Properties

Label 308.4.a.d.1.4
Level $308$
Weight $4$
Character 308.1
Self dual yes
Analytic conductor $18.173$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,4,Mod(1,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 308.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1725882818\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 43x^{2} - 11x + 222 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(6.83284\) of defining polynomial
Character \(\chi\) \(=\) 308.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.83284 q^{3} +12.0220 q^{5} -7.00000 q^{7} +7.02203 q^{9} +11.0000 q^{11} +31.7043 q^{13} +70.1226 q^{15} +112.106 q^{17} -6.19461 q^{19} -40.8299 q^{21} +113.822 q^{23} +19.5293 q^{25} -116.528 q^{27} +71.8038 q^{29} -88.9496 q^{31} +64.1612 q^{33} -84.1542 q^{35} -92.9024 q^{37} +184.926 q^{39} +192.683 q^{41} +124.387 q^{43} +84.4191 q^{45} -272.822 q^{47} +49.0000 q^{49} +653.896 q^{51} -122.144 q^{53} +132.242 q^{55} -36.1322 q^{57} -67.4038 q^{59} -173.205 q^{61} -49.1542 q^{63} +381.150 q^{65} +22.9068 q^{67} +663.903 q^{69} +769.223 q^{71} -57.1402 q^{73} +113.911 q^{75} -77.0000 q^{77} -381.875 q^{79} -869.286 q^{81} -177.002 q^{83} +1347.74 q^{85} +418.820 q^{87} -243.840 q^{89} -221.930 q^{91} -518.829 q^{93} -74.4719 q^{95} -1817.16 q^{97} +77.2424 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} + q^{5} - 28 q^{7} - 19 q^{9} + 44 q^{11} + 98 q^{13} - 33 q^{15} + 64 q^{17} + 114 q^{19} + 21 q^{21} + 231 q^{23} + 417 q^{25} + 63 q^{27} + 268 q^{29} + 33 q^{31} - 33 q^{33} - 7 q^{35}+ \cdots - 209 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.83284 1.12253 0.561265 0.827636i \(-0.310315\pi\)
0.561265 + 0.827636i \(0.310315\pi\)
\(4\) 0 0
\(5\) 12.0220 1.07528 0.537642 0.843173i \(-0.319315\pi\)
0.537642 + 0.843173i \(0.319315\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 7.02203 0.260075
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 31.7043 0.676400 0.338200 0.941074i \(-0.390182\pi\)
0.338200 + 0.941074i \(0.390182\pi\)
\(14\) 0 0
\(15\) 70.1226 1.20704
\(16\) 0 0
\(17\) 112.106 1.59939 0.799697 0.600404i \(-0.204993\pi\)
0.799697 + 0.600404i \(0.204993\pi\)
\(18\) 0 0
\(19\) −6.19461 −0.0747969 −0.0373985 0.999300i \(-0.511907\pi\)
−0.0373985 + 0.999300i \(0.511907\pi\)
\(20\) 0 0
\(21\) −40.8299 −0.424277
\(22\) 0 0
\(23\) 113.822 1.03189 0.515944 0.856622i \(-0.327441\pi\)
0.515944 + 0.856622i \(0.327441\pi\)
\(24\) 0 0
\(25\) 19.5293 0.156234
\(26\) 0 0
\(27\) −116.528 −0.830588
\(28\) 0 0
\(29\) 71.8038 0.459780 0.229890 0.973217i \(-0.426163\pi\)
0.229890 + 0.973217i \(0.426163\pi\)
\(30\) 0 0
\(31\) −88.9496 −0.515349 −0.257675 0.966232i \(-0.582956\pi\)
−0.257675 + 0.966232i \(0.582956\pi\)
\(32\) 0 0
\(33\) 64.1612 0.338456
\(34\) 0 0
\(35\) −84.1542 −0.406419
\(36\) 0 0
\(37\) −92.9024 −0.412785 −0.206393 0.978469i \(-0.566172\pi\)
−0.206393 + 0.978469i \(0.566172\pi\)
\(38\) 0 0
\(39\) 184.926 0.759280
\(40\) 0 0
\(41\) 192.683 0.733953 0.366977 0.930230i \(-0.380393\pi\)
0.366977 + 0.930230i \(0.380393\pi\)
\(42\) 0 0
\(43\) 124.387 0.441137 0.220569 0.975371i \(-0.429209\pi\)
0.220569 + 0.975371i \(0.429209\pi\)
\(44\) 0 0
\(45\) 84.4191 0.279655
\(46\) 0 0
\(47\) −272.822 −0.846707 −0.423354 0.905965i \(-0.639147\pi\)
−0.423354 + 0.905965i \(0.639147\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 653.896 1.79537
\(52\) 0 0
\(53\) −122.144 −0.316561 −0.158280 0.987394i \(-0.550595\pi\)
−0.158280 + 0.987394i \(0.550595\pi\)
\(54\) 0 0
\(55\) 132.242 0.324210
\(56\) 0 0
\(57\) −36.1322 −0.0839619
\(58\) 0 0
\(59\) −67.4038 −0.148733 −0.0743663 0.997231i \(-0.523693\pi\)
−0.0743663 + 0.997231i \(0.523693\pi\)
\(60\) 0 0
\(61\) −173.205 −0.363551 −0.181775 0.983340i \(-0.558184\pi\)
−0.181775 + 0.983340i \(0.558184\pi\)
\(62\) 0 0
\(63\) −49.1542 −0.0982992
\(64\) 0 0
\(65\) 381.150 0.727321
\(66\) 0 0
\(67\) 22.9068 0.0417687 0.0208844 0.999782i \(-0.493352\pi\)
0.0208844 + 0.999782i \(0.493352\pi\)
\(68\) 0 0
\(69\) 663.903 1.15833
\(70\) 0 0
\(71\) 769.223 1.28577 0.642887 0.765961i \(-0.277736\pi\)
0.642887 + 0.765961i \(0.277736\pi\)
\(72\) 0 0
