# Properties

 Label 3072.2.d.c Level $3072$ Weight $2$ Character orbit 3072.d Analytic conductor $24.530$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3072 = 2^{10} \cdot 3$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3072.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$24.5300435009$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{8})$$ Defining polynomial: $$x^{4} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 1536) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{8}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{8}^{2} q^{3} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{5} + ( 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{7} - q^{9} +O(q^{10})$$ $$q -\zeta_{8}^{2} q^{3} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{5} + ( 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{7} - q^{9} + ( 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{13} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{15} + 4 q^{17} -8 \zeta_{8}^{2} q^{19} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{21} + ( -4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{23} + 3 q^{25} + \zeta_{8}^{2} q^{27} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{29} + ( 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{31} + 4 \zeta_{8}^{2} q^{35} + ( -3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{37} + ( 3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{39} + 4 q^{41} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{45} + ( 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{47} + q^{49} -4 \zeta_{8}^{2} q^{51} + ( 5 \zeta_{8} + 5 \zeta_{8}^{3} ) q^{53} -8 q^{57} + 12 \zeta_{8}^{2} q^{59} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{61} + ( -2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{63} -6 q^{65} + 4 \zeta_{8}^{2} q^{67} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{69} + ( 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{71} -14 q^{73} -3 \zeta_{8}^{2} q^{75} + ( 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{79} + q^{81} -16 \zeta_{8}^{2} q^{83} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{85} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{87} -6 q^{89} + 12 \zeta_{8}^{2} q^{91} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{93} + ( 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{95} + 16 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 4q^{9} + O(q^{10})$$ $$4q - 4q^{9} + 16q^{17} + 12q^{25} + 16q^{41} + 4q^{49} - 32q^{57} - 24q^{65} - 56q^{73} + 4q^{81} - 24q^{89} + 64q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3072\mathbb{Z}\right)^\times$$.

 $$n$$ $$1025$$ $$2047$$ $$2053$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1537.1
 −0.707107 − 0.707107i 0.707107 + 0.707107i 0.707107 − 0.707107i −0.707107 + 0.707107i
0 1.00000i 0 1.41421i 0 −2.82843 0 −1.00000 0
1537.2 0 1.00000i 0 1.41421i 0 2.82843 0 −1.00000 0
1537.3 0 1.00000i 0 1.41421i 0 2.82843 0 −1.00000 0
1537.4 0 1.00000i 0 1.41421i 0 −2.82843 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3072.2.d.c 4
4.b odd 2 1 inner 3072.2.d.c 4
8.b even 2 1 inner 3072.2.d.c 4
8.d odd 2 1 inner 3072.2.d.c 4
16.e even 4 1 3072.2.a.b 2
16.e even 4 1 3072.2.a.h 2
16.f odd 4 1 3072.2.a.b 2
16.f odd 4 1 3072.2.a.h 2
32.g even 8 2 1536.2.j.b 4
32.g even 8 2 1536.2.j.c yes 4
32.h odd 8 2 1536.2.j.b 4
32.h odd 8 2 1536.2.j.c yes 4
48.i odd 4 1 9216.2.a.h 2
48.i odd 4 1 9216.2.a.i 2
48.k even 4 1 9216.2.a.h 2
48.k even 4 1 9216.2.a.i 2
96.o even 8 2 4608.2.k.y 4
96.o even 8 2 4608.2.k.bb 4
96.p odd 8 2 4608.2.k.y 4
96.p odd 8 2 4608.2.k.bb 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1536.2.j.b 4 32.g even 8 2
1536.2.j.b 4 32.h odd 8 2
1536.2.j.c yes 4 32.g even 8 2
1536.2.j.c yes 4 32.h odd 8 2
3072.2.a.b 2 16.e even 4 1
3072.2.a.b 2 16.f odd 4 1
3072.2.a.h 2 16.e even 4 1
3072.2.a.h 2 16.f odd 4 1
3072.2.d.c 4 1.a even 1 1 trivial
3072.2.d.c 4 4.b odd 2 1 inner
3072.2.d.c 4 8.b even 2 1 inner
3072.2.d.c 4 8.d odd 2 1 inner
4608.2.k.y 4 96.o even 8 2
4608.2.k.y 4 96.p odd 8 2
4608.2.k.bb 4 96.o even 8 2
4608.2.k.bb 4 96.p odd 8 2
9216.2.a.h 2 48.i odd 4 1
9216.2.a.h 2 48.k even 4 1
9216.2.a.i 2 48.i odd 4 1
9216.2.a.i 2 48.k even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3072, [\chi])$$:

 $$T_{5}^{2} + 2$$ $$T_{7}^{2} - 8$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$( 1 + T^{2} )^{2}$$
$5$ $$( 2 + T^{2} )^{2}$$
$7$ $$( -8 + T^{2} )^{2}$$
$11$ $$T^{4}$$
$13$ $$( 18 + T^{2} )^{2}$$
$17$ $$( -4 + T )^{4}$$
$19$ $$( 64 + T^{2} )^{2}$$
$23$ $$( -32 + T^{2} )^{2}$$
$29$ $$( 2 + T^{2} )^{2}$$
$31$ $$( -8 + T^{2} )^{2}$$
$37$ $$( 18 + T^{2} )^{2}$$
$41$ $$( -4 + T )^{4}$$
$43$ $$T^{4}$$
$47$ $$( -128 + T^{2} )^{2}$$
$53$ $$( 50 + T^{2} )^{2}$$
$59$ $$( 144 + T^{2} )^{2}$$
$61$ $$( 2 + T^{2} )^{2}$$
$67$ $$( 16 + T^{2} )^{2}$$
$71$ $$( -128 + T^{2} )^{2}$$
$73$ $$( 14 + T )^{4}$$
$79$ $$( -72 + T^{2} )^{2}$$
$83$ $$( 256 + T^{2} )^{2}$$
$89$ $$( 6 + T )^{4}$$
$97$ $$( -16 + T )^{4}$$