.t | odd | 6 | 1 | ||
3969.1.bz.a | 12 | 441.y | even | 21 | 1 | ||
3969.1.bz.a | 12 | 441.z | even | 21 | 1 | ||
3969.1.bz.a | 12 | 441.bi | odd | 42 | 1 | ||
3969.1.bz.a | 12 | 441.bm | odd | 42 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{13}^{6} - 7T_{13}^{3} + 7T_{13} + 7 \)
acting on \(S_{1}^{\mathrm{new}}(3087, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} \)
$3$
\( T^{12} \)
$5$
\( T^{12} \)
$7$
\( T^{12} \)
$11$
\( T^{12} \)
$13$
\( (T^{6} - 7 T^{3} + 7 T + 7)^{2} \)
$17$
\( T^{12} \)
$19$
\( T^{12} - 7 T^{10} + 35 T^{8} - 84 T^{6} + \cdots + 49 \)
$23$
\( T^{12} \)
$29$
\( T^{12} \)
$31$
\( T^{12} - 7 T^{10} + 35 T^{8} - 84 T^{6} + \cdots + 49 \)
$37$
\( T^{12} - 5 T^{11} + 14 T^{10} - 29 T^{9} + \cdots + 1 \)
$41$
\( T^{12} \)
$43$
\( (T^{6} - 2 T^{5} + 4 T^{4} - 8 T^{3} + 9 T^{2} + \cdots + 1)^{2} \)
$47$
\( T^{12} \)
$53$
\( T^{12} \)
$59$
\( T^{12} \)
$61$
\( T^{12} + 7 T^{11} + 28 T^{10} + 77 T^{9} + \cdots + 49 \)
$67$
\( (T^{6} - T^{5} + 3 T^{4} + 5 T^{2} - 2 T + 1)^{2} \)
$71$
\( T^{12} \)
$73$
\( T^{12} - 7 T^{8} + 14 T^{7} + 14 T^{6} + \cdots + 49 \)
$79$
\( (T^{6} - T^{5} + 3 T^{4} + 5 T^{2} - 2 T + 1)^{2} \)
$83$
\( T^{12} \)
$89$
\( T^{12} \)
$97$
\( (T^{6} + 7 T^{4} + 14 T^{2} + 7)^{2} \)
show more
show less