Properties

Label 3072.2.a
Level $3072$
Weight $2$
Character orbit 3072.a
Rep. character $\chi_{3072}(1,\cdot)$
Character field $\Q$
Dimension $64$
Newform subspaces $20$
Sturm bound $1024$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3072 = 2^{10} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3072.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(1024\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3072))\).

Total New Old
Modular forms 560 64 496
Cusp forms 465 64 401
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim.
\(+\)\(+\)\(+\)\(16\)
\(+\)\(-\)\(-\)\(20\)
\(-\)\(+\)\(-\)\(16\)
\(-\)\(-\)\(+\)\(12\)
Plus space\(+\)\(28\)
Minus space\(-\)\(36\)

Trace form

\( 64q + 64q^{9} + O(q^{10}) \) \( 64q + 64q^{9} + 64q^{25} + 64q^{49} + 64q^{81} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3072))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3
3072.2.a.a \(2\) \(24.530\) \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(0\) \(+\) \(+\) \(q-q^{3}+\beta q^{7}+q^{9}+\beta q^{13}-6q^{17}+\cdots\)
3072.2.a.b \(2\) \(24.530\) \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(0\) \(+\) \(+\) \(q-q^{3}+\beta q^{5}+2\beta q^{7}+q^{9}-3\beta q^{13}+\cdots\)
3072.2.a.c \(2\) \(24.530\) \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(0\) \(-\) \(+\) \(q-q^{3}+\beta q^{5}+q^{9}+4q^{11}-\beta q^{13}+\cdots\)
3072.2.a.d \(2\) \(24.530\) \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(0\) \(-\) \(+\) \(q-q^{3}+2\beta q^{5}-3\beta q^{7}+q^{9}+4q^{11}+\cdots\)
3072.2.a.e \(2\) \(24.530\) \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(0\) \(-\) \(-\) \(q+q^{3}+\beta q^{5}+q^{9}-4q^{11}-\beta q^{13}+\cdots\)
3072.2.a.f \(2\) \(24.530\) \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(0\) \(+\) \(-\) \(q+q^{3}+2\beta q^{5}+3\beta q^{7}+q^{9}-4q^{11}+\cdots\)
3072.2.a.g \(2\) \(24.530\) \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(0\) \(-\) \(-\) \(q+q^{3}-\beta q^{7}+q^{9}+\beta q^{13}-6q^{17}+\cdots\)
3072.2.a.h \(2\) \(24.530\) \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(0\) \(+\) \(-\) \(q+q^{3}+\beta q^{5}-2\beta q^{7}+q^{9}-3\beta q^{13}+\cdots\)
3072.2.a.i \(4\) \(24.530\) 4.4.4352.1 None \(0\) \(-4\) \(-4\) \(4\) \(+\) \(+\) \(q-q^{3}+(-1-\beta _{3})q^{5}+(1+\beta _{2})q^{7}+\cdots\)
3072.2.a.j \(4\) \(24.530\) \(\Q(\zeta_{16})^+\) None \(0\) \(-4\) \(0\) \(-8\) \(+\) \(+\) \(q-q^{3}+(\beta _{2}-\beta _{3})q^{5}+(-2-\beta _{3})q^{7}+\cdots\)
3072.2.a.k \(4\) \(24.530\) \(\Q(\sqrt{2}, \sqrt{5})\) None \(0\) \(-4\) \(0\) \(0\) \(+\) \(+\) \(q-q^{3}+\beta _{2}q^{5}+(-\beta _{1}-\beta _{2})q^{7}+q^{9}+\cdots\)
3072.2.a.l \(4\) \(24.530\) \(\Q(\zeta_{24})^+\) None \(0\) \(-4\) \(0\) \(0\) \(-\) \(+\) \(q-q^{3}+(\beta _{1}+\beta _{2})q^{5}+\beta _{2}q^{7}+q^{9}+\cdots\)
3072.2.a.m \(4\) \(24.530\) \(\Q(\zeta_{16})^+\) None \(0\) \(-4\) \(0\) \(8\) \(-\) \(+\) \(q-q^{3}+(-\beta _{2}-\beta _{3})q^{5}+(2-\beta _{3})q^{7}+\cdots\)
3072.2.a.n \(4\) \(24.530\) 4.4.4352.1 None \(0\) \(-4\) \(4\) \(-4\) \(-\) \(+\) \(q-q^{3}+(1+\beta _{3})q^{5}+(-1-\beta _{2})q^{7}+\cdots\)
3072.2.a.o \(4\) \(24.530\) 4.4.4352.1 None \(0\) \(4\) \(-4\) \(-4\) \(-\) \(-\) \(q+q^{3}+(-1-\beta _{3})q^{5}+(-1-\beta _{2})q^{7}+\cdots\)
3072.2.a.p \(4\) \(24.530\) \(\Q(\zeta_{16})^+\) None \(0\) \(4\) \(0\) \(-8\) \(-\) \(-\) \(q+q^{3}+(-\beta _{2}-\beta _{3})q^{5}+(-2+\beta _{3})q^{7}+\cdots\)
3072.2.a.q \(4\) \(24.530\) \(\Q(\sqrt{2}, \sqrt{5})\) None \(0\) \(4\) \(0\) \(0\) \(+\) \(-\) \(q+q^{3}+\beta _{2}q^{5}+(-\beta _{1}+\beta _{2})q^{7}+q^{9}+\cdots\)
3072.2.a.r \(4\) \(24.530\) \(\Q(\zeta_{24})^+\) None \(0\) \(4\) \(0\) \(0\) \(+\) \(-\) \(q+q^{3}+(\beta _{1}+\beta _{2})q^{5}-\beta _{2}q^{7}+q^{9}+\cdots\)
3072.2.a.s \(4\) \(24.530\) \(\Q(\zeta_{16})^+\) None \(0\) \(4\) \(0\) \(8\) \(+\) \(-\) \(q+q^{3}+(\beta _{2}-\beta _{3})q^{5}+(2+\beta _{3})q^{7}+q^{9}+\cdots\)
3072.2.a.t \(4\) \(24.530\) 4.4.4352.1 None \(0\) \(4\) \(4\) \(4\) \(+\) \(-\) \(q+q^{3}+(1+\beta _{3})q^{5}+(1+\beta _{2})q^{7}+q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3072))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3072)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(384))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(512))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(768))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1024))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1536))\)\(^{\oplus 2}\)