Properties

Label 308.4.a.d.1.2
Level $308$
Weight $4$
Character 308.1
Self dual yes
Analytic conductor $18.173$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,4,Mod(1,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 308.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1725882818\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 43x^{2} - 11x + 222 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.79239\) of defining polynomial
Character \(\chi\) \(=\) 308.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.79239 q^{3} -7.61779 q^{5} -7.00000 q^{7} -12.6178 q^{9} +11.0000 q^{11} -52.1907 q^{13} +28.8896 q^{15} +115.878 q^{17} -21.5449 q^{19} +26.5467 q^{21} -36.6714 q^{23} -66.9693 q^{25} +150.246 q^{27} +50.2172 q^{29} +153.232 q^{31} -41.7163 q^{33} +53.3245 q^{35} +303.168 q^{37} +197.927 q^{39} +301.043 q^{41} -273.623 q^{43} +96.1196 q^{45} +391.708 q^{47} +49.0000 q^{49} -439.453 q^{51} +119.005 q^{53} -83.7956 q^{55} +81.7067 q^{57} -243.783 q^{59} +824.563 q^{61} +88.3245 q^{63} +397.577 q^{65} +310.219 q^{67} +139.072 q^{69} -705.110 q^{71} +331.898 q^{73} +253.974 q^{75} -77.0000 q^{77} +812.935 q^{79} -229.111 q^{81} -1376.75 q^{83} -882.731 q^{85} -190.443 q^{87} -604.809 q^{89} +365.335 q^{91} -581.115 q^{93} +164.125 q^{95} +963.838 q^{97} -138.796 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} + q^{5} - 28 q^{7} - 19 q^{9} + 44 q^{11} + 98 q^{13} - 33 q^{15} + 64 q^{17} + 114 q^{19} + 21 q^{21} + 231 q^{23} + 417 q^{25} + 63 q^{27} + 268 q^{29} + 33 q^{31} - 33 q^{33} - 7 q^{35}+ \cdots - 209 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.79239 −0.729846 −0.364923 0.931038i \(-0.618905\pi\)
−0.364923 + 0.931038i \(0.618905\pi\)
\(4\) 0 0
\(5\) −7.61779 −0.681355 −0.340678 0.940180i \(-0.610656\pi\)
−0.340678 + 0.940180i \(0.610656\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −12.6178 −0.467325
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −52.1907 −1.11347 −0.556734 0.830691i \(-0.687946\pi\)
−0.556734 + 0.830691i \(0.687946\pi\)
\(14\) 0 0
\(15\) 28.8896 0.497284
\(16\) 0 0
\(17\) 115.878 1.65320 0.826602 0.562787i \(-0.190271\pi\)
0.826602 + 0.562787i \(0.190271\pi\)
\(18\) 0 0
\(19\) −21.5449 −0.260144 −0.130072 0.991505i \(-0.541521\pi\)
−0.130072 + 0.991505i \(0.541521\pi\)
\(20\) 0 0
\(21\) 26.5467 0.275856
\(22\) 0 0
\(23\) −36.6714 −0.332457 −0.166228 0.986087i \(-0.553159\pi\)
−0.166228 + 0.986087i \(0.553159\pi\)
\(24\) 0 0
\(25\) −66.9693 −0.535755
\(26\) 0 0
\(27\) 150.246 1.07092
\(28\) 0 0
\(29\) 50.2172 0.321555 0.160778 0.986991i \(-0.448600\pi\)
0.160778 + 0.986991i \(0.448600\pi\)
\(30\) 0 0
\(31\) 153.232 0.887783 0.443892 0.896081i \(-0.353598\pi\)
0.443892 + 0.896081i \(0.353598\pi\)
\(32\) 0 0
\(33\) −41.7163 −0.220057
\(34\) 0 0
\(35\) 53.3245 0.257528
\(36\) 0 0
\(37\) 303.168 1.34704 0.673520 0.739169i \(-0.264782\pi\)
0.673520 + 0.739169i \(0.264782\pi\)
\(38\) 0 0
\(39\) 197.927 0.812660
\(40\) 0 0
\(41\) 301.043 1.14671 0.573353 0.819308i \(-0.305642\pi\)
0.573353 + 0.819308i \(0.305642\pi\)
\(42\) 0 0
\(43\) −273.623 −0.970398 −0.485199 0.874404i \(-0.661253\pi\)
−0.485199 + 0.874404i \(0.661253\pi\)
\(44\) 0 0
\(45\) 96.1196 0.318415
\(46\) 0 0
\(47\) 391.708 1.21567 0.607835 0.794064i \(-0.292038\pi\)
0.607835 + 0.794064i \(0.292038\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −439.453 −1.20658
\(52\) 0 0
\(53\) 119.005 0.308426 0.154213 0.988038i \(-0.450716\pi\)
0.154213 + 0.988038i \(0.450716\pi\)
\(54\) 0 0
\(55\) −83.7956 −0.205436
\(56\) 0 0
\(57\) 81.7067 0.189865
\(58\) 0 0
\(59\) −243.783 −0.537930 −0.268965 0.963150i \(-0.586682\pi\)
−0.268965 + 0.963150i \(0.586682\pi\)
\(60\) 0 0
\(61\) 824.563 1.73073 0.865364 0.501143i \(-0.167087\pi\)
0.865364 + 0.501143i \(0.167087\pi\)
\(62\) 0 0
\(63\) 88.3245 0.176632
\(64\) 0 0
\(65\) 397.577 0.758668
\(66\) 0 0
\(67\) 310.219 0.565661 0.282830 0.959170i \(-0.408727\pi\)
0.282830 + 0.959170i \(0.408727\pi\)
\(68\) 0 0
\(69\) 139.072 0.242642
\(70\) 0 0
\(71\) −705.110 −1.17861 −0.589304 0.807911i \(-0.700598\pi\)
−0.589304 + 0.807911i \(0.700598\pi\)
\(72\) 0 0
