Properties

Label 308.4.a.d.1.1
Level $308$
Weight $4$
Character 308.1
Self dual yes
Analytic conductor $18.173$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,4,Mod(1,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 308.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1725882818\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 43x^{2} - 11x + 222 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.25471\) of defining polynomial
Character \(\chi\) \(=\) 308.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.25471 q^{3} +17.1213 q^{5} -7.00000 q^{7} +12.1213 q^{9} +11.0000 q^{11} +51.7778 q^{13} -107.089 q^{15} -104.255 q^{17} +10.6685 q^{19} +43.7829 q^{21} -9.26667 q^{23} +168.140 q^{25} +93.0616 q^{27} +223.275 q^{29} -237.641 q^{31} -68.8018 q^{33} -119.849 q^{35} +361.973 q^{37} -323.855 q^{39} +273.492 q^{41} +149.666 q^{43} +207.534 q^{45} +531.944 q^{47} +49.0000 q^{49} +652.083 q^{51} +408.170 q^{53} +188.335 q^{55} -66.7280 q^{57} +416.905 q^{59} +393.132 q^{61} -84.8494 q^{63} +886.505 q^{65} -1042.79 q^{67} +57.9603 q^{69} -552.909 q^{71} +724.799 q^{73} -1051.67 q^{75} -77.0000 q^{77} -516.261 q^{79} -909.349 q^{81} +1396.82 q^{83} -1784.98 q^{85} -1396.52 q^{87} -329.372 q^{89} -362.444 q^{91} +1486.37 q^{93} +182.658 q^{95} -10.6082 q^{97} +133.335 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} + q^{5} - 28 q^{7} - 19 q^{9} + 44 q^{11} + 98 q^{13} - 33 q^{15} + 64 q^{17} + 114 q^{19} + 21 q^{21} + 231 q^{23} + 417 q^{25} + 63 q^{27} + 268 q^{29} + 33 q^{31} - 33 q^{33} - 7 q^{35}+ \cdots - 209 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.25471 −1.20372 −0.601859 0.798602i \(-0.705573\pi\)
−0.601859 + 0.798602i \(0.705573\pi\)
\(4\) 0 0
\(5\) 17.1213 1.53138 0.765690 0.643210i \(-0.222398\pi\)
0.765690 + 0.643210i \(0.222398\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 12.1213 0.448939
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) 51.7778 1.10466 0.552330 0.833626i \(-0.313739\pi\)
0.552330 + 0.833626i \(0.313739\pi\)
\(14\) 0 0
\(15\) −107.089 −1.84335
\(16\) 0 0
\(17\) −104.255 −1.48738 −0.743691 0.668523i \(-0.766927\pi\)
−0.743691 + 0.668523i \(0.766927\pi\)
\(18\) 0 0
\(19\) 10.6685 0.128816 0.0644082 0.997924i \(-0.479484\pi\)
0.0644082 + 0.997924i \(0.479484\pi\)
\(20\) 0 0
\(21\) 43.7829 0.454963
\(22\) 0 0
\(23\) −9.26667 −0.0840102 −0.0420051 0.999117i \(-0.513375\pi\)
−0.0420051 + 0.999117i \(0.513375\pi\)
\(24\) 0 0
\(25\) 168.140 1.34512
\(26\) 0 0
\(27\) 93.0616 0.663323
\(28\) 0 0
\(29\) 223.275 1.42969 0.714847 0.699281i \(-0.246496\pi\)
0.714847 + 0.699281i \(0.246496\pi\)
\(30\) 0 0
\(31\) −237.641 −1.37682 −0.688412 0.725320i \(-0.741692\pi\)
−0.688412 + 0.725320i \(0.741692\pi\)
\(32\) 0 0
\(33\) −68.8018 −0.362935
\(34\) 0 0
\(35\) −119.849 −0.578807
\(36\) 0 0
\(37\) 361.973 1.60832 0.804161 0.594411i \(-0.202615\pi\)
0.804161 + 0.594411i \(0.202615\pi\)
\(38\) 0 0
\(39\) −323.855 −1.32970
\(40\) 0 0
\(41\) 273.492 1.04176 0.520881 0.853629i \(-0.325603\pi\)
0.520881 + 0.853629i \(0.325603\pi\)
\(42\) 0 0
\(43\) 149.666 0.530789 0.265394 0.964140i \(-0.414498\pi\)
0.265394 + 0.964140i \(0.414498\pi\)
\(44\) 0 0
\(45\) 207.534 0.687495
\(46\) 0 0
\(47\) 531.944 1.65089 0.825447 0.564480i \(-0.190923\pi\)
0.825447 + 0.564480i \(0.190923\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 652.083 1.79039
\(52\) 0 0
\(53\) 408.170 1.05786 0.528928 0.848667i \(-0.322594\pi\)
0.528928 + 0.848667i \(0.322594\pi\)
\(54\) 0 0
\(55\) 188.335 0.461728
\(56\) 0 0
\(57\) −66.7280 −0.155059
\(58\) 0 0
\(59\) 416.905 0.919938 0.459969 0.887935i \(-0.347860\pi\)
0.459969 + 0.887935i \(0.347860\pi\)
\(60\) 0 0
\(61\) 393.132 0.825170 0.412585 0.910919i \(-0.364626\pi\)
0.412585 + 0.910919i \(0.364626\pi\)
\(62\) 0 0
\(63\) −84.8494 −0.169683
\(64\) 0 0
\(65\) 886.505 1.69165
\(66\) 0 0
\(67\) −1042.79 −1.90145 −0.950723 0.310043i \(-0.899657\pi\)
−0.950723 + 0.310043i \(0.899657\pi\)
\(68\) 0 0
\(69\) 57.9603 0.101125
\(70\) 0 0
\(71\) −552.909 −0.924200 −0.462100 0.886828i \(-0.652904\pi\)
−0.462100 + 0.886828i \(0.652904\pi\)
\(72\) 0 0
