# Properties

 Label 3072.2.a.a Level $3072$ Weight $2$ Character orbit 3072.a Self dual yes Analytic conductor $24.530$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3072 = 2^{10} \cdot 3$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3072.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$24.5300435009$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ Defining polynomial: $$x^{2} - 2$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 768) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{3} + \beta q^{7} + q^{9} +O(q^{10})$$ $$q - q^{3} + \beta q^{7} + q^{9} + \beta q^{13} -6 q^{17} + 6 q^{19} -\beta q^{21} -6 \beta q^{23} -5 q^{25} - q^{27} -6 \beta q^{29} -\beta q^{31} + 5 \beta q^{37} -\beta q^{39} -6 q^{41} + 6 q^{43} + 6 \beta q^{47} -5 q^{49} + 6 q^{51} + 6 \beta q^{53} -6 q^{57} -5 \beta q^{61} + \beta q^{63} -4 q^{67} + 6 \beta q^{69} + 6 \beta q^{71} + 5 q^{75} -\beta q^{79} + q^{81} -12 q^{83} + 6 \beta q^{87} + 6 q^{89} + 2 q^{91} + \beta q^{93} -12 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{3} + 2 q^{9} + O(q^{10})$$ $$2 q - 2 q^{3} + 2 q^{9} - 12 q^{17} + 12 q^{19} - 10 q^{25} - 2 q^{27} - 12 q^{41} + 12 q^{43} - 10 q^{49} + 12 q^{51} - 12 q^{57} - 8 q^{67} + 10 q^{75} + 2 q^{81} - 24 q^{83} + 12 q^{89} + 4 q^{91} - 24 q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
0 −1.00000 0 0 0 −1.41421 0 1.00000 0
1.2 0 −1.00000 0 0 0 1.41421 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3072.2.a.a 2
3.b odd 2 1 9216.2.a.o 2
4.b odd 2 1 3072.2.a.g 2
8.b even 2 1 3072.2.a.g 2
8.d odd 2 1 inner 3072.2.a.a 2
12.b even 2 1 9216.2.a.n 2
16.e even 4 2 3072.2.d.a 4
16.f odd 4 2 3072.2.d.a 4
24.f even 2 1 9216.2.a.o 2
24.h odd 2 1 9216.2.a.n 2
32.g even 8 2 768.2.j.b 4
32.g even 8 2 768.2.j.c yes 4
32.h odd 8 2 768.2.j.b 4
32.h odd 8 2 768.2.j.c yes 4
96.o even 8 2 2304.2.k.b 4
96.o even 8 2 2304.2.k.c 4
96.p odd 8 2 2304.2.k.b 4
96.p odd 8 2 2304.2.k.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
768.2.j.b 4 32.g even 8 2
768.2.j.b 4 32.h odd 8 2
768.2.j.c yes 4 32.g even 8 2
768.2.j.c yes 4 32.h odd 8 2
2304.2.k.b 4 96.o even 8 2
2304.2.k.b 4 96.p odd 8 2
2304.2.k.c 4 96.o even 8 2
2304.2.k.c 4 96.p odd 8 2
3072.2.a.a 2 1.a even 1 1 trivial
3072.2.a.a 2 8.d odd 2 1 inner
3072.2.a.g 2 4.b odd 2 1
3072.2.a.g 2 8.b even 2 1
3072.2.d.a 4 16.e even 4 2
3072.2.d.a 4 16.f odd 4 2
9216.2.a.n 2 12.b even 2 1
9216.2.a.n 2 24.h odd 2 1
9216.2.a.o 2 3.b odd 2 1
9216.2.a.o 2 24.f even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3072))$$:

 $$T_{5}$$ $$T_{7}^{2} - 2$$ $$T_{11}$$ $$T_{19} - 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$( 1 + T )^{2}$$
$5$ $$T^{2}$$
$7$ $$-2 + T^{2}$$
$11$ $$T^{2}$$
$13$ $$-2 + T^{2}$$
$17$ $$( 6 + T )^{2}$$
$19$ $$( -6 + T )^{2}$$
$23$ $$-72 + T^{2}$$
$29$ $$-72 + T^{2}$$
$31$ $$-2 + T^{2}$$
$37$ $$-50 + T^{2}$$
$41$ $$( 6 + T )^{2}$$
$43$ $$( -6 + T )^{2}$$
$47$ $$-72 + T^{2}$$
$53$ $$-72 + T^{2}$$
$59$ $$T^{2}$$
$61$ $$-50 + T^{2}$$
$67$ $$( 4 + T )^{2}$$
$71$ $$-72 + T^{2}$$
$73$ $$T^{2}$$
$79$ $$-2 + T^{2}$$
$83$ $$( 12 + T )^{2}$$
$89$ $$( -6 + T )^{2}$$
$97$ $$( 12 + T )^{2}$$