Properties

Label 308.4
Level 308
Weight 4
Dimension 4658
Nonzero newspaces 16
Sturm bound 23040
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(23040\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(308))\).

Total New Old
Modular forms 8940 4834 4106
Cusp forms 8340 4658 3682
Eisenstein series 600 176 424

Trace form

\( 4658 q - 14 q^{2} + 12 q^{3} - 14 q^{4} - 52 q^{5} - 20 q^{6} - 38 q^{7} - 140 q^{8} - 272 q^{9} - 6 q^{10} - 16 q^{11} + 296 q^{12} + 220 q^{13} + 118 q^{14} + 164 q^{15} - 206 q^{16} + 180 q^{17} + 388 q^{18}+ \cdots - 5792 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(308))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
308.4.a \(\chi_{308}(1, \cdot)\) 308.4.a.a 1 1
308.4.a.b 1
308.4.a.c 3
308.4.a.d 4
308.4.a.e 5
308.4.c \(\chi_{308}(153, \cdot)\) 308.4.c.a 24 1
308.4.d \(\chi_{308}(43, \cdot)\) n/a 108 1
308.4.f \(\chi_{308}(111, \cdot)\) n/a 120 1
308.4.i \(\chi_{308}(177, \cdot)\) 308.4.i.a 20 2
308.4.i.b 20
308.4.j \(\chi_{308}(113, \cdot)\) 308.4.j.a 36 4
308.4.j.b 36
308.4.l \(\chi_{308}(199, \cdot)\) n/a 240 2
308.4.n \(\chi_{308}(219, \cdot)\) n/a 280 2
308.4.q \(\chi_{308}(241, \cdot)\) 308.4.q.a 48 2
308.4.t \(\chi_{308}(27, \cdot)\) n/a 560 4
308.4.v \(\chi_{308}(127, \cdot)\) n/a 432 4
308.4.w \(\chi_{308}(13, \cdot)\) 308.4.w.a 96 4
308.4.y \(\chi_{308}(9, \cdot)\) n/a 192 8
308.4.z \(\chi_{308}(17, \cdot)\) n/a 192 8
308.4.bc \(\chi_{308}(39, \cdot)\) n/a 1120 8
308.4.be \(\chi_{308}(3, \cdot)\) n/a 1120 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(308))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(308)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(154))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(308))\)\(^{\oplus 1}\)