Properties

Label 306.2.a.f.1.2
Level $306$
Weight $2$
Character 306.1
Self dual yes
Analytic conductor $2.443$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [306,2,Mod(1,306)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("306.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 306.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.44342230185\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 306.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.44949 q^{5} -0.449490 q^{7} +1.00000 q^{8} +2.44949 q^{10} -4.89898 q^{11} +6.89898 q^{13} -0.449490 q^{14} +1.00000 q^{16} -1.00000 q^{17} -2.89898 q^{19} +2.44949 q^{20} -4.89898 q^{22} -3.55051 q^{23} +1.00000 q^{25} +6.89898 q^{26} -0.449490 q^{28} -2.44949 q^{29} +9.34847 q^{31} +1.00000 q^{32} -1.00000 q^{34} -1.10102 q^{35} -1.55051 q^{37} -2.89898 q^{38} +2.44949 q^{40} -6.00000 q^{41} -4.00000 q^{43} -4.89898 q^{44} -3.55051 q^{46} +4.89898 q^{47} -6.79796 q^{49} +1.00000 q^{50} +6.89898 q^{52} +1.10102 q^{53} -12.0000 q^{55} -0.449490 q^{56} -2.44949 q^{58} -10.8990 q^{59} -6.44949 q^{61} +9.34847 q^{62} +1.00000 q^{64} +16.8990 q^{65} -2.89898 q^{67} -1.00000 q^{68} -1.10102 q^{70} -13.3485 q^{71} -10.0000 q^{73} -1.55051 q^{74} -2.89898 q^{76} +2.20204 q^{77} +9.34847 q^{79} +2.44949 q^{80} -6.00000 q^{82} +10.8990 q^{83} -2.44949 q^{85} -4.00000 q^{86} -4.89898 q^{88} +15.7980 q^{89} -3.10102 q^{91} -3.55051 q^{92} +4.89898 q^{94} -7.10102 q^{95} -5.10102 q^{97} -6.79796 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 4 q^{7} + 2 q^{8} + 4 q^{13} + 4 q^{14} + 2 q^{16} - 2 q^{17} + 4 q^{19} - 12 q^{23} + 2 q^{25} + 4 q^{26} + 4 q^{28} + 4 q^{31} + 2 q^{32} - 2 q^{34} - 12 q^{35} - 8 q^{37} + 4 q^{38}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.44949 1.09545 0.547723 0.836660i \(-0.315495\pi\)
0.547723 + 0.836660i \(0.315495\pi\)
\(6\) 0 0
\(7\) −0.449490 −0.169891 −0.0849456 0.996386i \(-0.527072\pi\)
−0.0849456 + 0.996386i \(0.527072\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.44949 0.774597
\(11\) −4.89898 −1.47710 −0.738549 0.674200i \(-0.764489\pi\)
−0.738549 + 0.674200i \(0.764489\pi\)
\(12\) 0 0
\(13\) 6.89898 1.91343 0.956716 0.291022i \(-0.0939953\pi\)
0.956716 + 0.291022i \(0.0939953\pi\)
\(14\) −0.449490 −0.120131
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −2.89898 −0.665072 −0.332536 0.943091i \(-0.607904\pi\)
−0.332536 + 0.943091i \(0.607904\pi\)
\(20\) 2.44949 0.547723
\(21\) 0 0
\(22\) −4.89898 −1.04447
\(23\) −3.55051 −0.740333 −0.370166 0.928966i \(-0.620699\pi\)
−0.370166 + 0.928966i \(0.620699\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 6.89898 1.35300
\(27\) 0 0
\(28\) −0.449490 −0.0849456
\(29\) −2.44949 −0.454859 −0.227429 0.973795i \(-0.573032\pi\)
−0.227429 + 0.973795i \(0.573032\pi\)
\(30\) 0 0
\(31\) 9.34847 1.67903 0.839517 0.543333i \(-0.182838\pi\)
0.839517 + 0.543333i \(0.182838\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) −1.10102 −0.186106
\(36\) 0 0
\(37\) −1.55051 −0.254902 −0.127451 0.991845i \(-0.540680\pi\)
−0.127451 + 0.991845i \(0.540680\pi\)
\(38\) −2.89898 −0.470277
\(39\) 0 0
\(40\) 2.44949 0.387298