\(73\) 724.799 1.16207 0.581036 0.813878i \(-0.302647\pi\)
0.581036 + 0.813878i \(0.302647\pi\)
\(74\) 0 0
\(75\) −1051.67 −1.61915
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −516.261 −0.735239 −0.367620 0.929976i \(-0.619827\pi\)
−0.367620 + 0.929976i \(0.619827\pi\)
\(80\) 0 0
\(81\) −909.349 −1.24739
\(82\) 0 0
\(83\) 1396.82 1.84724 0.923621 0.383306i \(-0.125215\pi\)
0.923621 + 0.383306i \(0.125215\pi\)
\(84\) 0 0
\(85\) −1784.98 −2.27775
\(86\) 0 0
\(87\) −1396.52 −1.72095
\(88\) 0 0
\(89\) −329.372 −0.392285 −0.196142 0.980575i \(-0.562841\pi\)
−0.196142 + 0.980575i \(0.562841\pi\)
\(90\) 0 0
\(91\) −362.444 −0.417522
\(92\) 0 0
\(93\) 1486.37 1.65731
\(94\) 0 0
\(95\) 182.658 0.197267
\(96\) 0 0
\(97\) −10.6082 −0.0111042 −0.00555208 0.999985i \(-0.501767\pi\)
−0.00555208 + 0.999985i \(0.501767\pi\)
\(98\) 0 0
\(99\) 133.335 0.135360
\(100\) 0 0
\(101\) −1303.55 −1.28424 −0.642118 0.766606i \(-0.721944\pi\)
−0.642118 + 0.766606i \(0.721944\pi\)
\(102\) 0 0
\(103\) 27.0841 0.0259095 0.0129547 0.999916i \(-0.495876\pi\)
0.0129547 + 0.999916i \(0.495876\pi\)
\(104\) 0 0
\(105\) 749.623 0.696721
\(106\) 0 0
\(107\) −284.914 −0.257417 −0.128709 0.991682i \(-0.541083\pi\)
−0.128709 + 0.991682i \(0.541083\pi\)
\(108\) 0 0
\(109\) −357.655 −0.314286 −0.157143 0.987576i \(-0.550228\pi\)
−0.157143 + 0.987576i \(0.550228\pi\)
\(110\) 0 0
\(111\) −2264.03 −1.93597
\(112\) 0 0
\(113\) −1354.20 −1.12737 −0.563685 0.825990i \(-0.690617\pi\)
−0.563685 + 0.825990i \(0.690617\pi\)
\(114\) 0 0
\(115\) −158.658 −0.128651
\(116\) 0 0
\(117\) 627.616 0.495924
\(118\) 0 0
\(119\) 729.783 0.562178
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −1710.61 −1.25399
\(124\) 0 0
\(125\) 738.620 0.528513
\(126\) 0 0
\(127\) 1253.58 0.875886 0.437943 0.899003i \(-0.355707\pi\)
0.437943 + 0.899003i \(0.355707\pi\)
\(128\) 0 0
\(129\) −936.120 −0.638921
\(130\) 0 0
\(131\) 1998.97 1.33321 0.666605 0.745411i \(-0.267747\pi\)
0.666605 + 0.745411i \(0.267747\pi\)
\(132\) 0 0
\(133\) −74.6792 −0.0486880
\(134\) 0 0
\(135\) 1593.34 1.01580
\(136\) 0 0
\(137\) 1885.33 1.17573 0.587863 0.808960i \(-0.299969\pi\)
0.587863 + 0.808960i \(0.299969\pi\)
\(138\) 0 0
\(139\) 2008.67 1.22571 0.612853 0.790197i \(-0.290022\pi\)
0.612853 + 0.790197i \(0.290022\pi\)
\(140\) 0 0
\(141\) −3327.15 −1.98721
\(142\) 0 0
\(143\) 569.555 0.333067
\(144\) 0 0
\(145\) 3822.77 2.18940
\(146\) 0 0
\(147\) −306.481 −0.171960
\(148\) 0 0
\(149\) −2222.24 −1.22183 −0.610916 0.791695i \(-0.709199\pi\)
−0.610916 + 0.791695i \(0.709199\pi\)
\(150\) 0 0
\(151\) 1174.25 0.632840 0.316420 0.948619i \(-0.397519\pi\)
0.316420 + 0.948619i \(0.397519\pi\)
\(152\) 0 0
\(153\) −1263.71 −0.667743
\(154\) 0 0
\(155\) −4068.73 −2.10844
\(156\) 0 0
\(157\) 2737.25 1.39144 0.695720 0.718313i \(-0.255085\pi\)
0.695720 + 0.718313i \(0.255085\pi\)
\(158\) 0 0
\(159\) −2552.98 −1.27336
\(160\) 0 0
\(161\) 64.8667 0.0317529
\(162\) 0 0
\(163\) −310.189 −0.149055 −0.0745273 0.997219i \(-0.523745\pi\)
−0.0745273 + 0.997219i \(0.523745\pi\)
\(164\) 0 0
\(165\) −1177.98 −0.555791
\(166\) 0 0
\(167\) −2151.91 −0.997124 −0.498562 0.866854i \(-0.666138\pi\)
−0.498562 + 0.866854i \(0.666138\pi\)
\(168\) 0 0
\(169\) 483.938 0.220272
\(170\) 0 0
\(171\) 129.316 0.0578306
\(172\) 0 0
\(173\) −2368.70 −1.04098 −0.520489 0.853869i \(-0.674250\pi\)
−0.520489 + 0.853869i \(0.674250\pi\)
\(174\) 0 0
\(175\) −1176.98 −0.508408
\(176\) 0 0
\(177\) −2607.62 −1.10735
\(178\) 0 0
\(179\) 1269.04 0.529901 0.264950 0.964262i \(-0.414644\pi\)
0.264950 + 0.964262i \(0.414644\pi\)
\(180\) 0 0
\(181\) −357.969 −0.147003 −0.0735017 0.997295i \(-0.523417\pi\)
−0.0735017 + 0.997295i \(0.523417\pi\)
\(182\) 0 0
\(183\) −2458.92 −0.993273
\(184\) 0 0
\(185\) 6197.46 2.46295
\(186\) 0 0
\(187\) −1146.80 −0.448463
\(188\) 0 0
\(189\) −651.431 −0.250713
\(190\) 0 0
\(191\) −2230.57 −0.845016 −0.422508 0.906359i \(-0.638850\pi\)
−0.422508 + 0.906359i \(0.638850\pi\)
\(192\) 0 0
\(193\) −4323.07 −1.61234 −0.806169 0.591685i \(-0.798463\pi\)
−0.806169 + 0.591685i \(0.798463\pi\)
\(194\) 0 0
\(195\) −5544.83 −2.03627
\(196\) 0 0