\(73\) −57.1402 −0.0916131 −0.0458066 0.998950i \(-0.514586\pi\)
−0.0458066 + 0.998950i \(0.514586\pi\)
\(74\) 0 0
\(75\) 113.911 0.175378
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −381.875 −0.543851 −0.271926 0.962318i \(-0.587661\pi\)
−0.271926 + 0.962318i \(0.587661\pi\)
\(80\) 0 0
\(81\) −869.286 −1.19244
\(82\) 0 0
\(83\) −177.002 −0.234078 −0.117039 0.993127i \(-0.537340\pi\)
−0.117039 + 0.993127i \(0.537340\pi\)
\(84\) 0 0
\(85\) 1347.74 1.71980
\(86\) 0 0
\(87\) 418.820 0.516118
\(88\) 0 0
\(89\) −243.840 −0.290416 −0.145208 0.989401i \(-0.546385\pi\)
−0.145208 + 0.989401i \(0.546385\pi\)
\(90\) 0 0
\(91\) −221.930 −0.255655
\(92\) 0 0
\(93\) −518.829 −0.578495
\(94\) 0 0
\(95\) −74.4719 −0.0804279
\(96\) 0 0
\(97\) −1817.16 −1.90211 −0.951057 0.309016i \(-0.900000\pi\)
−0.951057 + 0.309016i \(0.900000\pi\)
\(98\) 0 0
\(99\) 77.2424 0.0784157
\(100\) 0 0
\(101\) 925.682 0.911969 0.455984 0.889988i \(-0.349287\pi\)
0.455984 + 0.889988i \(0.349287\pi\)
\(102\) 0 0
\(103\) −1463.12 −1.39966 −0.699830 0.714309i \(-0.746741\pi\)
−0.699830 + 0.714309i \(0.746741\pi\)
\(104\) 0 0
\(105\) −490.858 −0.456218
\(106\) 0 0
\(107\) 911.434 0.823474 0.411737 0.911303i \(-0.364922\pi\)
0.411737 + 0.911303i \(0.364922\pi\)
\(108\) 0 0
\(109\) 771.888 0.678289 0.339144 0.940734i \(-0.389862\pi\)
0.339144 + 0.940734i \(0.389862\pi\)
\(110\) 0 0
\(111\) −541.885 −0.463364
\(112\) 0 0
\(113\) 64.8840 0.0540157 0.0270078 0.999635i \(-0.491402\pi\)
0.0270078 + 0.999635i \(0.491402\pi\)
\(114\) 0 0
\(115\) 1368.37 1.10957
\(116\) 0 0
\(117\) 222.629 0.175915
\(118\) 0 0
\(119\) −784.742 −0.604514
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 1123.89 0.823885
\(124\) 0 0
\(125\) −1267.97 −0.907287
\(126\) 0 0
\(127\) −369.047 −0.257856 −0.128928 0.991654i \(-0.541154\pi\)
−0.128928 + 0.991654i \(0.541154\pi\)
\(128\) 0 0
\(129\) 725.532 0.495190
\(130\) 0 0
\(131\) −2397.95 −1.59931 −0.799657 0.600457i \(-0.794985\pi\)
−0.799657 + 0.600457i \(0.794985\pi\)
\(132\) 0 0
\(133\) 43.3623 0.0282706
\(134\) 0 0
\(135\) −1400.91 −0.893118
\(136\) 0 0
\(137\) −1111.64 −0.693238 −0.346619 0.938006i \(-0.612670\pi\)
−0.346619 + 0.938006i \(0.612670\pi\)
\(138\) 0 0
\(139\) −2014.94 −1.22953 −0.614765 0.788710i \(-0.710749\pi\)
−0.614765 + 0.788710i \(0.710749\pi\)
\(140\) 0 0
\(141\) −1591.33 −0.950455
\(142\) 0 0
\(143\) 348.748 0.203942
\(144\) 0 0
\(145\) 863.228 0.494394
\(146\) 0 0
\(147\) 285.809 0.160362
\(148\) 0 0
\(149\) 1537.51 0.845354 0.422677 0.906280i \(-0.361090\pi\)
0.422677 + 0.906280i \(0.361090\pi\)
\(150\) 0 0
\(151\) −2809.26 −1.51400 −0.757002 0.653413i \(-0.773337\pi\)
−0.757002 + 0.653413i \(0.773337\pi\)
\(152\) 0 0
\(153\) 787.212 0.415963
\(154\) 0 0
\(155\) −1069.36 −0.554146
\(156\) 0 0
\(157\) 1484.81 0.754781 0.377390 0.926054i \(-0.376821\pi\)
0.377390 + 0.926054i \(0.376821\pi\)
\(158\) 0 0
\(159\) −712.445 −0.355349
\(160\) 0 0
\(161\) −796.751 −0.390017
\(162\) 0 0
\(163\) −3129.79 −1.50395 −0.751976 0.659191i \(-0.770899\pi\)
−0.751976 + 0.659191i \(0.770899\pi\)
\(164\) 0 0
\(165\) 771.349 0.363936
\(166\) 0 0
\(167\) −3351.63 −1.55303 −0.776517 0.630097i \(-0.783015\pi\)
−0.776517 + 0.630097i \(0.783015\pi\)
\(168\) 0 0
\(169\) −1191.84 −0.542483
\(170\) 0 0
\(171\) −43.4988 −0.0194528
\(172\) 0 0
\(173\) 3327.39 1.46229 0.731147 0.682220i \(-0.238985\pi\)
0.731147 + 0.682220i \(0.238985\pi\)
\(174\) 0 0
\(175\) −136.705 −0.0590510
\(176\) 0 0
\(177\) −393.156 −0.166957
\(178\) 0 0
\(179\) −3704.49 −1.54685 −0.773426 0.633886i \(-0.781459\pi\)
−0.773426 + 0.633886i \(0.781459\pi\)
\(180\) 0 0
\(181\) 379.186 0.155716 0.0778582 0.996964i \(-0.475192\pi\)
0.0778582 + 0.996964i \(0.475192\pi\)
\(182\) 0 0
\(183\) −1010.28 −0.408097
\(184\) 0 0
\(185\) −1116.88 −0.443861
\(186\) 0 0
\(187\) 1233.17 0.482235
\(188\) 0 0
\(189\) 815.698 0.313933
\(190\) 0 0
\(191\) −3357.55 −1.27196 −0.635978 0.771707i \(-0.719403\pi\)
−0.635978 + 0.771707i \(0.719403\pi\)
\(192\) 0 0
\(193\) 2667.38 0.994830 0.497415 0.867513i \(-0.334283\pi\)
0.497415 + 0.867513i \(0.334283\pi\)
\(194\) 0 0
\(195\) 2223.19 0.816441
\(196\) 0 0