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −4.89898 −0.738549
\(45\) 0 0
\(46\) −3.55051 −0.523494
\(47\) 4.89898 0.714590 0.357295 0.933992i \(-0.383699\pi\)
0.357295 + 0.933992i \(0.383699\pi\)
\(48\) 0 0
\(49\) −6.79796 −0.971137
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 6.89898 0.956716
\(53\) 1.10102 0.151237 0.0756184 0.997137i \(-0.475907\pi\)
0.0756184 + 0.997137i \(0.475907\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) −0.449490 −0.0600656
\(57\) 0 0
\(58\) −2.44949 −0.321634
\(59\) −10.8990 −1.41893 −0.709463 0.704743i \(-0.751063\pi\)
−0.709463 + 0.704743i \(0.751063\pi\)
\(60\) 0 0
\(61\) −6.44949 −0.825773 −0.412886 0.910783i \(-0.635479\pi\)
−0.412886 + 0.910783i \(0.635479\pi\)
\(62\) 9.34847 1.18726
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 16.8990 2.09606
\(66\) 0 0
\(67\) −2.89898 −0.354167 −0.177083 0.984196i \(-0.556666\pi\)
−0.177083 + 0.984196i \(0.556666\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) −1.10102 −0.131597
\(71\) −13.3485 −1.58417 −0.792086 0.610410i \(-0.791005\pi\)
−0.792086 + 0.610410i \(0.791005\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −1.55051 −0.180243
\(75\) 0 0
\(76\) −2.89898 −0.332536
\(77\) 2.20204 0.250946
\(78\) 0 0
\(79\) 9.34847 1.05178 0.525892 0.850551i \(-0.323731\pi\)
0.525892 + 0.850551i \(0.323731\pi\)
\(80\) 2.44949 0.273861
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 10.8990 1.19632 0.598159 0.801377i \(-0.295899\pi\)
0.598159 + 0.801377i \(0.295899\pi\)
\(84\) 0 0
\(85\) −2.44949 −0.265684
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) −4.89898 −0.522233
\(89\) 15.7980 1.67458 0.837290 0.546759i \(-0.184139\pi\)
0.837290 + 0.546759i \(0.184139\pi\)
\(90\) 0 0
\(91\) −3.10102 −0.325075
\(92\) −3.55051 −0.370166
\(93\) 0 0
\(94\) 4.89898 0.505291
\(95\) −7.10102 −0.728549
\(96\) 0 0
\(97\) −5.10102 −0.517930 −0.258965 0.965887i \(-0.583381\pi\)
−0.258965 + 0.965887i \(0.583381\pi\)
\(98\) −6.79796 −0.686698
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 10.8990 1.08449 0.542244 0.840221i \(-0.317575\pi\)
0.542244 + 0.840221i \(0.317575\pi\)
\(102\) 0 0
\(103\) 12.8990 1.27097 0.635487 0.772111i \(-0.280799\pi\)
0.635487 + 0.772111i \(0.280799\pi\)
\(104\) 6.89898 0.676501
\(105\) 0 0
\(106\) 1.10102 0.106941
\(107\) 7.10102 0.686482 0.343241 0.939247i \(-0.388475\pi\)
0.343241 + 0.939247i \(0.388475\pi\)
\(108\) 0 0
\(109\) 15.3485 1.47012 0.735058 0.678004i \(-0.237155\pi\)
0.735058 + 0.678004i \(0.237155\pi\)
\(110\) −12.0000 −1.14416
\(111\) 0 0
\(112\) −0.449490 −0.0424728
\(113\) 10.8990 1.02529 0.512645 0.858601i \(-0.328666\pi\)
0.512645 + 0.858601i \(0.328666\pi\)
\(114\) 0 0
\(115\) −8.69694 −0.810994
\(116\) −2.44949 −0.227429
\(117\) 0 0
\(118\) −10.8990 −1.00333
\(119\) 0.449490 0.0412047
\(120\) 0 0
\(121\) 13.0000 1.18182
\(122\) −6.44949 −0.583909
\(123\) 0 0
\(124\) 9.34847 0.839517
\(125\) −9.79796 −0.876356
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 16.8990 1.48214
\(131\) −7.10102 −0.620419 −0.310210 0.950668i \(-0.600399\pi\)
−0.310210 + 0.950668i \(0.600399\pi\)
\(132\) 0 0
