Properties

Label 308.4.a
Level $308$
Weight $4$
Character orbit 308.a
Rep. character $\chi_{308}(1,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $5$
Sturm bound $192$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 308.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(192\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(308))\).

Total New Old
Modular forms 150 14 136
Cusp forms 138 14 124
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(11\)FrickeDim
\(-\)\(+\)\(+\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(5\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(9\)
Minus space\(-\)\(5\)

Trace form

\( 14 q + 4 q^{3} + 12 q^{5} + 58 q^{9} - 22 q^{11} + 76 q^{13} - 152 q^{15} + 132 q^{17} + 40 q^{19} - 8 q^{23} + 870 q^{25} + 256 q^{27} - 52 q^{29} + 56 q^{31} - 176 q^{33} - 56 q^{35} - 512 q^{37} + 1096 q^{39}+ \cdots - 814 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(308))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 11
308.4.a.a 308.a 1.a $1$ $18.173$ \(\Q\) None 308.4.a.a \(0\) \(-7\) \(-1\) \(7\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-7q^{3}-q^{5}+7q^{7}+22q^{9}+11q^{11}+\cdots\)
308.4.a.b 308.a 1.a $1$ $18.173$ \(\Q\) None 308.4.a.b \(0\) \(4\) \(-12\) \(7\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{3}-12q^{5}+7q^{7}-11q^{9}+11q^{11}+\cdots\)
308.4.a.c 308.a 1.a $3$ $18.173$ 3.3.5925.1 None 308.4.a.c \(0\) \(5\) \(9\) \(-21\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{3}+(2+3\beta _{1})q^{5}-7q^{7}+\cdots\)
308.4.a.d 308.a 1.a $4$ $18.173$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 308.4.a.d \(0\) \(-3\) \(1\) \(-28\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+\beta _{2}q^{5}-7q^{7}+(-5+\cdots)q^{9}+\cdots\)
308.4.a.e 308.a 1.a $5$ $18.173$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 308.4.a.e \(0\) \(5\) \(15\) \(35\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(3+\beta _{2})q^{5}+7q^{7}+(20+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(308))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(308)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 2}\)