\(73\) 331.898 0.532133 0.266066 0.963955i \(-0.414276\pi\)
0.266066 + 0.963955i \(0.414276\pi\)
\(74\) 0 0
\(75\) 253.974 0.391018
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) 812.935 1.15775 0.578875 0.815416i \(-0.303492\pi\)
0.578875 + 0.815416i \(0.303492\pi\)
\(80\) 0 0
\(81\) −229.111 −0.314282
\(82\) 0 0
\(83\) −1376.75 −1.82070 −0.910348 0.413844i \(-0.864186\pi\)
−0.910348 + 0.413844i \(0.864186\pi\)
\(84\) 0 0
\(85\) −882.731 −1.12642
\(86\) 0 0
\(87\) −190.443 −0.234686
\(88\) 0 0
\(89\) −604.809 −0.720333 −0.360166 0.932888i \(-0.617280\pi\)
−0.360166 + 0.932888i \(0.617280\pi\)
\(90\) 0 0
\(91\) 365.335 0.420851
\(92\) 0 0
\(93\) −581.115 −0.647945
\(94\) 0 0
\(95\) 164.125 0.177251
\(96\) 0 0
\(97\) 963.838 1.00890 0.504448 0.863442i \(-0.331696\pi\)
0.504448 + 0.863442i \(0.331696\pi\)
\(98\) 0 0
\(99\) −138.796 −0.140904
\(100\) 0 0
\(101\) −58.8600 −0.0579880 −0.0289940 0.999580i \(-0.509230\pi\)
−0.0289940 + 0.999580i \(0.509230\pi\)
\(102\) 0 0
\(103\) 580.122 0.554962 0.277481 0.960731i \(-0.410500\pi\)
0.277481 + 0.960731i \(0.410500\pi\)
\(104\) 0 0
\(105\) −202.227 −0.187956
\(106\) 0 0
\(107\) −924.890 −0.835631 −0.417815 0.908532i \(-0.637204\pi\)
−0.417815 + 0.908532i \(0.637204\pi\)
\(108\) 0 0
\(109\) −1136.51 −0.998695 −0.499348 0.866402i \(-0.666427\pi\)
−0.499348 + 0.866402i \(0.666427\pi\)
\(110\) 0 0
\(111\) −1149.73 −0.983131
\(112\) 0 0
\(113\) 1157.61 0.963705 0.481852 0.876252i \(-0.339964\pi\)
0.481852 + 0.876252i \(0.339964\pi\)
\(114\) 0 0
\(115\) 279.355 0.226521
\(116\) 0 0
\(117\) 658.531 0.520352
\(118\) 0 0
\(119\) −811.144 −0.624852
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −1141.67 −0.836918
\(124\) 0 0
\(125\) 1462.38 1.04639
\(126\) 0 0
\(127\) −1958.23 −1.36822 −0.684112 0.729377i \(-0.739810\pi\)
−0.684112 + 0.729377i \(0.739810\pi\)
\(128\) 0 0
\(129\) 1037.68 0.708240
\(130\) 0 0
\(131\) −320.427 −0.213709 −0.106854 0.994275i \(-0.534078\pi\)
−0.106854 + 0.994275i \(0.534078\pi\)
\(132\) 0 0
\(133\) 150.814 0.0983253
\(134\) 0 0
\(135\) −1144.54 −0.729678
\(136\) 0 0
\(137\) −1873.92 −1.16861 −0.584306 0.811533i \(-0.698633\pi\)
−0.584306 + 0.811533i \(0.698633\pi\)
\(138\) 0 0
\(139\) −508.927 −0.310552 −0.155276 0.987871i \(-0.549627\pi\)
−0.155276 + 0.987871i \(0.549627\pi\)
\(140\) 0 0
\(141\) −1485.51 −0.887251
\(142\) 0 0
\(143\) −574.097 −0.335723
\(144\) 0 0
\(145\) −382.544 −0.219093
\(146\) 0 0
\(147\) −185.827 −0.104264
\(148\) 0 0
\(149\) 1793.96 0.986358 0.493179 0.869928i \(-0.335835\pi\)
0.493179 + 0.869928i \(0.335835\pi\)
\(150\) 0 0
\(151\) −1934.44 −1.04253 −0.521265 0.853395i \(-0.674540\pi\)
−0.521265 + 0.853395i \(0.674540\pi\)
\(152\) 0 0
\(153\) −1462.12 −0.772584
\(154\) 0 0
\(155\) −1167.29 −0.604896
\(156\) 0 0
\(157\) 3105.09 1.57843 0.789215 0.614117i \(-0.210488\pi\)
0.789215 + 0.614117i \(0.210488\pi\)
\(158\) 0 0
\(159\) −451.313 −0.225103
\(160\) 0 0
\(161\) 256.700 0.125657
\(162\) 0 0
\(163\) 2738.18 1.31577 0.657887 0.753117i \(-0.271451\pi\)
0.657887 + 0.753117i \(0.271451\pi\)
\(164\) 0 0
\(165\) 317.786 0.149937
\(166\) 0 0
\(167\) 2794.07 1.29468 0.647340 0.762201i \(-0.275881\pi\)
0.647340 + 0.762201i \(0.275881\pi\)
\(168\) 0 0
\(169\) 526.865 0.239811
\(170\) 0 0
\(171\) 271.849 0.121572
\(172\) 0 0
\(173\) −749.616 −0.329435 −0.164718 0.986341i \(-0.552671\pi\)
−0.164718 + 0.986341i \(0.552671\pi\)
\(174\) 0 0
\(175\) 468.785 0.202496
\(176\) 0 0
\(177\) 924.521 0.392606
\(178\) 0 0
\(179\) −2234.31 −0.932962 −0.466481 0.884531i \(-0.654478\pi\)
−0.466481 + 0.884531i \(0.654478\pi\)
\(180\) 0 0
\(181\) −918.806 −0.377316 −0.188658 0.982043i \(-0.560414\pi\)
−0.188658 + 0.982043i \(0.560414\pi\)
\(182\) 0 0
\(183\) −3127.06 −1.26316
\(184\) 0 0
\(185\) −2309.47 −0.917812
\(186\) 0 0
\(187\) 1274.65 0.498460
\(188\) 0 0
\(189\) −1051.72 −0.404770
\(190\) 0 0
\(191\) 4208.11 1.59418 0.797089 0.603862i \(-0.206372\pi\)
0.797089 + 0.603862i \(0.206372\pi\)
\(192\) 0 0
\(193\) 4671.45 1.74227 0.871136 0.491042i \(-0.163384\pi\)
0.871136 + 0.491042i \(0.163384\pi\)
\(194\) 0 0
\(195\) −1507.77 −0.553710
\(196\) 0 0