\(197\) −3403.70 −1.23098 −0.615491 0.788144i \(-0.711042\pi\)
−0.615491 + 0.788144i \(0.711042\pi\)
\(198\) 0 0
\(199\) 4448.74 1.58474 0.792370 0.610041i \(-0.208847\pi\)
0.792370 + 0.610041i \(0.208847\pi\)
\(200\) 0 0
\(201\) 133.611 0.0468867
\(202\) 0 0
\(203\) −502.627 −0.173781
\(204\) 0 0
\(205\) 2316.45 0.789208
\(206\) 0 0
\(207\) 799.258 0.268369
\(208\) 0 0
\(209\) −68.1408 −0.0225521
\(210\) 0 0
\(211\) 3350.65 1.09322 0.546608 0.837389i \(-0.315919\pi\)
0.546608 + 0.837389i \(0.315919\pi\)
\(212\) 0 0
\(213\) 4486.75 1.44332
\(214\) 0 0
\(215\) 1495.39 0.474347
\(216\) 0 0
\(217\) 622.648 0.194784
\(218\) 0 0
\(219\) −333.290 −0.102839
\(220\) 0 0
\(221\) 3554.24 1.08183
\(222\) 0 0
\(223\) 2775.98 0.833603 0.416802 0.908997i \(-0.363151\pi\)
0.416802 + 0.908997i \(0.363151\pi\)
\(224\) 0 0
\(225\) 137.135 0.0406327
\(226\) 0 0
\(227\) −3389.95 −0.991183 −0.495592 0.868556i \(-0.665049\pi\)
−0.495592 + 0.868556i \(0.665049\pi\)
\(228\) 0 0
\(229\) 5565.87 1.60613 0.803063 0.595895i \(-0.203202\pi\)
0.803063 + 0.595895i \(0.203202\pi\)
\(230\) 0 0
\(231\) −449.129 −0.127924
\(232\) 0 0
\(233\) 6088.68 1.71194 0.855971 0.517023i \(-0.172960\pi\)
0.855971 + 0.517023i \(0.172960\pi\)
\(234\) 0 0
\(235\) −3279.88 −0.910450
\(236\) 0 0
\(237\) −2227.41 −0.610490
\(238\) 0 0
\(239\) −1284.25 −0.347578 −0.173789 0.984783i \(-0.555601\pi\)
−0.173789 + 0.984783i \(0.555601\pi\)
\(240\) 0 0
\(241\) 3508.32 0.937720 0.468860 0.883273i \(-0.344665\pi\)
0.468860 + 0.883273i \(0.344665\pi\)
\(242\) 0 0
\(243\) −1924.14 −0.507958
\(244\) 0 0
\(245\) 589.080 0.153612
\(246\) 0 0
\(247\) −196.396 −0.0505926
\(248\) 0 0
\(249\) −1032.42 −0.262759
\(250\) 0 0
\(251\) 636.222 0.159992 0.0799959 0.996795i \(-0.474509\pi\)
0.0799959 + 0.996795i \(0.474509\pi\)
\(252\) 0 0
\(253\) 1252.04 0.311126
\(254\) 0 0
\(255\) 7861.16 1.93053
\(256\) 0 0
\(257\) 3186.64 0.773452 0.386726 0.922195i \(-0.373606\pi\)
0.386726 + 0.922195i \(0.373606\pi\)
\(258\) 0 0
\(259\) 650.317 0.156018
\(260\) 0 0
\(261\) 504.209 0.119577
\(262\) 0 0
\(263\) −4437.62 −1.04044 −0.520219 0.854033i \(-0.674150\pi\)
−0.520219 + 0.854033i \(0.674150\pi\)
\(264\) 0 0
\(265\) −1468.42 −0.340393
\(266\) 0 0
\(267\) −1422.28 −0.326001
\(268\) 0 0
\(269\) 1191.51 0.270065 0.135032 0.990841i \(-0.456886\pi\)
0.135032 + 0.990841i \(0.456886\pi\)
\(270\) 0 0
\(271\) 322.829 0.0723634 0.0361817 0.999345i \(-0.488480\pi\)
0.0361817 + 0.999345i \(0.488480\pi\)
\(272\) 0 0
\(273\) −1294.48 −0.286981
\(274\) 0 0
\(275\) 214.822 0.0471064
\(276\) 0 0
\(277\) 3919.08 0.850090 0.425045 0.905172i \(-0.360258\pi\)
0.425045 + 0.905172i \(0.360258\pi\)
\(278\) 0 0
\(279\) −624.607 −0.134030
\(280\) 0 0
\(281\) −8295.86 −1.76117 −0.880587 0.473885i \(-0.842851\pi\)
−0.880587 + 0.473885i \(0.842851\pi\)
\(282\) 0 0
\(283\) 5061.76 1.06322 0.531609 0.846990i \(-0.321588\pi\)
0.531609 + 0.846990i \(0.321588\pi\)
\(284\) 0 0
\(285\) −434.382 −0.0902828
\(286\) 0 0
\(287\) −1348.78 −0.277408
\(288\) 0 0
\(289\) 7654.75 1.55806
\(290\) 0 0
\(291\) −10599.2 −2.13518
\(292\) 0 0
\(293\) −2908.90 −0.579998 −0.289999 0.957027i \(-0.593655\pi\)
−0.289999 + 0.957027i \(0.593655\pi\)
\(294\) 0 0
\(295\) −810.331 −0.159930
\(296\) 0 0
\(297\) −1281.81 −0.250432
\(298\) 0 0
\(299\) 3608.63 0.697969
\(300\) 0 0
\(301\) −870.711 −0.166734
\(302\) 0 0
\(303\) 5399.36 1.02371
\(304\) 0 0
\(305\) −2082.27 −0.390920
\(306\) 0 0
\(307\) −3613.12 −0.671699 −0.335850 0.941916i \(-0.609023\pi\)
−0.335850 + 0.941916i \(0.609023\pi\)
\(308\) 0 0
\(309\) −8534.12 −1.57116
\(310\) 0 0
\(311\) 6958.57 1.26876 0.634380 0.773022i \(-0.281256\pi\)
0.634380 + 0.773022i \(0.281256\pi\)
\(312\) 0 0
\(313\) −5067.50 −0.915119 −0.457560 0.889179i \(-0.651276\pi\)
−0.457560 + 0.889179i \(0.651276\pi\)
\(314\) 0 0
\(315\) −590.934 −0.105700
\(316\) 0 0
\(317\) −2326.87 −0.412272 −0.206136 0.978523i \(-0.566089\pi\)
−0.206136 + 0.978523i \(0.566089\pi\)
\(318\) 0 0
\(319\) 789.842 0.138629
\(320\) 0 0
\(321\) 5316.25 0.924374
\(322\) 0 0
\(323\) −694.453 −0.119630
\(324\) 0 0
\(325\) 619.163 0.105677
\(326\) 0 0
\(327\) 4502.30 0.761400