\(133\) 1.30306 0.112990
\(134\) −2.89898 −0.250434
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) −19.5959 −1.67419 −0.837096 0.547056i \(-0.815749\pi\)
−0.837096 + 0.547056i \(0.815749\pi\)
\(138\) 0 0
\(139\) 12.8990 1.09408 0.547039 0.837107i \(-0.315755\pi\)
0.547039 + 0.837107i \(0.315755\pi\)
\(140\) −1.10102 −0.0930532
\(141\) 0 0
\(142\) −13.3485 −1.12018
\(143\) −33.7980 −2.82633
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) −1.55051 −0.127451
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 17.7980 1.44838 0.724189 0.689602i \(-0.242214\pi\)
0.724189 + 0.689602i \(0.242214\pi\)
\(152\) −2.89898 −0.235138
\(153\) 0 0
\(154\) 2.20204 0.177446
\(155\) 22.8990 1.83929
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 9.34847 0.743724
\(159\) 0 0
\(160\) 2.44949 0.193649
\(161\) 1.59592 0.125776
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 10.8990 0.845925
\(167\) 3.55051 0.274747 0.137373 0.990519i \(-0.456134\pi\)
0.137373 + 0.990519i \(0.456134\pi\)
\(168\) 0 0
\(169\) 34.5959 2.66122
\(170\) −2.44949 −0.187867
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 17.1464 1.30362 0.651809 0.758383i \(-0.274010\pi\)
0.651809 + 0.758383i \(0.274010\pi\)
\(174\) 0 0
\(175\) −0.449490 −0.0339782
\(176\) −4.89898 −0.369274
\(177\) 0 0
\(178\) 15.7980 1.18411
\(179\) 21.7980 1.62926 0.814628 0.579984i \(-0.196941\pi\)
0.814628 + 0.579984i \(0.196941\pi\)
\(180\) 0 0
\(181\) −16.2474 −1.20766 −0.603832 0.797112i \(-0.706360\pi\)
−0.603832 + 0.797112i \(0.706360\pi\)
\(182\) −3.10102 −0.229863
\(183\) 0 0
\(184\) −3.55051 −0.261747
\(185\) −3.79796 −0.279231
\(186\) 0 0
\(187\) 4.89898 0.358249
\(188\) 4.89898 0.357295
\(189\) 0 0
\(190\) −7.10102 −0.515162
\(191\) −14.6969 −1.06343 −0.531717 0.846922i \(-0.678453\pi\)
−0.531717 + 0.846922i \(0.678453\pi\)
\(192\) 0 0
\(193\) 9.10102 0.655106 0.327553 0.944833i \(-0.393776\pi\)
0.327553 + 0.944833i \(0.393776\pi\)
\(194\) −5.10102 −0.366232
\(195\) 0 0
\(196\) −6.79796 −0.485568
\(197\) 0.247449 0.0176300 0.00881500 0.999961i \(-0.497194\pi\)
0.00881500 + 0.999961i \(0.497194\pi\)
\(198\) 0 0
\(199\) −20.0454 −1.42098 −0.710491 0.703707i \(-0.751527\pi\)
−0.710491 + 0.703707i \(0.751527\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 10.8990 0.766850
\(203\) 1.10102 0.0772765
\(204\) 0 0
\(205\) −14.6969 −1.02648
\(206\) 12.8990 0.898714
\(207\) 0 0
\(208\) 6.89898 0.478358
\(209\) 14.2020 0.982376
\(210\) 0 0
\(211\) 3.10102 0.213483 0.106742 0.994287i \(-0.465958\pi\)
0.106742 + 0.994287i \(0.465958\pi\)
\(212\) 1.10102 0.0756184
\(213\) 0 0
\(214\) 7.10102 0.485416
\(215\) −9.79796 −0.668215
\(216\) 0 0
\(217\) −4.20204 −0.285253
\(218\) 15.3485 1.03953
\(219\) 0 0
\(220\) −12.0000 −0.809040
\(221\) −6.89898 −0.464076
\(222\) 0 0
\(223\) 10.6969 0.716320 0.358160 0.933660i \(-0.383404\pi\)
0.358160 + 0.933660i \(0.383404\pi\)
\(224\) −0.449490 −0.0300328
\(225\) 0 0
\(226\) 10.8990 0.724989
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) −8.69694 −0.573459
\(231\) 0 0
\(232\) −2.44949 −0.160817
\(233\) −20.6969 −1.35590 −0.677951 0.735107i \(-0.737132\pi\)
