Defining parameters
Level: | \( N \) | \(=\) | \( 308 = 2^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 308.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(308))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 150 | 14 | 136 |
Cusp forms | 138 | 14 | 124 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(5\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
Plus space | \(+\) | \(9\) | ||
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(308))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | 11 | |||||||
308.4.a.a | $1$ | $18.173$ | \(\Q\) | None | \(0\) | \(-7\) | \(-1\) | \(7\) | $-$ | $-$ | $-$ | \(q-7q^{3}-q^{5}+7q^{7}+22q^{9}+11q^{11}+\cdots\) | |
308.4.a.b | $1$ | $18.173$ | \(\Q\) | None | \(0\) | \(4\) | \(-12\) | \(7\) | $-$ | $-$ | $-$ | \(q+4q^{3}-12q^{5}+7q^{7}-11q^{9}+11q^{11}+\cdots\) | |
308.4.a.c | $3$ | $18.173$ | 3.3.5925.1 | None | \(0\) | \(5\) | \(9\) | \(-21\) | $-$ | $+$ | $+$ | \(q+(2-\beta _{1})q^{3}+(2+3\beta _{1})q^{5}-7q^{7}+\cdots\) | |
308.4.a.d | $4$ | $18.173$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(0\) | \(-3\) | \(1\) | \(-28\) | $-$ | $+$ | $-$ | \(q+(-1+\beta _{1})q^{3}+\beta _{2}q^{5}-7q^{7}+(-5+\cdots)q^{9}+\cdots\) | |
308.4.a.e | $5$ | $18.173$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(0\) | \(5\) | \(15\) | \(35\) | $-$ | $-$ | $+$ | \(q+(1-\beta _{1})q^{3}+(3+\beta _{2})q^{5}+7q^{7}+(20+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(308))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(308)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 2}\)