\(328\) 0 0
\(329\) 1909.76 0.320025
\(330\) 0 0
\(331\) 5078.45 0.843314 0.421657 0.906755i \(-0.361449\pi\)
0.421657 + 0.906755i \(0.361449\pi\)
\(332\) 0 0
\(333\) −652.364 −0.107355
\(334\) 0 0
\(335\) 275.386 0.0449132
\(336\) 0 0
\(337\) −10019.1 −1.61952 −0.809759 0.586763i \(-0.800402\pi\)
−0.809759 + 0.586763i \(0.800402\pi\)
\(338\) 0 0
\(339\) 378.458 0.0606343
\(340\) 0 0
\(341\) −978.446 −0.155384
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 7981.46 1.24553
\(346\) 0 0
\(347\) 1205.36 0.186476 0.0932379 0.995644i \(-0.470278\pi\)
0.0932379 + 0.995644i \(0.470278\pi\)
\(348\) 0 0
\(349\) 6115.00 0.937904 0.468952 0.883224i \(-0.344632\pi\)
0.468952 + 0.883224i \(0.344632\pi\)
\(350\) 0 0
\(351\) −3694.45 −0.561810
\(352\) 0 0
\(353\) −11056.8 −1.66712 −0.833558 0.552432i \(-0.813700\pi\)
−0.833558 + 0.552432i \(0.813700\pi\)
\(354\) 0 0
\(355\) 9247.62 1.38257
\(356\) 0 0
\(357\) −4577.28 −0.678586
\(358\) 0 0
\(359\) 5340.03 0.785059 0.392530 0.919739i \(-0.371600\pi\)
0.392530 + 0.919739i \(0.371600\pi\)
\(360\) 0 0
\(361\) −6820.63 −0.994405
\(362\) 0 0
\(363\) 705.774 0.102048
\(364\) 0 0
\(365\) −686.942 −0.0985101
\(366\) 0 0
\(367\) 2363.54 0.336173 0.168087 0.985772i \(-0.446241\pi\)
0.168087 + 0.985772i \(0.446241\pi\)
\(368\) 0 0
\(369\) 1353.03 0.190883
\(370\) 0 0
\(371\) 855.006 0.119649
\(372\) 0 0
\(373\) 6158.54 0.854899 0.427449 0.904039i \(-0.359412\pi\)
0.427449 + 0.904039i \(0.359412\pi\)
\(374\) 0 0
\(375\) −7395.88 −1.01846
\(376\) 0 0
\(377\) 2276.49 0.310995
\(378\) 0 0
\(379\) 4192.82 0.568261 0.284130 0.958786i \(-0.408295\pi\)
0.284130 + 0.958786i \(0.408295\pi\)
\(380\) 0 0
\(381\) −2152.60 −0.289451
\(382\) 0 0
\(383\) 4878.83 0.650905 0.325452 0.945558i \(-0.394483\pi\)
0.325452 + 0.945558i \(0.394483\pi\)
\(384\) 0 0
\(385\) −925.697 −0.122540
\(386\) 0 0
\(387\) 873.452 0.114729
\(388\) 0 0
\(389\) 11150.3 1.45332 0.726659 0.686998i \(-0.241072\pi\)
0.726659 + 0.686998i \(0.241072\pi\)
\(390\) 0 0
\(391\) 12760.1 1.65040
\(392\) 0 0
\(393\) −13986.9 −1.79528
\(394\) 0 0
\(395\) −4590.91 −0.584794
\(396\) 0 0
\(397\) 4894.60 0.618774 0.309387 0.950936i \(-0.399876\pi\)
0.309387 + 0.950936i \(0.399876\pi\)
\(398\) 0 0
\(399\) 252.925 0.0317346
\(400\) 0 0
\(401\) −142.340 −0.0177260 −0.00886302 0.999961i \(-0.502821\pi\)
−0.00886302 + 0.999961i \(0.502821\pi\)
\(402\) 0 0
\(403\) −2820.09 −0.348582
\(404\) 0 0
\(405\) −10450.6 −1.28221
\(406\) 0 0
\(407\) −1021.93 −0.124459
\(408\) 0 0
\(409\) 6428.55 0.777192 0.388596 0.921408i \(-0.372960\pi\)
0.388596 + 0.921408i \(0.372960\pi\)
\(410\) 0 0
\(411\) −6484.00 −0.778181
\(412\) 0 0
\(413\) 471.827 0.0562157
\(414\) 0 0
\(415\) −2127.92 −0.251700
\(416\) 0 0
\(417\) −11752.8 −1.38019
\(418\) 0 0
\(419\) −13744.6 −1.60254 −0.801272 0.598301i \(-0.795843\pi\)
−0.801272 + 0.598301i \(0.795843\pi\)
\(420\) 0 0
\(421\) −2826.45 −0.327204 −0.163602 0.986526i \(-0.552311\pi\)
−0.163602 + 0.986526i \(0.552311\pi\)
\(422\) 0 0
\(423\) −1915.77 −0.220208
\(424\) 0 0
\(425\) 2189.35 0.249880
\(426\) 0 0
\(427\) 1212.43 0.137409
\(428\) 0 0
\(429\) 2034.19 0.228931
\(430\) 0 0
\(431\) 3347.48 0.374112 0.187056 0.982349i \(-0.440105\pi\)
0.187056 + 0.982349i \(0.440105\pi\)
\(432\) 0 0
\(433\) 6888.91 0.764572 0.382286 0.924044i \(-0.375137\pi\)
0.382286 + 0.924044i \(0.375137\pi\)
\(434\) 0 0
\(435\) 5035.07 0.554973
\(436\) 0 0
\(437\) −705.080 −0.0771821
\(438\) 0 0
\(439\) −9512.89 −1.03423 −0.517113 0.855917i \(-0.672993\pi\)
−0.517113 + 0.855917i \(0.672993\pi\)
\(440\) 0 0
\(441\) 344.080 0.0371536
\(442\) 0 0
\(443\) 2320.62 0.248885 0.124442 0.992227i \(-0.460286\pi\)
0.124442 + 0.992227i \(0.460286\pi\)
\(444\) 0 0
\(445\) −2931.46 −0.312279
\(446\) 0 0
\(447\) 8968.05 0.948936
\(448\) 0 0
\(449\) 870.673 0.0915136 0.0457568 0.998953i \(-0.485430\pi\)
0.0457568 + 0.998953i \(0.485430\pi\)
\(450\) 0 0
\(451\) 2119.52 0.221295
\(452\) 0 0
\(453\) −16386.0 −1.69952
\(454\) 0 0
\(455\) −2668.05 −0.274902
\(456\) 0 0
\(457\) −1863.00 −0.190695 −0.0953475 0.995444i \(-0.530396\pi\)
−0.0953475 + 0.995444i \(0.530396\pi\)
\(458\) 0 0