−0.677951 + 0.735107i \(0.737132\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) −10.8990 −0.709463
\(237\) 0 0
\(238\) 0.449490 0.0291361
\(239\) 2.69694 0.174450 0.0872252 0.996189i \(-0.472200\pi\)
0.0872252 + 0.996189i \(0.472200\pi\)
\(240\) 0 0
\(241\) −12.6969 −0.817882 −0.408941 0.912561i \(-0.634102\pi\)
−0.408941 + 0.912561i \(0.634102\pi\)
\(242\) 13.0000 0.835672
\(243\) 0 0
\(244\) −6.44949 −0.412886
\(245\) −16.6515 −1.06383
\(246\) 0 0
\(247\) −20.0000 −1.27257
\(248\) 9.34847 0.593628
\(249\) 0 0
\(250\) −9.79796 −0.619677
\(251\) 21.7980 1.37587 0.687937 0.725770i \(-0.258516\pi\)
0.687937 + 0.725770i \(0.258516\pi\)
\(252\) 0 0
\(253\) 17.3939 1.09354
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.0000 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(258\) 0 0
\(259\) 0.696938 0.0433056
\(260\) 16.8990 1.04803
\(261\) 0 0
\(262\) −7.10102 −0.438703
\(263\) −28.8990 −1.78199 −0.890994 0.454016i \(-0.849991\pi\)
−0.890994 + 0.454016i \(0.849991\pi\)
\(264\) 0 0
\(265\) 2.69694 0.165672
\(266\) 1.30306 0.0798958
\(267\) 0 0
\(268\) −2.89898 −0.177083
\(269\) 2.44949 0.149348 0.0746740 0.997208i \(-0.476208\pi\)
0.0746740 + 0.997208i \(0.476208\pi\)
\(270\) 0 0
\(271\) −1.79796 −0.109218 −0.0546091 0.998508i \(-0.517391\pi\)
−0.0546091 + 0.998508i \(0.517391\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) −19.5959 −1.18383
\(275\) −4.89898 −0.295420
\(276\) 0 0
\(277\) −8.65153 −0.519820 −0.259910 0.965633i \(-0.583693\pi\)
−0.259910 + 0.965633i \(0.583693\pi\)
\(278\) 12.8990 0.773629
\(279\) 0 0
\(280\) −1.10102 −0.0657986
\(281\) 3.79796 0.226567 0.113284 0.993563i \(-0.463863\pi\)
0.113284 + 0.993563i \(0.463863\pi\)
\(282\) 0 0
\(283\) −18.6969 −1.11142 −0.555709 0.831377i \(-0.687553\pi\)
−0.555709 + 0.831377i \(0.687553\pi\)
\(284\) −13.3485 −0.792086
\(285\) 0 0
\(286\) −33.7980 −1.99852
\(287\) 2.69694 0.159195
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −6.00000 −0.352332
\(291\) 0 0
\(292\) −10.0000 −0.585206
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −26.6969 −1.55436
\(296\) −1.55051 −0.0901216
\(297\) 0 0
\(298\) 18.0000 1.04271
\(299\) −24.4949 −1.41658
\(300\) 0 0
\(301\) 1.79796 0.103633
\(302\) 17.7980 1.02416
\(303\) 0 0
\(304\) −2.89898 −0.166268
\(305\) −15.7980 −0.904588
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 2.20204 0.125473
\(309\) 0 0
\(310\) 22.8990 1.30057
\(311\) 6.24745 0.354260 0.177130 0.984187i \(-0.443319\pi\)
0.177130 + 0.984187i \(0.443319\pi\)
\(312\) 0 0
\(313\) −2.89898 −0.163860 −0.0819300 0.996638i \(-0.526108\pi\)
−0.0819300 + 0.996638i \(0.526108\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) 9.34847 0.525892
\(317\) 29.1464 1.63703 0.818513 0.574488i \(-0.194799\pi\)
0.818513 + 0.574488i \(0.194799\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 2.44949 0.136931
\(321\) 0 0
\(322\) 1.59592 0.0889370
\(323\) 2.89898 0.161304
\(324\) 0 0
\(325\) 6.89898 0.382687
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) −2.20204 −0.121402
\(330\) 0 0
\(331\) 5.79796 0.318685 0.159342 0.987223i \(-0.449063\pi\)
0.159342 + 0.987223i \(0.449063\pi\)