\(197\) −2285.17 −0.826454 −0.413227 0.910628i \(-0.635598\pi\)
−0.413227 + 0.910628i \(0.635598\pi\)
\(198\) 0 0
\(199\) −3198.19 −1.13926 −0.569632 0.821900i \(-0.692914\pi\)
−0.569632 + 0.821900i \(0.692914\pi\)
\(200\) 0 0
\(201\) −1176.47 −0.412845
\(202\) 0 0
\(203\) −351.520 −0.121536
\(204\) 0 0
\(205\) −2293.28 −0.781315
\(206\) 0 0
\(207\) 462.712 0.155366
\(208\) 0 0
\(209\) −236.994 −0.0784365
\(210\) 0 0
\(211\) −1762.25 −0.574968 −0.287484 0.957786i \(-0.592819\pi\)
−0.287484 + 0.957786i \(0.592819\pi\)
\(212\) 0 0
\(213\) 2674.05 0.860202
\(214\) 0 0
\(215\) 2084.40 0.661186
\(216\) 0 0
\(217\) −1072.62 −0.335550
\(218\) 0 0
\(219\) −1258.68 −0.388375
\(220\) 0 0
\(221\) −6047.73 −1.84079
\(222\) 0 0
\(223\) 4092.23 1.22886 0.614430 0.788972i \(-0.289386\pi\)
0.614430 + 0.788972i \(0.289386\pi\)
\(224\) 0 0
\(225\) 845.005 0.250372
\(226\) 0 0
\(227\) 3892.12 1.13801 0.569007 0.822333i \(-0.307328\pi\)
0.569007 + 0.822333i \(0.307328\pi\)
\(228\) 0 0
\(229\) 2395.96 0.691395 0.345698 0.938346i \(-0.387642\pi\)
0.345698 + 0.938346i \(0.387642\pi\)
\(230\) 0 0
\(231\) 292.014 0.0831736
\(232\) 0 0
\(233\) 4291.37 1.20660 0.603298 0.797516i \(-0.293853\pi\)
0.603298 + 0.797516i \(0.293853\pi\)
\(234\) 0 0
\(235\) −2983.95 −0.828303
\(236\) 0 0
\(237\) −3082.96 −0.844979
\(238\) 0 0
\(239\) 3030.80 0.820277 0.410138 0.912023i \(-0.365480\pi\)
0.410138 + 0.912023i \(0.365480\pi\)
\(240\) 0 0
\(241\) 5922.81 1.58308 0.791539 0.611118i \(-0.209280\pi\)
0.791539 + 0.611118i \(0.209280\pi\)
\(242\) 0 0
\(243\) −3187.76 −0.841544
\(244\) 0 0
\(245\) −373.271 −0.0973365
\(246\) 0 0
\(247\) 1124.44 0.289662
\(248\) 0 0
\(249\) 5221.16 1.32883
\(250\) 0 0
\(251\) −5819.20 −1.46336 −0.731682 0.681646i \(-0.761264\pi\)
−0.731682 + 0.681646i \(0.761264\pi\)
\(252\) 0 0
\(253\) −403.385 −0.100240
\(254\) 0 0
\(255\) 3347.66 0.822112
\(256\) 0 0
\(257\) −3259.53 −0.791143 −0.395572 0.918435i \(-0.629454\pi\)
−0.395572 + 0.918435i \(0.629454\pi\)
\(258\) 0 0
\(259\) −2122.17 −0.509133
\(260\) 0 0
\(261\) −633.630 −0.150271
\(262\) 0 0
\(263\) 1265.42 0.296688 0.148344 0.988936i \(-0.452606\pi\)
0.148344 + 0.988936i \(0.452606\pi\)
\(264\) 0 0
\(265\) −906.554 −0.210148
\(266\) 0 0
\(267\) 2293.67 0.525732
\(268\) 0 0
\(269\) 5822.97 1.31982 0.659912 0.751343i \(-0.270593\pi\)
0.659912 + 0.751343i \(0.270593\pi\)
\(270\) 0 0
\(271\) 3043.07 0.682116 0.341058 0.940042i \(-0.389215\pi\)
0.341058 + 0.940042i \(0.389215\pi\)
\(272\) 0 0
\(273\) −1385.49 −0.307157
\(274\) 0 0
\(275\) −736.663 −0.161536
\(276\) 0 0
\(277\) 6368.24 1.38134 0.690669 0.723171i \(-0.257316\pi\)
0.690669 + 0.723171i \(0.257316\pi\)
\(278\) 0 0
\(279\) −1933.45 −0.414884
\(280\) 0 0
\(281\) 5158.86 1.09520 0.547601 0.836740i \(-0.315541\pi\)
0.547601 + 0.836740i \(0.315541\pi\)
\(282\) 0 0
\(283\) 3364.31 0.706669 0.353335 0.935497i \(-0.385048\pi\)
0.353335 + 0.935497i \(0.385048\pi\)
\(284\) 0 0
\(285\) −622.424 −0.129366
\(286\) 0 0
\(287\) −2107.30 −0.433414
\(288\) 0 0
\(289\) 8514.64 1.73308
\(290\) 0 0
\(291\) −3655.25 −0.736338
\(292\) 0 0
\(293\) −2244.83 −0.447591 −0.223796 0.974636i \(-0.571845\pi\)
−0.223796 + 0.974636i \(0.571845\pi\)
\(294\) 0 0
\(295\) 1857.09 0.366522
\(296\) 0 0
\(297\) 1652.71 0.322895
\(298\) 0 0
\(299\) 1913.90 0.370180
\(300\) 0 0
\(301\) 1915.36 0.366776
\(302\) 0 0
\(303\) 223.220 0.0423223
\(304\) 0 0
\(305\) −6281.34 −1.17924
\(306\) 0 0
\(307\) −116.065 −0.0215771 −0.0107886 0.999942i \(-0.503434\pi\)
−0.0107886 + 0.999942i \(0.503434\pi\)
\(308\) 0 0
\(309\) −2200.05 −0.405037
\(310\) 0 0
\(311\) 8639.49 1.57524 0.787621 0.616159i \(-0.211312\pi\)
0.787621 + 0.616159i \(0.211312\pi\)
\(312\) 0 0
\(313\) 4908.15 0.886341 0.443171 0.896437i \(-0.353854\pi\)
0.443171 + 0.896437i \(0.353854\pi\)
\(314\) 0 0
\(315\) −672.837 −0.120349
\(316\) 0 0
\(317\) 1234.27 0.218686 0.109343 0.994004i \(-0.465125\pi\)
0.109343 + 0.994004i \(0.465125\pi\)
\(318\) 0 0
\(319\) 552.389 0.0969525
\(320\) 0 0
\(321\) 3507.54 0.609881
\(322\) 0 0
\(323\) −2496.58 −0.430072
\(324\) 0 0
\(325\) 3495.17 0.596546
\(326\) 0 0
\(327\) 4310.08 0.728893
\(328\) 0 0