\(459\) −13063.5 −1.32844
\(460\) 0 0
\(461\) −10639.4 −1.07490 −0.537448 0.843297i \(-0.680611\pi\)
−0.537448 + 0.843297i \(0.680611\pi\)
\(462\) 0 0
\(463\) −9034.34 −0.906828 −0.453414 0.891300i \(-0.649794\pi\)
−0.453414 + 0.891300i \(0.649794\pi\)
\(464\) 0 0
\(465\) −6237.38 −0.622046
\(466\) 0 0
\(467\) −12465.4 −1.23518 −0.617592 0.786498i \(-0.711892\pi\)
−0.617592 + 0.786498i \(0.711892\pi\)
\(468\) 0 0
\(469\) −160.347 −0.0157871
\(470\) 0 0
\(471\) 8660.65 0.847265
\(472\) 0 0
\(473\) 1368.26 0.133008
\(474\) 0 0
\(475\) −120.976 −0.0116858
\(476\) 0 0
\(477\) −857.697 −0.0823296
\(478\) 0 0
\(479\) 18173.0 1.73350 0.866749 0.498745i \(-0.166206\pi\)
0.866749 + 0.498745i \(0.166206\pi\)
\(480\) 0 0
\(481\) −2945.41 −0.279208
\(482\) 0 0
\(483\) −4647.32 −0.437806
\(484\) 0 0
\(485\) −21846.0 −2.04531
\(486\) 0 0
\(487\) 17548.4 1.63284 0.816420 0.577459i \(-0.195956\pi\)
0.816420 + 0.577459i \(0.195956\pi\)
\(488\) 0 0
\(489\) −18255.6 −1.68823
\(490\) 0 0
\(491\) −7362.51 −0.676711 −0.338356 0.941018i \(-0.609871\pi\)
−0.338356 + 0.941018i \(0.609871\pi\)
\(492\) 0 0
\(493\) 8049.64 0.735370
\(494\) 0 0
\(495\) 928.610 0.0843190
\(496\) 0 0
\(497\) −5384.56 −0.485977
\(498\) 0 0
\(499\) −7716.80 −0.692287 −0.346144 0.938182i \(-0.612509\pi\)
−0.346144 + 0.938182i \(0.612509\pi\)
\(500\) 0 0
\(501\) −19549.5 −1.74333
\(502\) 0 0
\(503\) −3600.83 −0.319191 −0.159596 0.987182i \(-0.551019\pi\)
−0.159596 + 0.987182i \(0.551019\pi\)
\(504\) 0 0
\(505\) 11128.6 0.980625
\(506\) 0 0
\(507\) −6951.79 −0.608954
\(508\) 0 0
\(509\) 22467.0 1.95645 0.978224 0.207550i \(-0.0665489\pi\)
0.978224 + 0.207550i \(0.0665489\pi\)
\(510\) 0 0
\(511\) 399.982 0.0346265
\(512\) 0 0
\(513\) 721.848 0.0621255
\(514\) 0 0
\(515\) −17589.6 −1.50503
\(516\) 0 0
\(517\) −3001.05 −0.255292
\(518\) 0 0
\(519\) 19408.1 1.64147
\(520\) 0 0
\(521\) 6869.00 0.577613 0.288807 0.957387i \(-0.406742\pi\)
0.288807 + 0.957387i \(0.406742\pi\)
\(522\) 0 0
\(523\) 4906.19 0.410197 0.205098 0.978741i \(-0.434249\pi\)
0.205098 + 0.978741i \(0.434249\pi\)
\(524\) 0 0
\(525\) −797.378 −0.0662865
\(526\) 0 0
\(527\) −9971.79 −0.824247
\(528\) 0 0
\(529\) 788.336 0.0647930
\(530\) 0 0
\(531\) −473.312 −0.0386817
\(532\) 0 0
\(533\) 6108.89 0.496446
\(534\) 0 0
\(535\) 10957.3 0.885467
\(536\) 0 0
\(537\) −21607.7 −1.73639
\(538\) 0 0
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 5806.66 0.461456 0.230728 0.973018i \(-0.425889\pi\)
0.230728 + 0.973018i \(0.425889\pi\)
\(542\) 0 0
\(543\) 2211.73 0.174797
\(544\) 0 0
\(545\) 9279.66 0.729353
\(546\) 0 0
\(547\) −5568.85 −0.435296 −0.217648 0.976027i \(-0.569838\pi\)
−0.217648 + 0.976027i \(0.569838\pi\)
\(548\) 0 0
\(549\) −1216.25 −0.0945506
\(550\) 0 0
\(551\) −444.797 −0.0343902
\(552\) 0 0
\(553\) 2673.12 0.205557
\(554\) 0 0
\(555\) −6514.56 −0.498248
\(556\) 0 0
\(557\) 25993.9 1.97738 0.988688 0.149990i \(-0.0479242\pi\)
0.988688 + 0.149990i \(0.0479242\pi\)
\(558\) 0 0
\(559\) 3943.62 0.298385
\(560\) 0 0
\(561\) 7192.86 0.541324
\(562\) 0 0
\(563\) 14827.3 1.10994 0.554970 0.831871i \(-0.312730\pi\)
0.554970 + 0.831871i \(0.312730\pi\)
\(564\) 0 0
\(565\) 780.037 0.0580822
\(566\) 0 0
\(567\) 6085.00 0.450698
\(568\) 0 0
\(569\) 1683.23 0.124015 0.0620076 0.998076i \(-0.480250\pi\)
0.0620076 + 0.998076i \(0.480250\pi\)
\(570\) 0 0
\(571\) −14211.7 −1.04158 −0.520791 0.853684i \(-0.674363\pi\)
−0.520791 + 0.853684i \(0.674363\pi\)
\(572\) 0 0
\(573\) −19584.1 −1.42781
\(574\) 0 0
\(575\) 2222.85 0.161216
\(576\) 0 0
\(577\) 18583.7 1.34081 0.670406 0.741995i \(-0.266120\pi\)
0.670406 + 0.741995i \(0.266120\pi\)
\(578\) 0 0
\(579\) 15558.4 1.11673
\(580\) 0 0
\(581\) 1239.01 0.0884730
\(582\) 0 0
\(583\) −1343.58 −0.0954467
\(584\) 0 0
\(585\) 2676.45 0.189158
\(586\) 0 0
\(587\) −10260.5 −0.721460 −0.360730 0.932670i \(-0.617472\pi\)
−0.360730 + 0.932670i \(0.617472\pi\)
\(588\) 0 0
\(589\) 551.009 0.0385466
\(590\) 0 0
\(591\) −19853.2 −1.38181
\(592\) 0 0
\(593\) 18587.4 1.28717 0.643587 0.765373i \(-0.277445\pi\)
0.643587 + 0.765373i \(0.277445\pi\)
\(594\) 0 0
\(595\) −9434.19 −0.650024
\(596\) 0 0