\(197\) −553.415 −0.200148 −0.100074 0.994980i \(-0.531908\pi\)
−0.100074 + 0.994980i \(0.531908\pi\)
\(198\) 0 0
\(199\) 1669.85 0.594836 0.297418 0.954747i \(-0.403874\pi\)
0.297418 + 0.954747i \(0.403874\pi\)
\(200\) 0 0
\(201\) 6522.33 2.28881
\(202\) 0 0
\(203\) −1562.93 −0.540374
\(204\) 0 0
\(205\) 4682.55 1.59533
\(206\) 0 0
\(207\) −112.324 −0.0377154
\(208\) 0 0
\(209\) 117.353 0.0388396
\(210\) 0 0
\(211\) 3562.75 1.16242 0.581208 0.813755i \(-0.302580\pi\)
0.581208 + 0.813755i \(0.302580\pi\)
\(212\) 0 0
\(213\) 3458.28 1.11248
\(214\) 0 0
\(215\) 2562.49 0.812839
\(216\) 0 0
\(217\) 1663.49 0.520390
\(218\) 0 0
\(219\) −4533.40 −1.39881
\(220\) 0 0
\(221\) −5398.08 −1.64305
\(222\) 0 0
\(223\) −1334.49 −0.400735 −0.200368 0.979721i \(-0.564214\pi\)
−0.200368 + 0.979721i \(0.564214\pi\)
\(224\) 0 0
\(225\) 2038.09 0.603877
\(226\) 0 0
\(227\) 2334.36 0.682541 0.341271 0.939965i \(-0.389143\pi\)
0.341271 + 0.939965i \(0.389143\pi\)
\(228\) 0 0
\(229\) −4512.13 −1.30205 −0.651026 0.759055i \(-0.725661\pi\)
−0.651026 + 0.759055i \(0.725661\pi\)
\(230\) 0 0
\(231\) 481.612 0.137176
\(232\) 0 0
\(233\) −173.678 −0.0488327 −0.0244164 0.999702i \(-0.507773\pi\)
−0.0244164 + 0.999702i \(0.507773\pi\)
\(234\) 0 0
\(235\) 9107.59 2.52814
\(236\) 0 0
\(237\) 3229.06 0.885021
\(238\) 0 0
\(239\) −4781.56 −1.29411 −0.647057 0.762442i \(-0.724000\pi\)
−0.647057 + 0.762442i \(0.724000\pi\)
\(240\) 0 0
\(241\) 1574.30 0.420787 0.210394 0.977617i \(-0.432525\pi\)
0.210394 + 0.977617i \(0.432525\pi\)
\(242\) 0 0
\(243\) 3175.05 0.838187
\(244\) 0 0
\(245\) 838.946 0.218768
\(246\) 0 0
\(247\) 552.389 0.142298
\(248\) 0 0
\(249\) −8736.71 −2.22356
\(250\) 0 0
\(251\) −3835.27 −0.964462 −0.482231 0.876044i \(-0.660173\pi\)
−0.482231 + 0.876044i \(0.660173\pi\)
\(252\) 0 0
\(253\) −101.933 −0.0253300
\(254\) 0 0
\(255\) 11164.5 2.74177
\(256\) 0 0
\(257\) 6643.79 1.61256 0.806281 0.591533i \(-0.201477\pi\)
0.806281 + 0.591533i \(0.201477\pi\)
\(258\) 0 0
\(259\) −2533.81 −0.607889
\(260\) 0 0
\(261\) 2706.39 0.641845
\(262\) 0 0
\(263\) −4597.37 −1.07789 −0.538947 0.842340i \(-0.681178\pi\)
−0.538947 + 0.842340i \(0.681178\pi\)
\(264\) 0 0
\(265\) 6988.41 1.61998
\(266\) 0 0
\(267\) 2060.12 0.472201
\(268\) 0 0
\(269\) −1944.55 −0.440749 −0.220375 0.975415i \(-0.570728\pi\)
−0.220375 + 0.975415i \(0.570728\pi\)
\(270\) 0 0
\(271\) −1524.87 −0.341806 −0.170903 0.985288i \(-0.554668\pi\)
−0.170903 + 0.985288i \(0.554668\pi\)
\(272\) 0 0
\(273\) 2266.98 0.502579
\(274\) 0 0
\(275\) 1849.54 0.405570
\(276\) 0 0
\(277\) 2785.41 0.604184 0.302092 0.953279i \(-0.402315\pi\)
0.302092 + 0.953279i \(0.402315\pi\)
\(278\) 0 0
\(279\) −2880.52 −0.618109
\(280\) 0 0
\(281\) −1731.31 −0.367549 −0.183775 0.982968i \(-0.558832\pi\)
−0.183775 + 0.982968i \(0.558832\pi\)
\(282\) 0 0
\(283\) 2587.78 0.543561 0.271780 0.962359i \(-0.412388\pi\)
0.271780 + 0.962359i \(0.412388\pi\)
\(284\) 0 0
\(285\) −1142.47 −0.237454
\(286\) 0 0
\(287\) −1914.44 −0.393749
\(288\) 0 0
\(289\) 5956.06 1.21231
\(290\) 0 0
\(291\) 66.3515 0.0133663
\(292\) 0 0
\(293\) −2948.77 −0.587949 −0.293974 0.955813i \(-0.594978\pi\)
−0.293974 + 0.955813i \(0.594978\pi\)
\(294\) 0 0
\(295\) 7137.97 1.40877
\(296\) 0 0
\(297\) 1023.68 0.199999
\(298\) 0 0
\(299\) −479.808 −0.0928026
\(300\) 0 0
\(301\) −1047.67 −0.200619
\(302\) 0 0
\(303\) 8153.31 1.54586
\(304\) 0 0
\(305\) 6730.95 1.26365
\(306\) 0 0
\(307\) 674.370 0.125369 0.0626846 0.998033i \(-0.480034\pi\)
0.0626846 + 0.998033i \(0.480034\pi\)
\(308\) 0 0
\(309\) −169.403 −0.0311877
\(310\) 0 0
\(311\) −6705.01 −1.22253 −0.611264 0.791426i \(-0.709339\pi\)
−0.611264 + 0.791426i \(0.709339\pi\)
\(312\) 0 0
\(313\) −9621.90 −1.73758 −0.868789 0.495182i \(-0.835101\pi\)
−0.868789 + 0.495182i \(0.835101\pi\)
\(314\) 0 0
\(315\) −1452.74 −0.259849
\(316\) 0 0
\(317\) 4107.58 0.727774 0.363887 0.931443i \(-0.381449\pi\)
0.363887 + 0.931443i \(0.381449\pi\)
\(318\) 0 0
\(319\) 2456.03 0.431069
\(320\) 0 0
\(321\) 1782.05 0.309858
\(322\) 0 0
\(323\) −1112.24 −0.191599
\(324\) 0 0
\(325\) 8705.93 1.48590
\(326\) 0 0
\(327\) 2237.03 0.378312