\(329\) −2741.95 −0.459480
\(330\) 0 0
\(331\) −374.394 −0.0621709 −0.0310855 0.999517i \(-0.509896\pi\)
−0.0310855 + 0.999517i \(0.509896\pi\)
\(332\) 0 0
\(333\) −3825.30 −0.629506
\(334\) 0 0
\(335\) −2363.18 −0.385416
\(336\) 0 0
\(337\) 3561.81 0.575740 0.287870 0.957670i \(-0.407053\pi\)
0.287870 + 0.957670i \(0.407053\pi\)
\(338\) 0 0
\(339\) −4390.10 −0.703356
\(340\) 0 0
\(341\) 1685.55 0.267677
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −1059.42 −0.165326
\(346\) 0 0
\(347\) 2927.98 0.452975 0.226487 0.974014i \(-0.427276\pi\)
0.226487 + 0.974014i \(0.427276\pi\)
\(348\) 0 0
\(349\) −913.271 −0.140075 −0.0700377 0.997544i \(-0.522312\pi\)
−0.0700377 + 0.997544i \(0.522312\pi\)
\(350\) 0 0
\(351\) −7841.44 −1.19244
\(352\) 0 0
\(353\) 8366.50 1.26148 0.630742 0.775993i \(-0.282751\pi\)
0.630742 + 0.775993i \(0.282751\pi\)
\(354\) 0 0
\(355\) 5371.38 0.803051
\(356\) 0 0
\(357\) 3076.17 0.456046
\(358\) 0 0
\(359\) −1766.25 −0.259664 −0.129832 0.991536i \(-0.541444\pi\)
−0.129832 + 0.991536i \(0.541444\pi\)
\(360\) 0 0
\(361\) −6394.82 −0.932325
\(362\) 0 0
\(363\) −458.879 −0.0663496
\(364\) 0 0
\(365\) −2528.32 −0.362571
\(366\) 0 0
\(367\) 4044.02 0.575194 0.287597 0.957751i \(-0.407144\pi\)
0.287597 + 0.957751i \(0.407144\pi\)
\(368\) 0 0
\(369\) −3798.49 −0.535885
\(370\) 0 0
\(371\) −833.034 −0.116574
\(372\) 0 0
\(373\) −11145.2 −1.54712 −0.773562 0.633721i \(-0.781527\pi\)
−0.773562 + 0.633721i \(0.781527\pi\)
\(374\) 0 0
\(375\) −5545.92 −0.763707
\(376\) 0 0
\(377\) −2620.87 −0.358041
\(378\) 0 0
\(379\) −14564.2 −1.97391 −0.986954 0.161005i \(-0.948526\pi\)
−0.986954 + 0.161005i \(0.948526\pi\)
\(380\) 0 0
\(381\) 7426.35 0.998592
\(382\) 0 0
\(383\) −9754.74 −1.30142 −0.650710 0.759326i \(-0.725529\pi\)
−0.650710 + 0.759326i \(0.725529\pi\)
\(384\) 0 0
\(385\) 586.569 0.0776477
\(386\) 0 0
\(387\) 3452.51 0.453491
\(388\) 0 0
\(389\) −10260.5 −1.33735 −0.668673 0.743557i \(-0.733137\pi\)
−0.668673 + 0.743557i \(0.733137\pi\)
\(390\) 0 0
\(391\) −4249.39 −0.549619
\(392\) 0 0
\(393\) 1215.18 0.155974
\(394\) 0 0
\(395\) −6192.76 −0.788840
\(396\) 0 0
\(397\) −7308.66 −0.923957 −0.461979 0.886891i \(-0.652860\pi\)
−0.461979 + 0.886891i \(0.652860\pi\)
\(398\) 0 0
\(399\) −571.947 −0.0717623
\(400\) 0 0
\(401\) −13824.1 −1.72155 −0.860776 0.508984i \(-0.830021\pi\)
−0.860776 + 0.508984i \(0.830021\pi\)
\(402\) 0 0
\(403\) −7997.28 −0.988518
\(404\) 0 0
\(405\) 1745.32 0.214137
\(406\) 0 0
\(407\) 3334.84 0.406148
\(408\) 0 0
\(409\) 5894.74 0.712656 0.356328 0.934361i \(-0.384029\pi\)
0.356328 + 0.934361i \(0.384029\pi\)
\(410\) 0 0
\(411\) 7106.64 0.852907
\(412\) 0 0
\(413\) 1706.48 0.203319
\(414\) 0 0
\(415\) 10487.8 1.24054
\(416\) 0 0
\(417\) 1930.05 0.226655
\(418\) 0 0
\(419\) −1436.00 −0.167431 −0.0837153 0.996490i \(-0.526679\pi\)
−0.0837153 + 0.996490i \(0.526679\pi\)
\(420\) 0 0
\(421\) 5986.38 0.693013 0.346506 0.938048i \(-0.387368\pi\)
0.346506 + 0.938048i \(0.387368\pi\)
\(422\) 0 0
\(423\) −4942.49 −0.568113
\(424\) 0 0
\(425\) −7760.25 −0.885712
\(426\) 0 0
\(427\) −5771.94 −0.654154
\(428\) 0 0
\(429\) 2177.20 0.245026
\(430\) 0 0
\(431\) 3482.47 0.389199 0.194599 0.980883i \(-0.437659\pi\)
0.194599 + 0.980883i \(0.437659\pi\)
\(432\) 0 0
\(433\) −4646.70 −0.515719 −0.257860 0.966182i \(-0.583017\pi\)
−0.257860 + 0.966182i \(0.583017\pi\)
\(434\) 0 0
\(435\) 1450.75 0.159904
\(436\) 0 0
\(437\) 790.082 0.0864868
\(438\) 0 0
\(439\) 2252.14 0.244849 0.122425 0.992478i \(-0.460933\pi\)
0.122425 + 0.992478i \(0.460933\pi\)
\(440\) 0 0
\(441\) −618.271 −0.0667608
\(442\) 0 0
\(443\) −8872.75 −0.951596 −0.475798 0.879555i \(-0.657841\pi\)
−0.475798 + 0.879555i \(0.657841\pi\)
\(444\) 0 0
\(445\) 4607.30 0.490803
\(446\) 0 0
\(447\) −6803.41 −0.719889
\(448\) 0 0
\(449\) −15399.0 −1.61854 −0.809268 0.587440i \(-0.800136\pi\)
−0.809268 + 0.587440i \(0.800136\pi\)
\(450\) 0 0
\(451\) 3311.47 0.345745
\(452\) 0 0
\(453\) 7336.13 0.760886
\(454\) 0 0
\(455\) −2783.04 −0.286749
\(456\) 0 0
\(457\) 15703.8 1.60742 0.803711 0.595020i \(-0.202856\pi\)
0.803711 + 0.595020i \(0.202856\pi\)
\(458\) 0 0
\(459\) 17410.2 1.77045
