Defining parameters
Level: | \( N \) | = | \( 308 = 2^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 16 \) | ||
Sturm bound: | \(23040\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(308))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8940 | 4834 | 4106 |
Cusp forms | 8340 | 4658 | 3682 |
Eisenstein series | 600 | 176 | 424 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(308))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
308.4.a | \(\chi_{308}(1, \cdot)\) | 308.4.a.a | 1 | 1 |
308.4.a.b | 1 | |||
308.4.a.c | 3 | |||
308.4.a.d | 4 | |||
308.4.a.e | 5 | |||
308.4.c | \(\chi_{308}(153, \cdot)\) | 308.4.c.a | 24 | 1 |
308.4.d | \(\chi_{308}(43, \cdot)\) | n/a | 108 | 1 |
308.4.f | \(\chi_{308}(111, \cdot)\) | n/a | 120 | 1 |
308.4.i | \(\chi_{308}(177, \cdot)\) | 308.4.i.a | 20 | 2 |
308.4.i.b | 20 | |||
308.4.j | \(\chi_{308}(113, \cdot)\) | 308.4.j.a | 36 | 4 |
308.4.j.b | 36 | |||
308.4.l | \(\chi_{308}(199, \cdot)\) | n/a | 240 | 2 |
308.4.n | \(\chi_{308}(219, \cdot)\) | n/a | 280 | 2 |
308.4.q | \(\chi_{308}(241, \cdot)\) | 308.4.q.a | 48 | 2 |
308.4.t | \(\chi_{308}(27, \cdot)\) | n/a | 560 | 4 |
308.4.v | \(\chi_{308}(127, \cdot)\) | n/a | 432 | 4 |
308.4.w | \(\chi_{308}(13, \cdot)\) | 308.4.w.a | 96 | 4 |
308.4.y | \(\chi_{308}(9, \cdot)\) | n/a | 192 | 8 |
308.4.z | \(\chi_{308}(17, \cdot)\) | n/a | 192 | 8 |
308.4.bc | \(\chi_{308}(39, \cdot)\) | n/a | 1120 | 8 |
308.4.be | \(\chi_{308}(3, \cdot)\) | n/a | 1120 | 8 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(308))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(308)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(154))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(308))\)\(^{\oplus 1}\)