\(328\) 0 0
\(329\) −3723.61 −0.623979
\(330\) 0 0
\(331\) −8663.71 −1.43867 −0.719336 0.694662i \(-0.755554\pi\)
−0.719336 + 0.694662i \(0.755554\pi\)
\(332\) 0 0
\(333\) 4387.59 0.722038
\(334\) 0 0
\(335\) −17853.9 −2.91183
\(336\) 0 0
\(337\) 1631.87 0.263780 0.131890 0.991264i \(-0.457895\pi\)
0.131890 + 0.991264i \(0.457895\pi\)
\(338\) 0 0
\(339\) 8470.15 1.35704
\(340\) 0 0
\(341\) −2614.05 −0.415128
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 992.358 0.154860
\(346\) 0 0
\(347\) 4472.09 0.691858 0.345929 0.938261i \(-0.387564\pi\)
0.345929 + 0.938261i \(0.387564\pi\)
\(348\) 0 0
\(349\) 3460.47 0.530758 0.265379 0.964144i \(-0.414503\pi\)
0.265379 + 0.964144i \(0.414503\pi\)
\(350\) 0 0
\(351\) 4818.52 0.732746
\(352\) 0 0
\(353\) −1926.77 −0.290514 −0.145257 0.989394i \(-0.546401\pi\)
−0.145257 + 0.989394i \(0.546401\pi\)
\(354\) 0 0
\(355\) −9466.54 −1.41530
\(356\) 0 0
\(357\) −4564.58 −0.676704
\(358\) 0 0
\(359\) 1256.66 0.184747 0.0923733 0.995724i \(-0.470555\pi\)
0.0923733 + 0.995724i \(0.470555\pi\)
\(360\) 0 0
\(361\) −6745.18 −0.983406
\(362\) 0 0
\(363\) −756.819 −0.109429
\(364\) 0 0
\(365\) 12409.5 1.77957
\(366\) 0 0
\(367\) 6976.14 0.992238 0.496119 0.868254i \(-0.334758\pi\)
0.496119 + 0.868254i \(0.334758\pi\)
\(368\) 0 0
\(369\) 3315.09 0.467687
\(370\) 0 0
\(371\) −2857.19 −0.399832
\(372\) 0 0
\(373\) −1727.72 −0.239834 −0.119917 0.992784i \(-0.538263\pi\)
−0.119917 + 0.992784i \(0.538263\pi\)
\(374\) 0 0
\(375\) −4619.85 −0.636181
\(376\) 0 0
\(377\) 11560.7 1.57933
\(378\) 0 0
\(379\) −439.486 −0.0595643 −0.0297822 0.999556i \(-0.509481\pi\)
−0.0297822 + 0.999556i \(0.509481\pi\)
\(380\) 0 0
\(381\) −7840.79 −1.05432
\(382\) 0 0
\(383\) 5054.81 0.674382 0.337191 0.941436i \(-0.390523\pi\)
0.337191 + 0.941436i \(0.390523\pi\)
\(384\) 0 0
\(385\) −1318.34 −0.174517
\(386\) 0 0
\(387\) 1814.16 0.238292
\(388\) 0 0
\(389\) −8651.92 −1.12769 −0.563843 0.825882i \(-0.690678\pi\)
−0.563843 + 0.825882i \(0.690678\pi\)
\(390\) 0 0
\(391\) 966.095 0.124955
\(392\) 0 0
\(393\) −12502.9 −1.60481
\(394\) 0 0
\(395\) −8839.08 −1.12593
\(396\) 0 0
\(397\) −5525.88 −0.698579 −0.349290 0.937015i \(-0.613577\pi\)
−0.349290 + 0.937015i \(0.613577\pi\)
\(398\) 0 0
\(399\) 467.096 0.0586067
\(400\) 0 0
\(401\) 4581.53 0.570551 0.285275 0.958446i \(-0.407915\pi\)
0.285275 + 0.958446i \(0.407915\pi\)
\(402\) 0 0
\(403\) −12304.5 −1.52092
\(404\) 0 0
\(405\) −15569.3 −1.91023
\(406\) 0 0
\(407\) 3981.70 0.484928
\(408\) 0 0
\(409\) 15452.5 1.86816 0.934079 0.357067i \(-0.116223\pi\)
0.934079 + 0.357067i \(0.116223\pi\)
\(410\) 0 0
\(411\) −11792.2 −1.41524
\(412\) 0 0
\(413\) −2918.33 −0.347704
\(414\) 0 0
\(415\) 23915.5 2.82883
\(416\) 0 0
\(417\) −12563.6 −1.47540
\(418\) 0 0
\(419\) −12626.7 −1.47221 −0.736105 0.676867i \(-0.763337\pi\)
−0.736105 + 0.676867i \(0.763337\pi\)
\(420\) 0 0
\(421\) −7718.68 −0.893553 −0.446776 0.894646i \(-0.647428\pi\)
−0.446776 + 0.894646i \(0.647428\pi\)
\(422\) 0 0
\(423\) 6447.87 0.741150
\(424\) 0 0
\(425\) −17529.4 −2.00071
\(426\) 0 0
\(427\) −2751.92 −0.311885
\(428\) 0 0
\(429\) −3562.40 −0.400919
\(430\) 0 0
\(431\) 7452.18 0.832852 0.416426 0.909170i \(-0.363283\pi\)
0.416426 + 0.909170i \(0.363283\pi\)
\(432\) 0 0
\(433\) −6247.78 −0.693416 −0.346708 0.937973i \(-0.612700\pi\)
−0.346708 + 0.937973i \(0.612700\pi\)
\(434\) 0 0
\(435\) −23910.3 −2.63543
\(436\) 0 0
\(437\) −98.8611 −0.0108219
\(438\) 0 0
\(439\) 15177.2 1.65004 0.825020 0.565104i \(-0.191164\pi\)
0.825020 + 0.565104i \(0.191164\pi\)
\(440\) 0 0
\(441\) 593.946 0.0641341
\(442\) 0 0
\(443\) 6242.85 0.669541 0.334770 0.942300i \(-0.391341\pi\)
0.334770 + 0.942300i \(0.391341\pi\)
\(444\) 0 0
\(445\) −5639.29 −0.600737
\(446\) 0 0
\(447\) 13899.5 1.47074
\(448\) 0 0
\(449\) −15058.3 −1.58273 −0.791366 0.611343i \(-0.790630\pi\)
−0.791366 + 0.611343i \(0.790630\pi\)
\(450\) 0 0
\(451\) 3008.41 0.314103
\(452\) 0 0
\(453\) −7344.57 −0.761762
\(454\) 0 0
\(455\) −6205.53 −0.639384
\(456\) 0 0
\(457\) 2560.84 0.262125 0.131063 0.991374i \(-0.458161\pi\)
0.131063 + 0.991374i \(0.458161\pi\)
\(458\) 0 0