\(460\) 0 0
\(461\) −8011.59 −0.809407 −0.404704 0.914448i \(-0.632625\pi\)
−0.404704 + 0.914448i \(0.632625\pi\)
\(462\) 0 0
\(463\) −1708.52 −0.171494 −0.0857470 0.996317i \(-0.527328\pi\)
−0.0857470 + 0.996317i \(0.527328\pi\)
\(464\) 0 0
\(465\) 4426.81 0.441481
\(466\) 0 0
\(467\) 8807.46 0.872721 0.436361 0.899772i \(-0.356267\pi\)
0.436361 + 0.899772i \(0.356267\pi\)
\(468\) 0 0
\(469\) −2171.53 −0.213800
\(470\) 0 0
\(471\) −11775.7 −1.15201
\(472\) 0 0
\(473\) −3009.85 −0.292586
\(474\) 0 0
\(475\) 1442.85 0.139374
\(476\) 0 0
\(477\) −1501.58 −0.144135
\(478\) 0 0
\(479\) 2395.07 0.228462 0.114231 0.993454i \(-0.463560\pi\)
0.114231 + 0.993454i \(0.463560\pi\)
\(480\) 0 0
\(481\) −15822.5 −1.49989
\(482\) 0 0
\(483\) −973.505 −0.0917101
\(484\) 0 0
\(485\) −7342.31 −0.687417
\(486\) 0 0
\(487\) 15541.8 1.44613 0.723065 0.690780i \(-0.242733\pi\)
0.723065 + 0.690780i \(0.242733\pi\)
\(488\) 0 0
\(489\) −10384.3 −0.960312
\(490\) 0 0
\(491\) −1905.13 −0.175107 −0.0875533 0.996160i \(-0.527905\pi\)
−0.0875533 + 0.996160i \(0.527905\pi\)
\(492\) 0 0
\(493\) 5819.05 0.531596
\(494\) 0 0
\(495\) 1057.32 0.0960056
\(496\) 0 0
\(497\) 4935.77 0.445472
\(498\) 0 0
\(499\) 6229.01 0.558816 0.279408 0.960173i \(-0.409862\pi\)
0.279408 + 0.960173i \(0.409862\pi\)
\(500\) 0 0
\(501\) −10596.2 −0.944916
\(502\) 0 0
\(503\) −2972.06 −0.263455 −0.131727 0.991286i \(-0.542052\pi\)
−0.131727 + 0.991286i \(0.542052\pi\)
\(504\) 0 0
\(505\) 448.383 0.0395104
\(506\) 0 0
\(507\) −1998.08 −0.175025
\(508\) 0 0
\(509\) −2988.49 −0.260241 −0.130120 0.991498i \(-0.541536\pi\)
−0.130120 + 0.991498i \(0.541536\pi\)
\(510\) 0 0
\(511\) −2323.28 −0.201127
\(512\) 0 0
\(513\) −3237.04 −0.278594
\(514\) 0 0
\(515\) −4419.25 −0.378127
\(516\) 0 0
\(517\) 4308.79 0.366538
\(518\) 0 0
\(519\) 2842.84 0.240437
\(520\) 0 0
\(521\) −11789.5 −0.991374 −0.495687 0.868501i \(-0.665084\pi\)
−0.495687 + 0.868501i \(0.665084\pi\)
\(522\) 0 0
\(523\) 13552.5 1.13310 0.566549 0.824028i \(-0.308278\pi\)
0.566549 + 0.824028i \(0.308278\pi\)
\(524\) 0 0
\(525\) −1777.82 −0.147791
\(526\) 0 0
\(527\) 17756.2 1.46769
\(528\) 0 0
\(529\) −10822.2 −0.889472
\(530\) 0 0
\(531\) 3076.01 0.251389
\(532\) 0 0
\(533\) −15711.6 −1.27682
\(534\) 0 0
\(535\) 7045.61 0.569361
\(536\) 0 0
\(537\) 8473.38 0.680918
\(538\) 0 0
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 14450.2 1.14836 0.574180 0.818729i \(-0.305321\pi\)
0.574180 + 0.818729i \(0.305321\pi\)
\(542\) 0 0
\(543\) 3484.47 0.275383
\(544\) 0 0
\(545\) 8657.68 0.680466
\(546\) 0 0
\(547\) 10324.6 0.807038 0.403519 0.914971i \(-0.367787\pi\)
0.403519 + 0.914971i \(0.367787\pi\)
\(548\) 0 0
\(549\) −10404.2 −0.808813
\(550\) 0 0
\(551\) −1081.93 −0.0836507
\(552\) 0 0
\(553\) −5690.54 −0.437589
\(554\) 0 0
\(555\) 8758.39 0.669861
\(556\) 0 0
\(557\) −17839.1 −1.35703 −0.678516 0.734585i \(-0.737377\pi\)
−0.678516 + 0.734585i \(0.737377\pi\)
\(558\) 0 0
\(559\) 14280.6 1.08051
\(560\) 0 0
\(561\) −4833.99 −0.363799
\(562\) 0 0
\(563\) 16178.5 1.21109 0.605543 0.795812i \(-0.292956\pi\)
0.605543 + 0.795812i \(0.292956\pi\)
\(564\) 0 0
\(565\) −8818.41 −0.656626
\(566\) 0 0
\(567\) 1603.78 0.118787
\(568\) 0 0
\(569\) 8234.68 0.606706 0.303353 0.952878i \(-0.401894\pi\)
0.303353 + 0.952878i \(0.401894\pi\)
\(570\) 0 0
\(571\) −9902.99 −0.725792 −0.362896 0.931830i \(-0.618212\pi\)
−0.362896 + 0.931830i \(0.618212\pi\)
\(572\) 0 0
\(573\) −15958.8 −1.16350
\(574\) 0 0
\(575\) 2455.86 0.178115
\(576\) 0 0
\(577\) −19446.7 −1.40308 −0.701538 0.712632i \(-0.747503\pi\)
−0.701538 + 0.712632i \(0.747503\pi\)
\(578\) 0 0
\(579\) −17716.0 −1.27159
\(580\) 0 0
\(581\) 9637.24 0.688158
\(582\) 0 0
\(583\) 1309.05 0.0929939
\(584\) 0 0
\(585\) −5016.54 −0.354545
\(586\) 0 0
\(587\) −5284.52 −0.371577 −0.185788 0.982590i \(-0.559484\pi\)
−0.185788 + 0.982590i \(0.559484\pi\)
\(588\) 0 0
\(589\) −3301.37 −0.230952
\(590\) 0 0
\(591\) 8666.24 0.603184
\(592\) 0 0
\(593\) −5856.68 −0.405574 −0.202787 0.979223i \(-0.565000\pi\)
−0.202787 + 0.979223i \(0.565000\pi\)
\(594\) 0 0
\(595\) 6179.12 0.425747
\(596\) 0 0
\(597\) 12128.8 0.831487