\(332\) 10.8990 0.598159
\(333\) 0 0
\(334\) 3.55051 0.194275
\(335\) −7.10102 −0.387970
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 34.5959 1.88177
\(339\) 0 0
\(340\) −2.44949 −0.132842
\(341\) −45.7980 −2.48010
\(342\) 0 0
\(343\) 6.20204 0.334879
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 17.1464 0.921798
\(347\) −2.20204 −0.118212 −0.0591059 0.998252i \(-0.518825\pi\)
−0.0591059 + 0.998252i \(0.518825\pi\)
\(348\) 0 0
\(349\) −0.696938 −0.0373063 −0.0186531 0.999826i \(-0.505938\pi\)
−0.0186531 + 0.999826i \(0.505938\pi\)
\(350\) −0.449490 −0.0240262
\(351\) 0 0
\(352\) −4.89898 −0.261116
\(353\) −25.5959 −1.36233 −0.681167 0.732128i \(-0.738527\pi\)
−0.681167 + 0.732128i \(0.738527\pi\)
\(354\) 0 0
\(355\) −32.6969 −1.73537
\(356\) 15.7980 0.837290
\(357\) 0 0
\(358\) 21.7980 1.15206
\(359\) 2.20204 0.116219 0.0581096 0.998310i \(-0.481493\pi\)
0.0581096 + 0.998310i \(0.481493\pi\)
\(360\) 0 0
\(361\) −10.5959 −0.557680
\(362\) −16.2474 −0.853947
\(363\) 0 0
\(364\) −3.10102 −0.162538
\(365\) −24.4949 −1.28212
\(366\) 0 0
\(367\) −34.2474 −1.78770 −0.893851 0.448364i \(-0.852007\pi\)
−0.893851 + 0.448364i \(0.852007\pi\)
\(368\) −3.55051 −0.185083
\(369\) 0 0
\(370\) −3.79796 −0.197446
\(371\) −0.494897 −0.0256938
\(372\) 0 0
\(373\) −0.696938 −0.0360861 −0.0180431 0.999837i \(-0.505744\pi\)
−0.0180431 + 0.999837i \(0.505744\pi\)
\(374\) 4.89898 0.253320
\(375\) 0 0
\(376\) 4.89898 0.252646
\(377\) −16.8990 −0.870342
\(378\) 0 0
\(379\) 29.7980 1.53062 0.765309 0.643663i \(-0.222586\pi\)
0.765309 + 0.643663i \(0.222586\pi\)
\(380\) −7.10102 −0.364275
\(381\) 0 0
\(382\) −14.6969 −0.751961
\(383\) 4.89898 0.250326 0.125163 0.992136i \(-0.460055\pi\)
0.125163 + 0.992136i \(0.460055\pi\)
\(384\) 0 0
\(385\) 5.39388 0.274897
\(386\) 9.10102 0.463230
\(387\) 0 0
\(388\) −5.10102 −0.258965
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 3.55051 0.179557
\(392\) −6.79796 −0.343349
\(393\) 0 0
\(394\) 0.247449 0.0124663
\(395\) 22.8990 1.15217
\(396\) 0 0
\(397\) 27.3485 1.37258 0.686290 0.727328i \(-0.259238\pi\)
0.686290 + 0.727328i \(0.259238\pi\)
\(398\) −20.0454 −1.00479
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −15.7980 −0.788912 −0.394456 0.918915i \(-0.629067\pi\)
−0.394456 + 0.918915i \(0.629067\pi\)
\(402\) 0 0
\(403\) 64.4949 3.21272
\(404\) 10.8990 0.542244
\(405\) 0 0
\(406\) 1.10102 0.0546427
\(407\) 7.59592 0.376516
\(408\) 0 0
\(409\) −6.20204 −0.306671 −0.153336 0.988174i \(-0.549002\pi\)
−0.153336 + 0.988174i \(0.549002\pi\)
\(410\) −14.6969 −0.725830
\(411\) 0 0
\(412\) 12.8990 0.635487
\(413\) 4.89898 0.241063
\(414\) 0 0
\(415\) 26.6969 1.31050
\(416\) 6.89898 0.338250
\(417\) 0 0
\(418\) 14.2020 0.694645
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −26.8990 −1.31098 −0.655488 0.755206i \(-0.727537\pi\)
−0.655488 + 0.755206i \(0.727537\pi\)
\(422\) 3.10102 0.150955
\(423\) 0 0
\(424\) 1.10102 0.0534703
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 2.89898 0.140291
\(428\) 7.10102 0.343241
\(429\) 0 0
\(430\) −9.79796 −0.472500
\(431\) 32.9444 1.58688 0.793438 0.608652i \(-0.208289\pi\)