\(459\) −9702.12 −0.986615
\(460\) 0 0
\(461\) −9820.30 −0.992141 −0.496071 0.868282i \(-0.665224\pi\)
−0.496071 + 0.868282i \(0.665224\pi\)
\(462\) 0 0
\(463\) 14118.1 1.41711 0.708557 0.705653i \(-0.249346\pi\)
0.708557 + 0.705653i \(0.249346\pi\)
\(464\) 0 0
\(465\) 25448.7 2.53797
\(466\) 0 0
\(467\) 2199.62 0.217958 0.108979 0.994044i \(-0.465242\pi\)
0.108979 + 0.994044i \(0.465242\pi\)
\(468\) 0 0
\(469\) 7299.52 0.718679
\(470\) 0 0
\(471\) −17120.7 −1.67490
\(472\) 0 0
\(473\) 1646.33 0.160039
\(474\) 0 0
\(475\) 1793.80 0.173274
\(476\) 0 0
\(477\) 4947.56 0.474913
\(478\) 0 0
\(479\) −10629.7 −1.01395 −0.506977 0.861960i \(-0.669237\pi\)
−0.506977 + 0.861960i \(0.669237\pi\)
\(480\) 0 0
\(481\) 18742.1 1.77665
\(482\) 0 0
\(483\) −405.722 −0.0382215
\(484\) 0 0
\(485\) −181.627 −0.0170047
\(486\) 0 0
\(487\) −13822.7 −1.28617 −0.643086 0.765794i \(-0.722346\pi\)
−0.643086 + 0.765794i \(0.722346\pi\)
\(488\) 0 0
\(489\) 1940.14 0.179420
\(490\) 0 0
\(491\) −4112.53 −0.377996 −0.188998 0.981977i \(-0.560524\pi\)
−0.188998 + 0.981977i \(0.560524\pi\)
\(492\) 0 0
\(493\) −23277.5 −2.12650
\(494\) 0 0
\(495\) 2282.87 0.207288
\(496\) 0 0
\(497\) 3870.36 0.349315
\(498\) 0 0
\(499\) −14392.5 −1.29117 −0.645587 0.763687i \(-0.723387\pi\)
−0.645587 + 0.763687i \(0.723387\pi\)
\(500\) 0 0
\(501\) 13459.6 1.20026
\(502\) 0 0
\(503\) 18788.3 1.66546 0.832732 0.553676i \(-0.186775\pi\)
0.832732 + 0.553676i \(0.186775\pi\)
\(504\) 0 0
\(505\) −22318.5 −1.96665
\(506\) 0 0
\(507\) −3026.89 −0.265145
\(508\) 0 0
\(509\) 15738.9 1.37056 0.685278 0.728282i \(-0.259681\pi\)
0.685278 + 0.728282i \(0.259681\pi\)
\(510\) 0 0
\(511\) −5073.59 −0.439222
\(512\) 0 0
\(513\) 992.824 0.0854469
\(514\) 0 0
\(515\) 463.716 0.0396772
\(516\) 0 0
\(517\) 5851.38 0.497763
\(518\) 0 0
\(519\) 14815.5 1.25304
\(520\) 0 0
\(521\) −3426.41 −0.288126 −0.144063 0.989569i \(-0.546017\pi\)
−0.144063 + 0.989569i \(0.546017\pi\)
\(522\) 0 0
\(523\) 17110.3 1.43056 0.715279 0.698839i \(-0.246300\pi\)
0.715279 + 0.698839i \(0.246300\pi\)
\(524\) 0 0
\(525\) 7361.68 0.611981
\(526\) 0 0
\(527\) 24775.2 2.04786
\(528\) 0 0
\(529\) −12081.1 −0.992942
\(530\) 0 0
\(531\) 5053.44 0.412996
\(532\) 0 0
\(533\) 14160.8 1.15079
\(534\) 0 0
\(535\) −4878.10 −0.394203
\(536\) 0 0
\(537\) −7937.45 −0.637851
\(538\) 0 0
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) 4624.29 0.367493 0.183746 0.982974i \(-0.441177\pi\)
0.183746 + 0.982974i \(0.441177\pi\)
\(542\) 0 0
\(543\) 2238.99 0.176951
\(544\) 0 0
\(545\) −6123.53 −0.481291
\(546\) 0 0
\(547\) −2710.72 −0.211887 −0.105943 0.994372i \(-0.533786\pi\)
−0.105943 + 0.994372i \(0.533786\pi\)
\(548\) 0 0
\(549\) 4765.29 0.370451
\(550\) 0 0
\(551\) 2382.00 0.184168
\(552\) 0 0
\(553\) 3613.83 0.277894
\(554\) 0 0
\(555\) −38763.3 −2.96470
\(556\) 0 0
\(557\) 11574.4 0.880476 0.440238 0.897881i \(-0.354894\pi\)
0.440238 + 0.897881i \(0.354894\pi\)
\(558\) 0 0
\(559\) 7749.40 0.586341
\(560\) 0 0
\(561\) 7172.91 0.539823
\(562\) 0 0
\(563\) −3321.46 −0.248637 −0.124319 0.992242i \(-0.539674\pi\)
−0.124319 + 0.992242i \(0.539674\pi\)
\(564\) 0 0
\(565\) −23185.8 −1.72643
\(566\) 0 0
\(567\) 6365.45 0.471470
\(568\) 0 0
\(569\) −11684.6 −0.860889 −0.430444 0.902617i \(-0.641643\pi\)
−0.430444 + 0.902617i \(0.641643\pi\)
\(570\) 0 0
\(571\) 16714.8 1.22503 0.612517 0.790458i \(-0.290157\pi\)
0.612517 + 0.790458i \(0.290157\pi\)
\(572\) 0 0
\(573\) 13951.5 1.01716
\(574\) 0 0
\(575\) −1558.10 −0.113004
\(576\) 0 0
\(577\) 26798.6 1.93352 0.966759 0.255690i \(-0.0823025\pi\)
0.966759 + 0.255690i \(0.0823025\pi\)
\(578\) 0 0
\(579\) 27039.5 1.94080
\(580\) 0 0
\(581\) −9777.75 −0.698192
\(582\) 0 0
\(583\) 4489.86 0.318956
\(584\) 0 0
\(585\) 10745.6 0.759448
\(586\) 0 0
\(587\) 10893.3 0.765955 0.382978 0.923758i \(-0.374899\pi\)
0.382978 + 0.923758i \(0.374899\pi\)
\(588\) 0 0
\(589\) −2535.26 −0.177357
\(590\) 0 0
\(591\) 3461.45 0.240922
\(592\) 0 0
\(593\) −27442.2 −1.90037 −0.950183 0.311693i \(-0.899104\pi\)
−0.950183 + 0.311693i \(0.899104\pi\)
\(594\) 0 0
\(595\) 12494.9 0.860907
\(596\) 0 0
\(597\) −10444.4 −0.716016