\(597\) 25948.8 1.77892
\(598\) 0 0
\(599\) 20343.0 1.38764 0.693818 0.720151i \(-0.255927\pi\)
0.693818 + 0.720151i \(0.255927\pi\)
\(600\) 0 0
\(601\) 1169.16 0.0793531 0.0396765 0.999213i \(-0.487367\pi\)
0.0396765 + 0.999213i \(0.487367\pi\)
\(602\) 0 0
\(603\) 160.852 0.0108630
\(604\) 0 0
\(605\) 1454.67 0.0977530
\(606\) 0 0
\(607\) 24247.6 1.62138 0.810691 0.585474i \(-0.199092\pi\)
0.810691 + 0.585474i \(0.199092\pi\)
\(608\) 0 0
\(609\) −2931.74 −0.195074
\(610\) 0 0
\(611\) −8649.65 −0.572713
\(612\) 0 0
\(613\) 17695.1 1.16590 0.582951 0.812507i \(-0.301898\pi\)
0.582951 + 0.812507i \(0.301898\pi\)
\(614\) 0 0
\(615\) 13511.5 0.885910
\(616\) 0 0
\(617\) −20656.8 −1.34783 −0.673916 0.738808i \(-0.735389\pi\)
−0.673916 + 0.738808i \(0.735389\pi\)
\(618\) 0 0
\(619\) 1545.14 0.100330 0.0501651 0.998741i \(-0.484025\pi\)
0.0501651 + 0.998741i \(0.484025\pi\)
\(620\) 0 0
\(621\) −13263.4 −0.857074
\(622\) 0 0
\(623\) 1706.88 0.109767
\(624\) 0 0
\(625\) −17684.8 −1.13183
\(626\) 0 0
\(627\) −397.454 −0.0253155
\(628\) 0 0
\(629\) −10414.9 −0.660206
\(630\) 0 0
\(631\) 15573.4 0.982514 0.491257 0.871015i \(-0.336538\pi\)
0.491257 + 0.871015i \(0.336538\pi\)
\(632\) 0 0
\(633\) 19543.8 1.22717
\(634\) 0 0
\(635\) −4436.70 −0.277268
\(636\) 0 0
\(637\) 1553.51 0.0966285
\(638\) 0 0
\(639\) 5401.51 0.334398
\(640\) 0 0
\(641\) 23349.3 1.43876 0.719379 0.694618i \(-0.244427\pi\)
0.719379 + 0.694618i \(0.244427\pi\)
\(642\) 0 0
\(643\) 5534.12 0.339416 0.169708 0.985494i \(-0.445718\pi\)
0.169708 + 0.985494i \(0.445718\pi\)
\(644\) 0 0
\(645\) 8722.36 0.532469
\(646\) 0 0
\(647\) 150.814 0.00916400 0.00458200 0.999990i \(-0.498541\pi\)
0.00458200 + 0.999990i \(0.498541\pi\)
\(648\) 0 0
\(649\) −741.442 −0.0448446
\(650\) 0 0
\(651\) 3631.80 0.218651
\(652\) 0 0
\(653\) 3019.58 0.180958 0.0904789 0.995898i \(-0.471160\pi\)
0.0904789 + 0.995898i \(0.471160\pi\)
\(654\) 0 0
\(655\) −28828.3 −1.71971
\(656\) 0 0
\(657\) −401.241 −0.0238263
\(658\) 0 0
\(659\) 1247.67 0.0737516 0.0368758 0.999320i \(-0.488259\pi\)
0.0368758 + 0.999320i \(0.488259\pi\)
\(660\) 0 0
\(661\) −16016.3 −0.942455 −0.471227 0.882012i \(-0.656189\pi\)
−0.471227 + 0.882012i \(0.656189\pi\)
\(662\) 0 0
\(663\) 20731.3 1.21439
\(664\) 0 0
\(665\) 521.303 0.0303989
\(666\) 0 0
\(667\) 8172.82 0.474442
\(668\) 0 0
\(669\) 16191.9 0.935745
\(670\) 0 0
\(671\) −1905.25 −0.109615
\(672\) 0 0
\(673\) 26356.3 1.50960 0.754800 0.655955i \(-0.227734\pi\)
0.754800 + 0.655955i \(0.227734\pi\)
\(674\) 0 0
\(675\) −2275.71 −0.129766
\(676\) 0 0
\(677\) −12161.0 −0.690375 −0.345188 0.938534i \(-0.612185\pi\)
−0.345188 + 0.938534i \(0.612185\pi\)
\(678\) 0 0
\(679\) 12720.1 0.718931
\(680\) 0 0
\(681\) −19773.0 −1.11263
\(682\) 0 0
\(683\) 16582.6 0.929011 0.464505 0.885570i \(-0.346232\pi\)
0.464505 + 0.885570i \(0.346232\pi\)
\(684\) 0 0
\(685\) −13364.1 −0.745427
\(686\) 0 0
\(687\) 32464.8 1.80293
\(688\) 0 0
\(689\) −3872.48 −0.214122
\(690\) 0 0
\(691\) −25394.6 −1.39805 −0.699026 0.715096i \(-0.746383\pi\)
−0.699026 + 0.715096i \(0.746383\pi\)
\(692\) 0 0
\(693\) −540.697 −0.0296383
\(694\) 0 0
\(695\) −24223.6 −1.32209
\(696\) 0 0
\(697\) 21601.0 1.17388
\(698\) 0 0
\(699\) 35514.3 1.92171
\(700\) 0 0
\(701\) −22612.5 −1.21835 −0.609173 0.793037i \(-0.708499\pi\)
−0.609173 + 0.793037i \(0.708499\pi\)
\(702\) 0 0
\(703\) 575.494 0.0308751
\(704\) 0 0
\(705\) −19131.0 −1.02201
\(706\) 0 0
\(707\) −6479.78 −0.344692
\(708\) 0 0
\(709\) −31216.8 −1.65356 −0.826779 0.562526i \(-0.809830\pi\)
−0.826779 + 0.562526i \(0.809830\pi\)
\(710\) 0 0
\(711\) −2681.54 −0.141442
\(712\) 0 0
\(713\) −10124.4 −0.531783
\(714\) 0 0
\(715\) 4192.65 0.219296
\(716\) 0 0
\(717\) −7490.81 −0.390167
\(718\) 0 0
\(719\) −3403.97 −0.176560 −0.0882800 0.996096i \(-0.528137\pi\)
−0.0882800 + 0.996096i \(0.528137\pi\)
\(720\) 0 0
\(721\) 10241.8 0.529022
\(722\) 0 0
\(723\) 20463.4 1.05262
\(724\) 0 0
\(725\) 1402.28 0.0718334
\(726\) 0 0
\(727\) 21153.4 1.07914 0.539572 0.841940i \(-0.318586\pi\)
0.539572 + 0.841940i \(0.318586\pi\)
\(728\) 0 0
\(729\) 12247.5 0.622238
\(730\) 0 0
\(731\) 13944.6 0.705552
