Properties

Label 308.1.g.a
Level $308$
Weight $1$
Character orbit 308.g
Self dual yes
Analytic conductor $0.154$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -7, -308, 44
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,1,Mod(307,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.307");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 308.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.153712023891\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-7}, \sqrt{11})\)
Artin image: $D_4$
Artin field: Galois closure of 4.0.2156.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{4} + q^{7} - q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{4} + q^{7} - q^{8} - q^{9} + q^{11} - q^{14} + q^{16} + q^{18} - q^{22} + q^{25} + q^{28} - q^{32} - q^{36} - 2 q^{37} - 2 q^{43} + q^{44} + q^{49} - q^{50} - 2 q^{53} - q^{56} - q^{63} + q^{64} + q^{72} + 2 q^{74} + q^{77} - 2 q^{79} + q^{81} + 2 q^{86} - q^{88} - q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
0
−1.00000 0 1.00000 0 0 1.00000 −1.00000 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
44.c even 2 1 RM by \(\Q(\sqrt{11}) \)
308.g odd 2 1 CM by \(\Q(\sqrt{-77}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 308.1.g.a 1
3.b odd 2 1 2772.1.h.b 1
4.b odd 2 1 308.1.g.b yes 1
7.b odd 2 1 CM 308.1.g.a 1
7.c even 3 2 2156.1.m.b 2
7.d odd 6 2 2156.1.m.b 2
11.b odd 2 1 308.1.g.b yes 1
11.c even 5 4 3388.1.s.f 4
11.d odd 10 4 3388.1.s.c 4
12.b even 2 1 2772.1.h.a 1
21.c even 2 1 2772.1.h.b 1
28.d even 2 1 308.1.g.b yes 1
28.f even 6 2 2156.1.m.a 2
28.g odd 6 2 2156.1.m.a 2
33.d even 2 1 2772.1.h.a 1
44.c even 2 1 RM 308.1.g.a 1
44.g even 10 4 3388.1.s.f 4
44.h odd 10 4 3388.1.s.c 4
77.b even 2 1 308.1.g.b yes 1
77.h odd 6 2 2156.1.m.a 2
77.i even 6 2 2156.1.m.a 2
77.j odd 10 4 3388.1.s.f 4
77.l even 10 4 3388.1.s.c 4
84.h odd 2 1 2772.1.h.a 1
132.d odd 2 1 2772.1.h.b 1
231.h odd 2 1 2772.1.h.a 1
308.g odd 2 1 CM 308.1.g.a 1
308.m odd 6 2 2156.1.m.b 2
308.n even 6 2 2156.1.m.b 2
308.s odd 10 4 3388.1.s.f 4
308.t even 10 4 3388.1.s.c 4
924.n even 2 1 2772.1.h.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.1.g.a 1 1.a even 1 1 trivial
308.1.g.a 1 7.b odd 2 1 CM
308.1.g.a 1 44.c even 2 1 RM
308.1.g.a 1 308.g odd 2 1 CM
308.1.g.b yes 1 4.b odd 2 1
308.1.g.b yes 1 11.b odd 2 1
308.1.g.b yes 1 28.d even 2 1
308.1.g.b yes 1 77.b even 2 1
2156.1.m.a 2 28.f even 6 2
2156.1.m.a 2 28.g odd 6 2
2156.1.m.a 2 77.h odd 6 2
2156.1.m.a 2 77.i even 6 2
2156.1.m.b 2 7.c even 3 2
2156.1.m.b 2 7.d odd 6 2
2156.1.m.b 2 308.m odd 6 2
2156.1.m.b 2 308.n even 6 2
2772.1.h.a 1 12.b even 2 1
2772.1.h.a 1 33.d even 2 1
2772.1.h.a 1 84.h odd 2 1
2772.1.h.a 1 231.h odd 2 1
2772.1.h.b 1 3.b odd 2 1
2772.1.h.b 1 21.c even 2 1
2772.1.h.b 1 132.d odd 2 1
2772.1.h.b 1 924.n even 2 1
3388.1.s.c 4 11.d odd 10 4
3388.1.s.c 4 44.h odd 10 4
3388.1.s.c 4 77.l even 10 4
3388.1.s.c 4 308.t even 10 4
3388.1.s.f 4 11.c even 5 4
3388.1.s.f 4 44.g even 10 4
3388.1.s.f 4 77.j odd 10 4
3388.1.s.f 4 308.s odd 10 4

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{43} + 2 \) acting on \(S_{1}^{\mathrm{new}}(308, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 2 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T + 2 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less