\(598\) 0 0
\(599\) 636.088 0.0433888 0.0216944 0.999765i \(-0.493094\pi\)
0.0216944 + 0.999765i \(0.493094\pi\)
\(600\) 0 0
\(601\) 15468.9 1.04990 0.524951 0.851133i \(-0.324084\pi\)
0.524951 + 0.851133i \(0.324084\pi\)
\(602\) 0 0
\(603\) −3914.28 −0.264348
\(604\) 0 0
\(605\) −921.752 −0.0619414
\(606\) 0 0
\(607\) 26580.3 1.77737 0.888684 0.458521i \(-0.151620\pi\)
0.888684 + 0.458521i \(0.151620\pi\)
\(608\) 0 0
\(609\) 1333.10 0.0887028
\(610\) 0 0
\(611\) −20443.5 −1.35361
\(612\) 0 0
\(613\) 24088.6 1.58716 0.793580 0.608466i \(-0.208215\pi\)
0.793580 + 0.608466i \(0.208215\pi\)
\(614\) 0 0
\(615\) 8697.00 0.570239
\(616\) 0 0
\(617\) 375.545 0.0245038 0.0122519 0.999925i \(-0.496100\pi\)
0.0122519 + 0.999925i \(0.496100\pi\)
\(618\) 0 0
\(619\) −14117.4 −0.916682 −0.458341 0.888776i \(-0.651556\pi\)
−0.458341 + 0.888776i \(0.651556\pi\)
\(620\) 0 0
\(621\) −5509.73 −0.356035
\(622\) 0 0
\(623\) 4233.66 0.272260
\(624\) 0 0
\(625\) −2768.94 −0.177212
\(626\) 0 0
\(627\) 898.774 0.0572465
\(628\) 0 0
\(629\) 35130.4 2.22693
\(630\) 0 0
\(631\) 366.133 0.0230991 0.0115496 0.999933i \(-0.496324\pi\)
0.0115496 + 0.999933i \(0.496324\pi\)
\(632\) 0 0
\(633\) 6683.13 0.419638
\(634\) 0 0
\(635\) 14917.3 0.932247
\(636\) 0 0
\(637\) −2557.34 −0.159067
\(638\) 0 0
\(639\) 8896.93 0.550793
\(640\) 0 0
\(641\) 3605.83 0.222187 0.111093 0.993810i \(-0.464565\pi\)
0.111093 + 0.993810i \(0.464565\pi\)
\(642\) 0 0
\(643\) 10680.2 0.655035 0.327518 0.944845i \(-0.393788\pi\)
0.327518 + 0.944845i \(0.393788\pi\)
\(644\) 0 0
\(645\) −7904.86 −0.482563
\(646\) 0 0
\(647\) 3282.78 0.199474 0.0997369 0.995014i \(-0.468200\pi\)
0.0997369 + 0.995014i \(0.468200\pi\)
\(648\) 0 0
\(649\) −2681.62 −0.162192
\(650\) 0 0
\(651\) 4067.81 0.244900
\(652\) 0 0
\(653\) 10107.9 0.605745 0.302873 0.953031i \(-0.402054\pi\)
0.302873 + 0.953031i \(0.402054\pi\)
\(654\) 0 0
\(655\) 2440.94 0.145612
\(656\) 0 0
\(657\) −4187.81 −0.248679
\(658\) 0 0
\(659\) 7414.35 0.438274 0.219137 0.975694i \(-0.429676\pi\)
0.219137 + 0.975694i \(0.429676\pi\)
\(660\) 0 0
\(661\) 215.146 0.0126599 0.00632997 0.999980i \(-0.497985\pi\)
0.00632997 + 0.999980i \(0.497985\pi\)
\(662\) 0 0
\(663\) 22935.4 1.34349
\(664\) 0 0
\(665\) −1148.87 −0.0669945
\(666\) 0 0
\(667\) −1841.53 −0.106903
\(668\) 0 0
\(669\) −15519.3 −0.896878
\(670\) 0 0
\(671\) 9070.19 0.521834
\(672\) 0 0
\(673\) 1934.82 0.110820 0.0554100 0.998464i \(-0.482353\pi\)
0.0554100 + 0.998464i \(0.482353\pi\)
\(674\) 0 0
\(675\) −10061.9 −0.573751
\(676\) 0 0
\(677\) 438.126 0.0248723 0.0124362 0.999923i \(-0.496041\pi\)
0.0124362 + 0.999923i \(0.496041\pi\)
\(678\) 0 0
\(679\) −6746.86 −0.381327
\(680\) 0 0
\(681\) −14760.4 −0.830574
\(682\) 0 0
\(683\) −27875.2 −1.56166 −0.780831 0.624742i \(-0.785204\pi\)
−0.780831 + 0.624742i \(0.785204\pi\)
\(684\) 0 0
\(685\) 14275.1 0.796241
\(686\) 0 0
\(687\) −9086.41 −0.504612
\(688\) 0 0
\(689\) −6210.94 −0.343423
\(690\) 0 0
\(691\) −21356.2 −1.17573 −0.587865 0.808959i \(-0.700031\pi\)
−0.587865 + 0.808959i \(0.700031\pi\)
\(692\) 0 0
\(693\) 971.569 0.0532567
\(694\) 0 0
\(695\) 3876.90 0.211596
\(696\) 0 0
\(697\) 34884.1 1.89574
\(698\) 0 0
\(699\) −16274.5 −0.880629
\(700\) 0 0
\(701\) −5192.45 −0.279766 −0.139883 0.990168i \(-0.544673\pi\)
−0.139883 + 0.990168i \(0.544673\pi\)
\(702\) 0 0
\(703\) −6531.72 −0.350425
\(704\) 0 0
\(705\) 11316.3 0.604533
\(706\) 0 0
\(707\) 412.020 0.0219174
\(708\) 0 0
\(709\) 32712.8 1.73280 0.866400 0.499351i \(-0.166428\pi\)
0.866400 + 0.499351i \(0.166428\pi\)
\(710\) 0 0
\(711\) −10257.4 −0.541046
\(712\) 0 0
\(713\) −5619.23 −0.295150
\(714\) 0 0
\(715\) 4373.35 0.228747
\(716\) 0 0
\(717\) −11494.0 −0.598675
\(718\) 0 0
\(719\) 25348.8 1.31482 0.657408 0.753535i \(-0.271653\pi\)
0.657408 + 0.753535i \(0.271653\pi\)
\(720\) 0 0
\(721\) −4060.85 −0.209756
\(722\) 0 0
\(723\) −22461.6 −1.15540
\(724\) 0 0
\(725\) −3363.01 −0.172275
\(726\) 0 0
\(727\) 26700.6 1.36213 0.681067 0.732221i \(-0.261516\pi\)
0.681067 + 0.732221i \(0.261516\pi\)
\(728\) 0 0
\(729\) 18275.2 0.928479
\(730\) 0 0
\(731\) −31706.8 −1.60427
\(732\) 0 0