\(732\) 0 0
\(733\) −16329.7 −0.822851 −0.411425 0.911443i \(-0.634969\pi\)
−0.411425 + 0.911443i \(0.634969\pi\)
\(734\) 0 0
\(735\) 3436.01 0.172434
\(736\) 0 0
\(737\) 251.974 0.0125938
\(738\) 0 0
\(739\) 14287.3 0.711186 0.355593 0.934641i \(-0.384279\pi\)
0.355593 + 0.934641i \(0.384279\pi\)
\(740\) 0 0
\(741\) −1145.55 −0.0567918
\(742\) 0 0
\(743\) 17613.0 0.869662 0.434831 0.900512i \(-0.356808\pi\)
0.434831 + 0.900512i \(0.356808\pi\)
\(744\) 0 0
\(745\) 18484.0 0.908995
\(746\) 0 0
\(747\) −1242.91 −0.0608778
\(748\) 0 0
\(749\) −6380.04 −0.311244
\(750\) 0 0
\(751\) −13264.4 −0.644508 −0.322254 0.946653i \(-0.604440\pi\)
−0.322254 + 0.946653i \(0.604440\pi\)
\(752\) 0 0
\(753\) 3710.98 0.179596
\(754\) 0 0
\(755\) −33773.0 −1.62798
\(756\) 0 0
\(757\) 10473.0 0.502838 0.251419 0.967878i \(-0.419103\pi\)
0.251419 + 0.967878i \(0.419103\pi\)
\(758\) 0 0
\(759\) 7302.93 0.349248
\(760\) 0 0
\(761\) −8667.70 −0.412883 −0.206441 0.978459i \(-0.566188\pi\)
−0.206441 + 0.978459i \(0.566188\pi\)
\(762\) 0 0
\(763\) −5403.22 −0.256369
\(764\) 0 0
\(765\) 9463.89 0.447278
\(766\) 0 0
\(767\) −2136.99 −0.100603
\(768\) 0 0
\(769\) 4996.46 0.234300 0.117150 0.993114i \(-0.462624\pi\)
0.117150 + 0.993114i \(0.462624\pi\)
\(770\) 0 0
\(771\) 18587.2 0.868224
\(772\) 0 0
\(773\) −36952.7 −1.71940 −0.859700 0.510798i \(-0.829350\pi\)
−0.859700 + 0.510798i \(0.829350\pi\)
\(774\) 0 0
\(775\) −1737.12 −0.0805152
\(776\) 0 0
\(777\) 3793.19 0.175135
\(778\) 0 0
\(779\) −1193.60 −0.0548974
\(780\) 0 0
\(781\) 8461.45 0.387675
\(782\) 0 0
\(783\) −8367.17 −0.381888
\(784\) 0 0
\(785\) 17850.4 0.811603
\(786\) 0 0
\(787\) −28793.6 −1.30417 −0.652085 0.758146i \(-0.726105\pi\)
−0.652085 + 0.758146i \(0.726105\pi\)
\(788\) 0 0
\(789\) −25883.9 −1.16792
\(790\) 0 0
\(791\) −454.188 −0.0204160
\(792\) 0 0
\(793\) −5491.34 −0.245906
\(794\) 0 0
\(795\) −8565.03 −0.382101
\(796\) 0 0
\(797\) −20084.5 −0.892634 −0.446317 0.894875i \(-0.647265\pi\)
−0.446317 + 0.894875i \(0.647265\pi\)
\(798\) 0 0
\(799\) −30585.0 −1.35422
\(800\) 0 0
\(801\) −1712.25 −0.0755300
\(802\) 0 0
\(803\) −628.542 −0.0276224
\(804\) 0 0
\(805\) −9578.56 −0.419379
\(806\) 0 0
\(807\) 6949.87 0.303156
\(808\) 0 0
\(809\) −35938.9 −1.56186 −0.780929 0.624620i \(-0.785254\pi\)
−0.780929 + 0.624620i \(0.785254\pi\)
\(810\) 0 0
\(811\) 25477.6 1.10313 0.551566 0.834132i \(-0.314031\pi\)
0.551566 + 0.834132i \(0.314031\pi\)
\(812\) 0 0
\(813\) 1883.01 0.0812301
\(814\) 0 0
\(815\) −37626.4 −1.61717
\(816\) 0 0
\(817\) −770.532 −0.0329957
\(818\) 0 0
\(819\) −1558.40 −0.0664896
\(820\) 0 0
\(821\) −3296.85 −0.140147 −0.0700736 0.997542i \(-0.522323\pi\)
−0.0700736 + 0.997542i \(0.522323\pi\)
\(822\) 0 0
\(823\) −24892.7 −1.05432 −0.527160 0.849766i \(-0.676743\pi\)
−0.527160 + 0.849766i \(0.676743\pi\)
\(824\) 0 0
\(825\) 1253.02 0.0528784
\(826\) 0 0
\(827\) 28719.0 1.20756 0.603782 0.797149i \(-0.293660\pi\)
0.603782 + 0.797149i \(0.293660\pi\)
\(828\) 0 0
\(829\) −9911.29 −0.415239 −0.207620 0.978210i \(-0.566572\pi\)
−0.207620 + 0.978210i \(0.566572\pi\)
\(830\) 0 0
\(831\) 22859.4 0.954252
\(832\) 0 0
\(833\) 5493.19 0.228485
\(834\) 0 0
\(835\) −40293.4 −1.66995
\(836\) 0 0
\(837\) 10365.2 0.428043
\(838\) 0 0
\(839\) 30490.4 1.25464 0.627322 0.778760i \(-0.284151\pi\)
0.627322 + 0.778760i \(0.284151\pi\)
\(840\) 0 0
\(841\) −19233.2 −0.788602
\(842\) 0 0
\(843\) −48388.4 −1.97697
\(844\) 0 0
\(845\) −14328.3 −0.583323
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) 29524.5 1.19349
\(850\) 0 0
\(851\) −10574.3 −0.425948
\(852\) 0 0
\(853\) 27614.6 1.10845 0.554225 0.832367i \(-0.313015\pi\)
0.554225 + 0.832367i \(0.313015\pi\)
\(854\) 0 0
\(855\) −522.944 −0.0209173
\(856\) 0 0
\(857\) 7889.71 0.314478 0.157239 0.987561i \(-0.449741\pi\)
0.157239 + 0.987561i \(0.449741\pi\)
\(858\) 0 0
\(859\) 39695.8 1.57672 0.788361 0.615213i \(-0.210930\pi\)
0.788361 + 0.615213i \(0.210930\pi\)
\(860\) 0 0
\(861\) −7867.24 −0.311399
\(862\) 0 0
\(863\) −8181.18 −0.322701 −0.161350 0.986897i \(-0.551585\pi\)
−0.161350 + 0.986897i \(0.551585\pi\)
\(864\) 0 0
\(865\) 40002.0 1.57238
\(866\) 0 0