\(598\) 0 0
\(599\) 14171.3 0.966650 0.483325 0.875441i \(-0.339429\pi\)
0.483325 + 0.875441i \(0.339429\pi\)
\(600\) 0 0
\(601\) −7536.43 −0.511510 −0.255755 0.966742i \(-0.582324\pi\)
−0.255755 + 0.966742i \(0.582324\pi\)
\(602\) 0 0
\(603\) −12640.0 −0.853632
\(604\) 0 0
\(605\) 2071.68 0.139216
\(606\) 0 0
\(607\) 18503.3 1.23727 0.618637 0.785677i \(-0.287685\pi\)
0.618637 + 0.785677i \(0.287685\pi\)
\(608\) 0 0
\(609\) 9775.64 0.650458
\(610\) 0 0
\(611\) 27542.9 1.82367
\(612\) 0 0
\(613\) −6228.56 −0.410390 −0.205195 0.978721i \(-0.565783\pi\)
−0.205195 + 0.978721i \(0.565783\pi\)
\(614\) 0 0
\(615\) −29288.0 −1.92033
\(616\) 0 0
\(617\) −25238.3 −1.64677 −0.823383 0.567487i \(-0.807916\pi\)
−0.823383 + 0.567487i \(0.807916\pi\)
\(618\) 0 0
\(619\) −12499.1 −0.811601 −0.405801 0.913962i \(-0.633007\pi\)
−0.405801 + 0.913962i \(0.633007\pi\)
\(620\) 0 0
\(621\) −862.371 −0.0557259
\(622\) 0 0
\(623\) 2305.60 0.148270
\(624\) 0 0
\(625\) −8371.38 −0.535768
\(626\) 0 0
\(627\) −734.008 −0.0467520
\(628\) 0 0
\(629\) −37737.4 −2.39219
\(630\) 0 0
\(631\) −16328.7 −1.03017 −0.515083 0.857140i \(-0.672239\pi\)
−0.515083 + 0.857140i \(0.672239\pi\)
\(632\) 0 0
\(633\) −22283.9 −1.39922
\(634\) 0 0
\(635\) 21463.0 1.34131
\(636\) 0 0
\(637\) 2537.11 0.157808
\(638\) 0 0
\(639\) −6702.00 −0.414909
\(640\) 0 0
\(641\) −20978.0 −1.29264 −0.646320 0.763067i \(-0.723693\pi\)
−0.646320 + 0.763067i \(0.723693\pi\)
\(642\) 0 0
\(643\) −15007.0 −0.920401 −0.460200 0.887815i \(-0.652222\pi\)
−0.460200 + 0.887815i \(0.652222\pi\)
\(644\) 0 0
\(645\) −16027.6 −0.978430
\(646\) 0 0
\(647\) −22590.1 −1.37266 −0.686330 0.727291i \(-0.740779\pi\)
−0.686330 + 0.727291i \(0.740779\pi\)
\(648\) 0 0
\(649\) 4585.95 0.277372
\(650\) 0 0
\(651\) −10404.6 −0.626404
\(652\) 0 0
\(653\) 2700.87 0.161858 0.0809289 0.996720i \(-0.474211\pi\)
0.0809289 + 0.996720i \(0.474211\pi\)
\(654\) 0 0
\(655\) 34225.0 2.04165
\(656\) 0 0
\(657\) 8785.53 0.521699
\(658\) 0 0
\(659\) −1350.92 −0.0798548 −0.0399274 0.999203i \(-0.512713\pi\)
−0.0399274 + 0.999203i \(0.512713\pi\)
\(660\) 0 0
\(661\) 18705.0 1.10066 0.550332 0.834946i \(-0.314501\pi\)
0.550332 + 0.834946i \(0.314501\pi\)
\(662\) 0 0
\(663\) 33763.4 1.97777
\(664\) 0 0
\(665\) −1278.61 −0.0745598
\(666\) 0 0
\(667\) −2069.02 −0.120109
\(668\) 0 0
\(669\) 8346.83 0.482372
\(670\) 0 0
\(671\) 4324.45 0.248798
\(672\) 0 0
\(673\) 20297.5 1.16257 0.581287 0.813699i \(-0.302549\pi\)
0.581287 + 0.813699i \(0.302549\pi\)
\(674\) 0 0
\(675\) 15647.4 0.892251
\(676\) 0 0
\(677\) 27278.3 1.54858 0.774292 0.632828i \(-0.218106\pi\)
0.774292 + 0.632828i \(0.218106\pi\)
\(678\) 0 0
\(679\) 74.2577 0.00419698
\(680\) 0 0
\(681\) −14600.7 −0.821587
\(682\) 0 0
\(683\) −24957.7 −1.39821 −0.699107 0.715017i \(-0.746419\pi\)
−0.699107 + 0.715017i \(0.746419\pi\)
\(684\) 0 0
\(685\) 32279.4 1.80048
\(686\) 0 0
\(687\) 28222.0 1.56730
\(688\) 0 0
\(689\) 21134.1 1.16857
\(690\) 0 0
\(691\) 21736.3 1.19665 0.598327 0.801252i \(-0.295832\pi\)
0.598327 + 0.801252i \(0.295832\pi\)
\(692\) 0 0
\(693\) −933.343 −0.0511613
\(694\) 0 0
\(695\) 34391.1 1.87702
\(696\) 0 0
\(697\) −28512.8 −1.54950
\(698\) 0 0
\(699\) 1086.30 0.0587809
\(700\) 0 0
\(701\) −31392.4 −1.69141 −0.845703 0.533654i \(-0.820819\pi\)
−0.845703 + 0.533654i \(0.820819\pi\)
\(702\) 0 0
\(703\) 3861.69 0.207178
\(704\) 0 0
\(705\) −56965.3 −3.04317
\(706\) 0 0
\(707\) 9124.84 0.485396
\(708\) 0 0
\(709\) 18502.6 0.980087 0.490043 0.871698i \(-0.336981\pi\)
0.490043 + 0.871698i \(0.336981\pi\)
\(710\) 0 0
\(711\) −6257.77 −0.330077
\(712\) 0 0
\(713\) 2202.14 0.115667
\(714\) 0 0
\(715\) 9751.55 0.510052
\(716\) 0 0
\(717\) 29907.2 1.55775
\(718\) 0 0
\(719\) −7460.88 −0.386987 −0.193494 0.981102i \(-0.561982\pi\)
−0.193494 + 0.981102i \(0.561982\pi\)
\(720\) 0 0
\(721\) −189.589 −0.00979286
\(722\) 0 0
\(723\) −9846.79 −0.506509
\(724\) 0 0
\(725\) 37541.5 1.92311
\(726\) 0 0
\(727\) 29929.1 1.52684 0.763418 0.645905i \(-0.223520\pi\)
0.763418 + 0.645905i \(0.223520\pi\)
\(728\) 0 0
\(729\) 4693.44 0.238452
\(730\) 0 0
\(731\) −15603.4 −0.789486
\(732\) 0 0