0.793438 + 0.608652i \(0.208289\pi\)
\(432\) 0 0
\(433\) −21.3939 −1.02812 −0.514062 0.857753i \(-0.671860\pi\)
−0.514062 + 0.857753i \(0.671860\pi\)
\(434\) −4.20204 −0.201704
\(435\) 0 0
\(436\) 15.3485 0.735058
\(437\) 10.2929 0.492374
\(438\) 0 0
\(439\) 33.3485 1.59164 0.795818 0.605536i \(-0.207041\pi\)
0.795818 + 0.605536i \(0.207041\pi\)
\(440\) −12.0000 −0.572078
\(441\) 0 0
\(442\) −6.89898 −0.328151
\(443\) 41.3939 1.96668 0.983341 0.181769i \(-0.0581824\pi\)
0.983341 + 0.181769i \(0.0581824\pi\)
\(444\) 0 0
\(445\) 38.6969 1.83441
\(446\) 10.6969 0.506515
\(447\) 0 0
\(448\) −0.449490 −0.0212364
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 29.3939 1.38410
\(452\) 10.8990 0.512645
\(453\) 0 0
\(454\) 0 0
\(455\) −7.59592 −0.356102
\(456\) 0 0
\(457\) −21.3939 −1.00076 −0.500382 0.865805i \(-0.666807\pi\)
−0.500382 + 0.865805i \(0.666807\pi\)
\(458\) 2.00000 0.0934539
\(459\) 0 0
\(460\) −8.69694 −0.405497
\(461\) 20.6969 0.963953 0.481976 0.876184i \(-0.339919\pi\)
0.481976 + 0.876184i \(0.339919\pi\)
\(462\) 0 0
\(463\) −40.4949 −1.88196 −0.940979 0.338466i \(-0.890092\pi\)
−0.940979 + 0.338466i \(0.890092\pi\)
\(464\) −2.44949 −0.113715
\(465\) 0 0
\(466\) −20.6969 −0.958767
\(467\) −7.59592 −0.351497 −0.175749 0.984435i \(-0.556235\pi\)
−0.175749 + 0.984435i \(0.556235\pi\)
\(468\) 0 0
\(469\) 1.30306 0.0601698
\(470\) 12.0000 0.553519
\(471\) 0 0
\(472\) −10.8990 −0.501666
\(473\) 19.5959 0.901021
\(474\) 0 0
\(475\) −2.89898 −0.133014
\(476\) 0.449490 0.0206023
\(477\) 0 0
\(478\) 2.69694 0.123355
\(479\) −6.24745 −0.285453 −0.142727 0.989762i \(-0.545587\pi\)
−0.142727 + 0.989762i \(0.545587\pi\)
\(480\) 0 0
\(481\) −10.6969 −0.487738
\(482\) −12.6969 −0.578330
\(483\) 0 0
\(484\) 13.0000 0.590909
\(485\) −12.4949 −0.567364
\(486\) 0 0
\(487\) −0.449490 −0.0203683 −0.0101842 0.999948i \(-0.503242\pi\)
−0.0101842 + 0.999948i \(0.503242\pi\)
\(488\) −6.44949 −0.291955
\(489\) 0 0
\(490\) −16.6515 −0.752239
\(491\) −17.3939 −0.784975 −0.392487 0.919757i \(-0.628385\pi\)
−0.392487 + 0.919757i \(0.628385\pi\)
\(492\) 0 0
\(493\) 2.44949 0.110319
\(494\) −20.0000 −0.899843
\(495\) 0 0
\(496\) 9.34847 0.419759
\(497\) 6.00000 0.269137
\(498\) 0 0
\(499\) 34.6969 1.55325 0.776624 0.629964i \(-0.216930\pi\)
0.776624 + 0.629964i \(0.216930\pi\)
\(500\) −9.79796 −0.438178
\(501\) 0 0
\(502\) 21.7980 0.972891
\(503\) −6.24745 −0.278560 −0.139280 0.990253i \(-0.544479\pi\)
−0.139280 + 0.990253i \(0.544479\pi\)
\(504\) 0 0
\(505\) 26.6969 1.18800
\(506\) 17.3939 0.773252
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) −3.79796 −0.168342 −0.0841708 0.996451i \(-0.526824\pi\)
−0.0841708 + 0.996451i \(0.526824\pi\)
\(510\) 0 0
\(511\) 4.49490 0.198843
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 24.0000 1.05859
\(515\) 31.5959 1.39228
\(516\) 0 0
\(517\) −24.0000 −1.05552
\(518\) 0.696938 0.0306217
\(519\) 0 0
\(520\) 16.8990 0.741069
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) 16.6969 0.730106 0.365053 0.930987i \(-0.381051\pi\)
0.365053 + 0.930987i \(0.381051\pi\)
\(524\) −7.10102 −0.310210
\(525\) 0 0
\(526\) −28.8990 −1.26006