\(867\) 44649.0 1.74897
\(868\) 0 0
\(869\) −4200.62 −0.163977
\(870\) 0 0
\(871\) 726.243 0.0282524
\(872\) 0 0
\(873\) −12760.2 −0.494693
\(874\) 0 0
\(875\) 8875.81 0.342922
\(876\) 0 0
\(877\) 28605.9 1.10143 0.550714 0.834694i \(-0.314355\pi\)
0.550714 + 0.834694i \(0.314355\pi\)
\(878\) 0 0
\(879\) −16967.1 −0.651066
\(880\) 0 0
\(881\) −38093.6 −1.45676 −0.728380 0.685173i \(-0.759726\pi\)
−0.728380 + 0.685173i \(0.759726\pi\)
\(882\) 0 0
\(883\) −46608.1 −1.77632 −0.888159 0.459537i \(-0.848015\pi\)
−0.888159 + 0.459537i \(0.848015\pi\)
\(884\) 0 0
\(885\) −4726.53 −0.179526
\(886\) 0 0
\(887\) 17837.3 0.675219 0.337610 0.941286i \(-0.390382\pi\)
0.337610 + 0.941286i \(0.390382\pi\)
\(888\) 0 0
\(889\) 2583.33 0.0974603
\(890\) 0 0
\(891\) −9562.15 −0.359533
\(892\) 0 0
\(893\) 1690.03 0.0633311
\(894\) 0 0
\(895\) −44535.5 −1.66330
\(896\) 0 0
\(897\) 21048.6 0.783492
\(898\) 0 0
\(899\) −6386.92 −0.236947
\(900\) 0 0
\(901\) −13693.0 −0.506305
\(902\) 0 0
\(903\) −5078.72 −0.187164
\(904\) 0 0
\(905\) 4558.59 0.167439
\(906\) 0 0
\(907\) −32139.9 −1.17661 −0.588307 0.808638i \(-0.700205\pi\)
−0.588307 + 0.808638i \(0.700205\pi\)
\(908\) 0 0
\(909\) 6500.17 0.237181
\(910\) 0 0
\(911\) −21179.0 −0.770243 −0.385122 0.922866i \(-0.625841\pi\)
−0.385122 + 0.922866i \(0.625841\pi\)
\(912\) 0 0
\(913\) −1947.02 −0.0705770
\(914\) 0 0
\(915\) −12145.6 −0.438820
\(916\) 0 0
\(917\) 16785.7 0.604484
\(918\) 0 0
\(919\) −25214.4 −0.905057 −0.452529 0.891750i \(-0.649478\pi\)
−0.452529 + 0.891750i \(0.649478\pi\)
\(920\) 0 0
\(921\) −21074.8 −0.754003
\(922\) 0 0
\(923\) 24387.7 0.869697
\(924\) 0 0
\(925\) −1814.32 −0.0644912
\(926\) 0 0
\(927\) −10274.0 −0.364017
\(928\) 0 0
\(929\) −48511.1 −1.71324 −0.856618 0.515951i \(-0.827439\pi\)
−0.856618 + 0.515951i \(0.827439\pi\)
\(930\) 0 0
\(931\) −303.536 −0.0106853
\(932\) 0 0
\(933\) 40588.2 1.42422
\(934\) 0 0
\(935\) 14825.2 0.518540
\(936\) 0 0
\(937\) 38413.1 1.33927 0.669637 0.742689i \(-0.266450\pi\)
0.669637 + 0.742689i \(0.266450\pi\)
\(938\) 0 0
\(939\) −29558.0 −1.02725
\(940\) 0 0
\(941\) −23920.5 −0.828677 −0.414339 0.910123i \(-0.635987\pi\)
−0.414339 + 0.910123i \(0.635987\pi\)
\(942\) 0 0
\(943\) 21931.5 0.757357
\(944\) 0 0
\(945\) 9806.35 0.337567
\(946\) 0 0
\(947\) 52682.8 1.80777 0.903887 0.427772i \(-0.140701\pi\)
0.903887 + 0.427772i \(0.140701\pi\)
\(948\) 0 0
\(949\) −1811.59 −0.0619671
\(950\) 0 0
\(951\) −13572.3 −0.462788
\(952\) 0 0
\(953\) −30076.1 −1.02231 −0.511155 0.859489i \(-0.670782\pi\)
−0.511155 + 0.859489i \(0.670782\pi\)
\(954\) 0 0
\(955\) −40364.6 −1.36771
\(956\) 0 0
\(957\) 4607.02 0.155615
\(958\) 0 0
\(959\) 7781.46 0.262019
\(960\) 0 0
\(961\) −21879.0 −0.734415
\(962\) 0 0
\(963\) 6400.12 0.214165
\(964\) 0 0
\(965\) 32067.3 1.06972
\(966\) 0 0
\(967\) 33266.1 1.10627 0.553136 0.833091i \(-0.313431\pi\)
0.553136 + 0.833091i \(0.313431\pi\)
\(968\) 0 0
\(969\) −4050.64 −0.134288
\(970\) 0 0
\(971\) 23611.6 0.780364 0.390182 0.920738i \(-0.372412\pi\)
0.390182 + 0.920738i \(0.372412\pi\)
\(972\) 0 0
\(973\) 14104.6 0.464719
\(974\) 0 0
\(975\) 3611.48 0.118625
\(976\) 0 0
\(977\) 19512.6 0.638960 0.319480 0.947593i \(-0.396492\pi\)
0.319480 + 0.947593i \(0.396492\pi\)
\(978\) 0 0
\(979\) −2682.24 −0.0875637
\(980\) 0 0
\(981\) 5420.22 0.176406
\(982\) 0 0
\(983\) −37547.1 −1.21828 −0.609138 0.793064i \(-0.708485\pi\)
−0.609138 + 0.793064i \(0.708485\pi\)
\(984\) 0 0
\(985\) −40919.3 −1.32365
\(986\) 0 0
\(987\) 11139.3 0.359238
\(988\) 0 0
\(989\) 14158.0 0.455204
\(990\) 0 0
\(991\) 57959.2 1.85786 0.928928 0.370262i \(-0.120732\pi\)
0.928928 + 0.370262i \(0.120732\pi\)
\(992\) 0 0
\(993\) 29621.8 0.946646
\(994\) 0 0
\(995\) 53483.0 1.70404
\(996\) 0 0
\(997\) −30812.9 −0.978791 −0.489395 0.872062i \(-0.662782\pi\)
−0.489395 + 0.872062i \(0.662782\pi\)
\(998\) 0 0
\(999\) 10825.8 0.342855
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.4.a.d.1.4 4
4.3 odd 2 1232.4.a.v.1.1 4
7.6 odd 2 2156.4.a.f.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.a.d.1.4 4 1.1 even 1 trivial
1232.4.a.v.1.1 4 4.3 odd 2
2156.4.a.f.1.1 4 7.6 odd 2