\(733\) 14889.8 0.750297 0.375148 0.926965i \(-0.377592\pi\)
0.375148 + 0.926965i \(0.377592\pi\)
\(734\) 0 0
\(735\) −5247.36 −0.263336
\(736\) 0 0
\(737\) −11470.7 −0.573307
\(738\) 0 0
\(739\) 27119.4 1.34994 0.674969 0.737846i \(-0.264157\pi\)
0.674969 + 0.737846i \(0.264157\pi\)
\(740\) 0 0
\(741\) −3455.03 −0.171287
\(742\) 0 0
\(743\) −19717.6 −0.973580 −0.486790 0.873519i \(-0.661832\pi\)
−0.486790 + 0.873519i \(0.661832\pi\)
\(744\) 0 0
\(745\) −38047.7 −1.87109
\(746\) 0 0
\(747\) 16931.4 0.829298
\(748\) 0 0
\(749\) 1994.40 0.0972946
\(750\) 0 0
\(751\) 986.613 0.0479388 0.0239694 0.999713i \(-0.492370\pi\)
0.0239694 + 0.999713i \(0.492370\pi\)
\(752\) 0 0
\(753\) 23988.5 1.16094
\(754\) 0 0
\(755\) 20104.7 0.969118
\(756\) 0 0
\(757\) 34780.1 1.66989 0.834944 0.550335i \(-0.185500\pi\)
0.834944 + 0.550335i \(0.185500\pi\)
\(758\) 0 0
\(759\) 637.563 0.0304902
\(760\) 0 0
\(761\) −39587.1 −1.88572 −0.942858 0.333195i \(-0.891873\pi\)
−0.942858 + 0.333195i \(0.891873\pi\)
\(762\) 0 0
\(763\) 2503.59 0.118789
\(764\) 0 0
\(765\) −21636.4 −1.02257
\(766\) 0 0
\(767\) 21586.4 1.01622
\(768\) 0 0
\(769\) 30842.8 1.44632 0.723160 0.690681i \(-0.242689\pi\)
0.723160 + 0.690681i \(0.242689\pi\)
\(770\) 0 0
\(771\) −41555.0 −1.94107
\(772\) 0 0
\(773\) −17396.5 −0.809455 −0.404728 0.914437i \(-0.632634\pi\)
−0.404728 + 0.914437i \(0.632634\pi\)
\(774\) 0 0
\(775\) −39957.0 −1.85200
\(776\) 0 0
\(777\) 15848.2 0.731727
\(778\) 0 0
\(779\) 2917.74 0.134196
\(780\) 0 0
\(781\) −6082.00 −0.278657
\(782\) 0 0
\(783\) 20778.3 0.948349
\(784\) 0 0
\(785\) 46865.4 2.13082
\(786\) 0 0
\(787\) −17731.1 −0.803106 −0.401553 0.915836i \(-0.631529\pi\)
−0.401553 + 0.915836i \(0.631529\pi\)
\(788\) 0 0
\(789\) 28755.2 1.29748
\(790\) 0 0
\(791\) 9479.43 0.426106
\(792\) 0 0
\(793\) 20355.5 0.911532
\(794\) 0 0
\(795\) −43710.4 −1.95000
\(796\) 0 0
\(797\) −17460.0 −0.775992 −0.387996 0.921661i \(-0.626833\pi\)
−0.387996 + 0.921661i \(0.626833\pi\)
\(798\) 0 0
\(799\) −55457.7 −2.45551
\(800\) 0 0
\(801\) −3992.43 −0.176112
\(802\) 0 0
\(803\) 7972.79 0.350378
\(804\) 0 0
\(805\) 1110.60 0.0486257
\(806\) 0 0
\(807\) 12162.6 0.530538
\(808\) 0 0
\(809\) 30027.9 1.30498 0.652488 0.757799i \(-0.273725\pi\)
0.652488 + 0.757799i \(0.273725\pi\)
\(810\) 0 0
\(811\) 25186.5 1.09053 0.545263 0.838265i \(-0.316430\pi\)
0.545263 + 0.838265i \(0.316430\pi\)
\(812\) 0 0
\(813\) 9537.62 0.411438
\(814\) 0 0
\(815\) −5310.86 −0.228259
\(816\) 0 0
\(817\) 1596.71 0.0683743
\(818\) 0 0
\(819\) −4393.31 −0.187442
\(820\) 0 0
\(821\) 614.667 0.0261291 0.0130646 0.999915i \(-0.495841\pi\)
0.0130646 + 0.999915i \(0.495841\pi\)
\(822\) 0 0
\(823\) −29936.2 −1.26794 −0.633968 0.773359i \(-0.718575\pi\)
−0.633968 + 0.773359i \(0.718575\pi\)
\(824\) 0 0
\(825\) −11568.3 −0.488192
\(826\) 0 0
\(827\) 25253.2 1.06184 0.530918 0.847423i \(-0.321847\pi\)
0.530918 + 0.847423i \(0.321847\pi\)
\(828\) 0 0
\(829\) −19136.9 −0.801751 −0.400876 0.916132i \(-0.631294\pi\)
−0.400876 + 0.916132i \(0.631294\pi\)
\(830\) 0 0
\(831\) −17421.9 −0.727267
\(832\) 0 0
\(833\) −5108.48 −0.212483
\(834\) 0 0
\(835\) −36843.6 −1.52698
\(836\) 0 0
\(837\) −22115.2 −0.913279
\(838\) 0 0
\(839\) 20495.3 0.843359 0.421679 0.906745i \(-0.361441\pi\)
0.421679 + 0.906745i \(0.361441\pi\)
\(840\) 0 0
\(841\) 25462.8 1.04403
\(842\) 0 0
\(843\) 10828.8 0.442426
\(844\) 0 0
\(845\) 8285.66 0.337320
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) −16185.8 −0.654294
\(850\) 0 0
\(851\) −3354.28 −0.135115
\(852\) 0 0
\(853\) −18030.4 −0.723739 −0.361870 0.932229i \(-0.617861\pi\)
−0.361870 + 0.932229i \(0.617861\pi\)
\(854\) 0 0
\(855\) 2214.06 0.0885606
\(856\) 0 0
\(857\) −48876.2 −1.94817 −0.974083 0.226192i \(-0.927372\pi\)
−0.974083 + 0.226192i \(0.927372\pi\)
\(858\) 0 0
\(859\) −31747.6 −1.26102 −0.630508 0.776182i \(-0.717154\pi\)
−0.630508 + 0.776182i \(0.717154\pi\)
\(860\) 0 0
\(861\) 11974.3 0.473963
\(862\) 0 0
\(863\) −36175.9 −1.42693 −0.713466 0.700689i \(-0.752876\pi\)
−0.713466 + 0.700689i \(0.752876\pi\)
\(864\) 0 0
\(865\) −40555.3 −1.59413
\(866\) 0 0