\(527\) −9.34847 −0.407226
\(528\) 0 0
\(529\) −10.3939 −0.451908
\(530\) 2.69694 0.117148
\(531\) 0 0
\(532\) 1.30306 0.0564949
\(533\) −41.3939 −1.79297
\(534\) 0 0
\(535\) 17.3939 0.752003
\(536\) −2.89898 −0.125217
\(537\) 0 0
\(538\) 2.44949 0.105605
\(539\) 33.3031 1.43446
\(540\) 0 0
\(541\) 27.3485 1.17580 0.587901 0.808933i \(-0.299954\pi\)
0.587901 + 0.808933i \(0.299954\pi\)
\(542\) −1.79796 −0.0772290
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 37.5959 1.61043
\(546\) 0 0
\(547\) −20.8990 −0.893576 −0.446788 0.894640i \(-0.647432\pi\)
−0.446788 + 0.894640i \(0.647432\pi\)
\(548\) −19.5959 −0.837096
\(549\) 0 0
\(550\) −4.89898 −0.208893
\(551\) 7.10102 0.302514
\(552\) 0 0
\(553\) −4.20204 −0.178689
\(554\) −8.65153 −0.367568
\(555\) 0 0
\(556\) 12.8990 0.547039
\(557\) −13.1010 −0.555108 −0.277554 0.960710i \(-0.589524\pi\)
−0.277554 + 0.960710i \(0.589524\pi\)
\(558\) 0 0
\(559\) −27.5959 −1.16718
\(560\) −1.10102 −0.0465266
\(561\) 0 0
\(562\) 3.79796 0.160207
\(563\) −1.10102 −0.0464025 −0.0232012 0.999731i \(-0.507386\pi\)
−0.0232012 + 0.999731i \(0.507386\pi\)
\(564\) 0 0
\(565\) 26.6969 1.12315
\(566\) −18.6969 −0.785891
\(567\) 0 0
\(568\) −13.3485 −0.560089
\(569\) 39.1918 1.64301 0.821504 0.570203i \(-0.193136\pi\)
0.821504 + 0.570203i \(0.193136\pi\)
\(570\) 0 0
\(571\) −6.20204 −0.259547 −0.129774 0.991544i \(-0.541425\pi\)
−0.129774 + 0.991544i \(0.541425\pi\)
\(572\) −33.7980 −1.41316
\(573\) 0 0
\(574\) 2.69694 0.112568
\(575\) −3.55051 −0.148067
\(576\) 0 0
\(577\) −5.59592 −0.232961 −0.116481 0.993193i \(-0.537161\pi\)
−0.116481 + 0.993193i \(0.537161\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) −6.00000 −0.249136
\(581\) −4.89898 −0.203244
\(582\) 0 0
\(583\) −5.39388 −0.223392
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −27.1010 −1.11668
\(590\) −26.6969 −1.09910
\(591\) 0 0
\(592\) −1.55051 −0.0637256
\(593\) −21.7980 −0.895135 −0.447567 0.894250i \(-0.647710\pi\)
−0.447567 + 0.894250i \(0.647710\pi\)
\(594\) 0 0
\(595\) 1.10102 0.0451374
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) −24.4949 −1.00167
\(599\) −33.7980 −1.38095 −0.690474 0.723358i \(-0.742598\pi\)
−0.690474 + 0.723358i \(0.742598\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 1.79796 0.0732793
\(603\) 0 0
\(604\) 17.7980 0.724189
\(605\) 31.8434 1.29462
\(606\) 0 0
\(607\) −3.14643 −0.127710 −0.0638548 0.997959i \(-0.520339\pi\)
−0.0638548 + 0.997959i \(0.520339\pi\)
\(608\) −2.89898 −0.117569
\(609\) 0 0
\(610\) −15.7980 −0.639641
\(611\) 33.7980 1.36732
\(612\) 0 0
\(613\) 11.7980 0.476515 0.238258 0.971202i \(-0.423424\pi\)
0.238258 + 0.971202i \(0.423424\pi\)
\(614\) −28.0000 −1.12999
\(615\) 0 0
\(616\) 2.20204 0.0887228
\(617\) −32.6969 −1.31633 −0.658165 0.752874i \(-0.728667\pi\)
−0.658165 + 0.752874i \(0.728667\pi\)
\(618\) 0 0
\(619\) −33.3939 −1.34221 −0.671107 0.741361i \(-0.734181\pi\)
−0.671107 + 0.741361i \(0.734181\pi\)
\(620\) 22.8990 0.919645
\(621\) 0 0
\(622\) 6.24745 0.250500
\(623\) −7.10102 −0.284496
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) −2.89898 −0.115867
