Properties

Label 308.1
Level 308
Weight 1
Dimension 10
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 5760
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(5760\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(308))\).

Total New Old
Modular forms 324 102 222
Cusp forms 24 10 14
Eisenstein series 300 92 208

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10 q + O(q^{10}) \) \( 10 q - 5 q^{14} - 5 q^{18} - 5 q^{28} - 10 q^{37} + 5 q^{44} + 5 q^{46} - 10 q^{53} + 5 q^{58} + 5 q^{72} + 5 q^{86} + 5 q^{92} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(308))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
308.1.b \(\chi_{308}(265, \cdot)\) None 0 1
308.1.e \(\chi_{308}(155, \cdot)\) None 0 1
308.1.g \(\chi_{308}(307, \cdot)\) 308.1.g.a 1 1
308.1.g.b 1
308.1.h \(\chi_{308}(197, \cdot)\) None 0 1
308.1.k \(\chi_{308}(65, \cdot)\) None 0 2
308.1.m \(\chi_{308}(87, \cdot)\) None 0 2
308.1.o \(\chi_{308}(23, \cdot)\) None 0 2
308.1.p \(\chi_{308}(45, \cdot)\) None 0 2
308.1.r \(\chi_{308}(29, \cdot)\) None 0 4
308.1.s \(\chi_{308}(83, \cdot)\) 308.1.s.a 4 4
308.1.s.b 4
308.1.u \(\chi_{308}(15, \cdot)\) None 0 4
308.1.x \(\chi_{308}(69, \cdot)\) None 0 4
308.1.ba \(\chi_{308}(5, \cdot)\) None 0 8
308.1.bb \(\chi_{308}(135, \cdot)\) None 0 8
308.1.bd \(\chi_{308}(19, \cdot)\) None 0 8
308.1.bf \(\chi_{308}(149, \cdot)\) None 0 8

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(308))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(308)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(154))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(308))\)\(^{\oplus 1}\)