\(733\) −17254.0 −0.869430 −0.434715 0.900568i \(-0.643151\pi\)
−0.434715 + 0.900568i \(0.643151\pi\)
\(734\) 0 0
\(735\) 1415.59 0.0710406
\(736\) 0 0
\(737\) 3412.41 0.170553
\(738\) 0 0
\(739\) 16081.5 0.800495 0.400248 0.916407i \(-0.368924\pi\)
0.400248 + 0.916407i \(0.368924\pi\)
\(740\) 0 0
\(741\) −4264.33 −0.211409
\(742\) 0 0
\(743\) 38812.0 1.91638 0.958192 0.286126i \(-0.0923677\pi\)
0.958192 + 0.286126i \(0.0923677\pi\)
\(744\) 0 0
\(745\) −13666.0 −0.672060
\(746\) 0 0
\(747\) 17371.5 0.850857
\(748\) 0 0
\(749\) 6474.23 0.315839
\(750\) 0 0
\(751\) −18200.2 −0.884336 −0.442168 0.896932i \(-0.645790\pi\)
−0.442168 + 0.896932i \(0.645790\pi\)
\(752\) 0 0
\(753\) 22068.7 1.06803
\(754\) 0 0
\(755\) 14736.1 0.710334
\(756\) 0 0
\(757\) 4770.66 0.229052 0.114526 0.993420i \(-0.463465\pi\)
0.114526 + 0.993420i \(0.463465\pi\)
\(758\) 0 0
\(759\) 1529.79 0.0731594
\(760\) 0 0
\(761\) −21753.2 −1.03621 −0.518104 0.855318i \(-0.673362\pi\)
−0.518104 + 0.855318i \(0.673362\pi\)
\(762\) 0 0
\(763\) 7955.56 0.377471
\(764\) 0 0
\(765\) 11138.1 0.526405
\(766\) 0 0
\(767\) 12723.2 0.598968
\(768\) 0 0
\(769\) −34112.8 −1.59966 −0.799831 0.600225i \(-0.795078\pi\)
−0.799831 + 0.600225i \(0.795078\pi\)
\(770\) 0 0
\(771\) 12361.4 0.577413
\(772\) 0 0
\(773\) 17175.1 0.799155 0.399578 0.916699i \(-0.369157\pi\)
0.399578 + 0.916699i \(0.369157\pi\)
\(774\) 0 0
\(775\) −10261.8 −0.475634
\(776\) 0 0
\(777\) 8048.11 0.371588
\(778\) 0 0
\(779\) −6485.94 −0.298309
\(780\) 0 0
\(781\) −7756.21 −0.355364
\(782\) 0 0
\(783\) 7544.93 0.344360
\(784\) 0 0
\(785\) −23653.9 −1.07547
\(786\) 0 0
\(787\) −1855.57 −0.0840458 −0.0420229 0.999117i \(-0.513380\pi\)
−0.0420229 + 0.999117i \(0.513380\pi\)
\(788\) 0 0
\(789\) −4798.95 −0.216536
\(790\) 0 0
\(791\) −8103.26 −0.364246
\(792\) 0 0
\(793\) −43034.5 −1.92711
\(794\) 0 0
\(795\) 3438.00 0.153375
\(796\) 0 0
\(797\) 3010.78 0.133811 0.0669053 0.997759i \(-0.478687\pi\)
0.0669053 + 0.997759i \(0.478687\pi\)
\(798\) 0 0
\(799\) 45390.2 2.00975
\(800\) 0 0
\(801\) 7631.35 0.336630
\(802\) 0 0
\(803\) 3650.87 0.160444
\(804\) 0 0
\(805\) −1955.48 −0.0856170
\(806\) 0 0
\(807\) −22083.0 −0.963268
\(808\) 0 0
\(809\) 33945.5 1.47523 0.737614 0.675223i \(-0.235953\pi\)
0.737614 + 0.675223i \(0.235953\pi\)
\(810\) 0 0
\(811\) −30150.4 −1.30545 −0.652726 0.757594i \(-0.726375\pi\)
−0.652726 + 0.757594i \(0.726375\pi\)
\(812\) 0 0
\(813\) −11540.5 −0.497839
\(814\) 0 0
\(815\) −20858.9 −0.896510
\(816\) 0 0
\(817\) 5895.18 0.252443
\(818\) 0 0
\(819\) −4609.71 −0.196675
\(820\) 0 0
\(821\) 22041.9 0.936987 0.468493 0.883467i \(-0.344797\pi\)
0.468493 + 0.883467i \(0.344797\pi\)
\(822\) 0 0
\(823\) 3078.09 0.130371 0.0651855 0.997873i \(-0.479236\pi\)
0.0651855 + 0.997873i \(0.479236\pi\)
\(824\) 0 0
\(825\) 2793.71 0.117896
\(826\) 0 0
\(827\) −14942.4 −0.628293 −0.314147 0.949375i \(-0.601718\pi\)
−0.314147 + 0.949375i \(0.601718\pi\)
\(828\) 0 0
\(829\) 18817.5 0.788370 0.394185 0.919031i \(-0.371027\pi\)
0.394185 + 0.919031i \(0.371027\pi\)
\(830\) 0 0
\(831\) −24150.8 −1.00816
\(832\) 0 0
\(833\) 5678.01 0.236172
\(834\) 0 0
\(835\) −21284.6 −0.882137
\(836\) 0 0
\(837\) 23022.5 0.950745
\(838\) 0 0
\(839\) −16084.8 −0.661870 −0.330935 0.943654i \(-0.607364\pi\)
−0.330935 + 0.943654i \(0.607364\pi\)
\(840\) 0 0
\(841\) −21867.2 −0.896602
\(842\) 0 0
\(843\) −19564.4 −0.799328
\(844\) 0 0
\(845\) −4013.55 −0.163397
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) −12758.8 −0.515760
\(850\) 0 0
\(851\) −11117.6 −0.447833
\(852\) 0 0
\(853\) 11194.6 0.449349 0.224674 0.974434i \(-0.427868\pi\)
0.224674 + 0.974434i \(0.427868\pi\)
\(854\) 0 0
\(855\) −2070.89 −0.0828338
\(856\) 0 0
\(857\) −22452.5 −0.894937 −0.447469 0.894300i \(-0.647674\pi\)
−0.447469 + 0.894300i \(0.647674\pi\)
\(858\) 0 0
\(859\) −20481.7 −0.813534 −0.406767 0.913532i \(-0.633344\pi\)
−0.406767 + 0.913532i \(0.633344\pi\)
\(860\) 0 0
\(861\) 7991.69 0.316325
\(862\) 0 0
\(863\) 33713.7 1.32981 0.664905 0.746928i \(-0.268472\pi\)
0.664905 + 0.746928i \(0.268472\pi\)
\(864\) 0 0
\(865\) 5710.42 0.224462
\(866\) 0 0