\(867\) −37253.4 −1.45928
\(868\) 0 0
\(869\) −5678.87 −0.221683
\(870\) 0 0
\(871\) −53993.2 −2.10045
\(872\) 0 0
\(873\) −128.586 −0.00498509
\(874\) 0 0
\(875\) −5170.34 −0.199759
\(876\) 0 0
\(877\) 22724.7 0.874980 0.437490 0.899223i \(-0.355868\pi\)
0.437490 + 0.899223i \(0.355868\pi\)
\(878\) 0 0
\(879\) 18443.7 0.707725
\(880\) 0 0
\(881\) −6148.28 −0.235120 −0.117560 0.993066i \(-0.537507\pi\)
−0.117560 + 0.993066i \(0.537507\pi\)
\(882\) 0 0
\(883\) 34001.7 1.29586 0.647932 0.761698i \(-0.275634\pi\)
0.647932 + 0.761698i \(0.275634\pi\)
\(884\) 0 0
\(885\) −44645.9 −1.69577
\(886\) 0 0
\(887\) −38642.9 −1.46280 −0.731398 0.681950i \(-0.761132\pi\)
−0.731398 + 0.681950i \(0.761132\pi\)
\(888\) 0 0
\(889\) −8775.08 −0.331054
\(890\) 0 0
\(891\) −10002.8 −0.376103
\(892\) 0 0
\(893\) 5675.02 0.212662
\(894\) 0 0
\(895\) 21727.6 0.811479
\(896\) 0 0
\(897\) 3001.05 0.111708
\(898\) 0 0
\(899\) −53059.3 −1.96844
\(900\) 0 0
\(901\) −42553.6 −1.57344
\(902\) 0 0
\(903\) 6552.84 0.241489
\(904\) 0 0
\(905\) −6128.91 −0.225118
\(906\) 0 0
\(907\) 5093.73 0.186477 0.0932385 0.995644i \(-0.470278\pi\)
0.0932385 + 0.995644i \(0.470278\pi\)
\(908\) 0 0
\(909\) −15800.8 −0.576543
\(910\) 0 0
\(911\) 19515.5 0.709744 0.354872 0.934915i \(-0.384524\pi\)
0.354872 + 0.934915i \(0.384524\pi\)
\(912\) 0 0
\(913\) 15365.0 0.556965
\(914\) 0 0
\(915\) −42100.1 −1.52108
\(916\) 0 0
\(917\) −13992.8 −0.503906
\(918\) 0 0
\(919\) 3173.14 0.113898 0.0569490 0.998377i \(-0.481863\pi\)
0.0569490 + 0.998377i \(0.481863\pi\)
\(920\) 0 0
\(921\) −4217.99 −0.150909
\(922\) 0 0
\(923\) −28628.4 −1.02093
\(924\) 0 0
\(925\) 60862.2 2.16339
\(926\) 0 0
\(927\) 328.296 0.0116318
\(928\) 0 0
\(929\) −2919.60 −0.103110 −0.0515548 0.998670i \(-0.516418\pi\)
−0.0515548 + 0.998670i \(0.516418\pi\)
\(930\) 0 0
\(931\) 522.754 0.0184023
\(932\) 0 0
\(933\) 41937.9 1.47158
\(934\) 0 0
\(935\) −19634.8 −0.686766
\(936\) 0 0
\(937\) 36268.3 1.26450 0.632248 0.774766i \(-0.282132\pi\)
0.632248 + 0.774766i \(0.282132\pi\)
\(938\) 0 0
\(939\) 60182.2 2.09156
\(940\) 0 0
\(941\) −3009.02 −0.104242 −0.0521208 0.998641i \(-0.516598\pi\)
−0.0521208 + 0.998641i \(0.516598\pi\)
\(942\) 0 0
\(943\) −2534.36 −0.0875187
\(944\) 0 0
\(945\) −11153.4 −0.383936
\(946\) 0 0
\(947\) 6520.30 0.223739 0.111870 0.993723i \(-0.464316\pi\)
0.111870 + 0.993723i \(0.464316\pi\)
\(948\) 0 0
\(949\) 37528.5 1.28369
\(950\) 0 0
\(951\) −25691.7 −0.876036
\(952\) 0 0
\(953\) 56034.5 1.90465 0.952326 0.305081i \(-0.0986835\pi\)
0.952326 + 0.305081i \(0.0986835\pi\)
\(954\) 0 0
\(955\) −38190.3 −1.29404
\(956\) 0 0
\(957\) −15361.7 −0.518886
\(958\) 0 0
\(959\) −13197.3 −0.444383
\(960\) 0 0
\(961\) 26682.1 0.895644
\(962\) 0 0
\(963\) −3453.54 −0.115565
\(964\) 0 0
\(965\) −74016.7 −2.46910
\(966\) 0 0
\(967\) −18669.7 −0.620865 −0.310433 0.950595i \(-0.600474\pi\)
−0.310433 + 0.950595i \(0.600474\pi\)
\(968\) 0 0
\(969\) 6956.72 0.230632
\(970\) 0 0
\(971\) 5467.04 0.180686 0.0903428 0.995911i \(-0.471204\pi\)
0.0903428 + 0.995911i \(0.471204\pi\)
\(972\) 0 0
\(973\) −14060.7 −0.463273
\(974\) 0 0
\(975\) −54453.0 −1.78861
\(976\) 0 0
\(977\) 46112.2 1.50999 0.754996 0.655730i \(-0.227639\pi\)
0.754996 + 0.655730i \(0.227639\pi\)
\(978\) 0 0
\(979\) −3623.09 −0.118278
\(980\) 0 0
\(981\) −4335.26 −0.141095
\(982\) 0 0
\(983\) 28357.6 0.920109 0.460055 0.887891i \(-0.347830\pi\)
0.460055 + 0.887891i \(0.347830\pi\)
\(984\) 0 0
\(985\) −9475.20 −0.306503
\(986\) 0 0
\(987\) 23290.1 0.751095
\(988\) 0 0
\(989\) −1386.91 −0.0445917
\(990\) 0 0
\(991\) −34281.1 −1.09886 −0.549432 0.835539i \(-0.685156\pi\)
−0.549432 + 0.835539i \(0.685156\pi\)
\(992\) 0 0
\(993\) 54189.0 1.73176
\(994\) 0 0
\(995\) 28590.0 0.910920
\(996\) 0 0
\(997\) 20833.1 0.661775 0.330888 0.943670i \(-0.392652\pi\)
0.330888 + 0.943670i \(0.392652\pi\)
\(998\) 0 0
\(999\) 33685.8 1.06684
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.4.a.d.1.1 4
4.3 odd 2 1232.4.a.v.1.4 4
7.6 odd 2 2156.4.a.f.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.a.d.1.1 4 1.1 even 1 trivial
1232.4.a.v.1.4 4 4.3 odd 2
2156.4.a.f.1.4 4 7.6 odd 2