\(867\) −32290.8 −1.26488
\(868\) 0 0
\(869\) 8942.28 0.349075
\(870\) 0 0
\(871\) −16190.5 −0.629845
\(872\) 0 0
\(873\) −12161.5 −0.471483
\(874\) 0 0
\(875\) −10236.7 −0.395500
\(876\) 0 0
\(877\) −26653.6 −1.02626 −0.513130 0.858311i \(-0.671514\pi\)
−0.513130 + 0.858311i \(0.671514\pi\)
\(878\) 0 0
\(879\) 8513.26 0.326672
\(880\) 0 0
\(881\) 14001.8 0.535453 0.267726 0.963495i \(-0.413728\pi\)
0.267726 + 0.963495i \(0.413728\pi\)
\(882\) 0 0
\(883\) −7233.02 −0.275663 −0.137832 0.990456i \(-0.544013\pi\)
−0.137832 + 0.990456i \(0.544013\pi\)
\(884\) 0 0
\(885\) −7042.81 −0.267504
\(886\) 0 0
\(887\) −33228.2 −1.25783 −0.628914 0.777475i \(-0.716500\pi\)
−0.628914 + 0.777475i \(0.716500\pi\)
\(888\) 0 0
\(889\) 13707.6 0.517140
\(890\) 0 0
\(891\) −2520.22 −0.0947595
\(892\) 0 0
\(893\) −8439.31 −0.316250
\(894\) 0 0
\(895\) 17020.5 0.635679
\(896\) 0 0
\(897\) −7258.27 −0.270174
\(898\) 0 0
\(899\) 7694.88 0.285471
\(900\) 0 0
\(901\) 13790.0 0.509891
\(902\) 0 0
\(903\) −7263.79 −0.267690
\(904\) 0 0
\(905\) 6999.26 0.257087
\(906\) 0 0
\(907\) −31926.4 −1.16880 −0.584399 0.811466i \(-0.698670\pi\)
−0.584399 + 0.811466i \(0.698670\pi\)
\(908\) 0 0
\(909\) 742.683 0.0270993
\(910\) 0 0
\(911\) 31486.0 1.14509 0.572545 0.819874i \(-0.305956\pi\)
0.572545 + 0.819874i \(0.305956\pi\)
\(912\) 0 0
\(913\) −15144.2 −0.548960
\(914\) 0 0
\(915\) 23821.3 0.860664
\(916\) 0 0
\(917\) 2242.99 0.0807743
\(918\) 0 0
\(919\) −18031.8 −0.647240 −0.323620 0.946187i \(-0.604900\pi\)
−0.323620 + 0.946187i \(0.604900\pi\)
\(920\) 0 0
\(921\) 440.163 0.0157480
\(922\) 0 0
\(923\) 36800.2 1.31234
\(924\) 0 0
\(925\) −20302.9 −0.721683
\(926\) 0 0
\(927\) −7319.86 −0.259348
\(928\) 0 0
\(929\) 9760.08 0.344691 0.172345 0.985037i \(-0.444865\pi\)
0.172345 + 0.985037i \(0.444865\pi\)
\(930\) 0 0
\(931\) −1055.70 −0.0371635
\(932\) 0 0
\(933\) −32764.3 −1.14968
\(934\) 0 0
\(935\) −9710.05 −0.339628
\(936\) 0 0
\(937\) −16441.1 −0.573221 −0.286611 0.958047i \(-0.592529\pi\)
−0.286611 + 0.958047i \(0.592529\pi\)
\(938\) 0 0
\(939\) −18613.6 −0.646892
\(940\) 0 0
\(941\) −38520.8 −1.33448 −0.667239 0.744844i \(-0.732524\pi\)
−0.667239 + 0.744844i \(0.732524\pi\)
\(942\) 0 0
\(943\) −11039.6 −0.381230
\(944\) 0 0
\(945\) 8011.80 0.275792
\(946\) 0 0
\(947\) −36712.7 −1.25977 −0.629885 0.776688i \(-0.716898\pi\)
−0.629885 + 0.776688i \(0.716898\pi\)
\(948\) 0 0
\(949\) −17322.0 −0.592513
\(950\) 0 0
\(951\) −4680.82 −0.159607
\(952\) 0 0
\(953\) 2875.31 0.0977340 0.0488670 0.998805i \(-0.484439\pi\)
0.0488670 + 0.998805i \(0.484439\pi\)
\(954\) 0 0
\(955\) −32056.4 −1.08620
\(956\) 0 0
\(957\) −2094.87 −0.0707603
\(958\) 0 0
\(959\) 13117.5 0.441694
\(960\) 0 0
\(961\) −6310.96 −0.211841
\(962\) 0 0
\(963\) 11670.1 0.390511
\(964\) 0 0
\(965\) −35586.1 −1.18711
\(966\) 0 0
\(967\) 18435.7 0.613082 0.306541 0.951857i \(-0.400828\pi\)
0.306541 + 0.951857i \(0.400828\pi\)
\(968\) 0 0
\(969\) 9467.99 0.313886
\(970\) 0 0
\(971\) −10382.8 −0.343152 −0.171576 0.985171i \(-0.554886\pi\)
−0.171576 + 0.985171i \(0.554886\pi\)
\(972\) 0 0
\(973\) 3562.49 0.117377
\(974\) 0 0
\(975\) −13255.1 −0.435386
\(976\) 0 0
\(977\) 44121.6 1.44481 0.722403 0.691472i \(-0.243037\pi\)
0.722403 + 0.691472i \(0.243037\pi\)
\(978\) 0 0
\(979\) −6652.90 −0.217188
\(980\) 0 0
\(981\) 14340.2 0.466716
\(982\) 0 0
\(983\) −14664.0 −0.475798 −0.237899 0.971290i \(-0.576459\pi\)
−0.237899 + 0.971290i \(0.576459\pi\)
\(984\) 0 0
\(985\) 17407.9 0.563109
\(986\) 0 0
\(987\) 10398.6 0.335349
\(988\) 0 0
\(989\) 10034.1 0.322615
\(990\) 0 0
\(991\) −39530.0 −1.26711 −0.633557 0.773696i \(-0.718406\pi\)
−0.633557 + 0.773696i \(0.718406\pi\)
\(992\) 0 0
\(993\) 1419.85 0.0453752
\(994\) 0 0
\(995\) 24363.1 0.776244
\(996\) 0 0
\(997\) 47679.5 1.51457 0.757284 0.653086i \(-0.226526\pi\)
0.757284 + 0.653086i \(0.226526\pi\)
\(998\) 0 0
\(999\) 45549.7 1.44257
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.4.a.d.1.2 4
4.3 odd 2 1232.4.a.v.1.3 4
7.6 odd 2 2156.4.a.f.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.a.d.1.2 4 1.1 even 1 trivial
1232.4.a.v.1.3 4 4.3 odd 2
2156.4.a.f.1.3 4 7.6 odd 2