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 1.55051 0.0618229
\(630\) 0 0
\(631\) −28.4949 −1.13436 −0.567182 0.823592i \(-0.691966\pi\)
−0.567182 + 0.823592i \(0.691966\pi\)
\(632\) 9.34847 0.371862
\(633\) 0 0
\(634\) 29.1464 1.15755
\(635\) −9.79796 −0.388820
\(636\) 0 0
\(637\) −46.8990 −1.85821
\(638\) 12.0000 0.475085
\(639\) 0 0
\(640\) 2.44949 0.0968246
\(641\) −3.79796 −0.150010 −0.0750052 0.997183i \(-0.523897\pi\)
−0.0750052 + 0.997183i \(0.523897\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 1.59592 0.0628880
\(645\) 0 0
\(646\) 2.89898 0.114059
\(647\) −24.4949 −0.962994 −0.481497 0.876448i \(-0.659907\pi\)
−0.481497 + 0.876448i \(0.659907\pi\)
\(648\) 0 0
\(649\) 53.3939 2.09589
\(650\) 6.89898 0.270600
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 31.3485 1.22676 0.613380 0.789788i \(-0.289809\pi\)
0.613380 + 0.789788i \(0.289809\pi\)
\(654\) 0 0
\(655\) −17.3939 −0.679635
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −2.20204 −0.0858445
\(659\) 1.10102 0.0428897 0.0214448 0.999770i \(-0.493173\pi\)
0.0214448 + 0.999770i \(0.493173\pi\)
\(660\) 0 0
\(661\) 2.49490 0.0970403 0.0485201 0.998822i \(-0.484549\pi\)
0.0485201 + 0.998822i \(0.484549\pi\)
\(662\) 5.79796 0.225344
\(663\) 0 0
\(664\) 10.8990 0.422962
\(665\) 3.19184 0.123774
\(666\) 0 0
\(667\) 8.69694 0.336747
\(668\) 3.55051 0.137373
\(669\) 0 0
\(670\) −7.10102 −0.274336
\(671\) 31.5959 1.21975
\(672\) 0 0
\(673\) 26.4949 1.02130 0.510652 0.859788i \(-0.329404\pi\)
0.510652 + 0.859788i \(0.329404\pi\)
\(674\) 2.00000 0.0770371
\(675\) 0 0
\(676\) 34.5959 1.33061
\(677\) −38.9444 −1.49675 −0.748377 0.663273i \(-0.769167\pi\)
−0.748377 + 0.663273i \(0.769167\pi\)
\(678\) 0 0
\(679\) 2.29286 0.0879918
\(680\) −2.44949 −0.0939336
\(681\) 0 0
\(682\) −45.7980 −1.75369
\(683\) 51.1918 1.95880 0.979401 0.201927i \(-0.0647204\pi\)
0.979401 + 0.201927i \(0.0647204\pi\)
\(684\) 0 0
\(685\) −48.0000 −1.83399
\(686\) 6.20204 0.236795
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) 7.59592 0.289381
\(690\) 0 0
\(691\) −30.6969 −1.16777 −0.583883 0.811838i \(-0.698467\pi\)
−0.583883 + 0.811838i \(0.698467\pi\)
\(692\) 17.1464 0.651809
\(693\) 0 0
\(694\) −2.20204 −0.0835883
\(695\) 31.5959 1.19850
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) −0.696938 −0.0263795
\(699\) 0 0
\(700\) −0.449490 −0.0169891
\(701\) −8.69694 −0.328479 −0.164239 0.986421i \(-0.552517\pi\)
−0.164239 + 0.986421i \(0.552517\pi\)
\(702\) 0 0
\(703\) 4.49490 0.169528
\(704\) −4.89898 −0.184637
\(705\) 0 0
\(706\) −25.5959 −0.963315
\(707\) −4.89898 −0.184245
\(708\) 0 0
\(709\) −18.9444 −0.711471 −0.355736 0.934587i \(-0.615770\pi\)
−0.355736 + 0.934587i \(0.615770\pi\)
\(710\) −32.6969 −1.22709
\(711\) 0 0
\(712\) 15.7980 0.592054
\(713\) −33.1918 −1.24304
\(714\) 0 0
\(715\) −82.7878 −3.09609
\(716\) 21.7980 0.814628
\(717\) 0 0
\(718\) 2.20204 0.0821794
\(719\) 20.4495 0.762637 0.381319 0.924444i \(-0.375470\pi\)
0.381319 + 0.924444i \(0.375470\pi\)
\(720\) 0 0
\(721\) −5.79796 −0.215927
\(722\) −10.5959 −0.394339
\(723\) 0 0
\(724\) −16.2474 −0.603832
\(725\) −2.44949 −0.0909718
\(726\) 0 0
\(727\) 25.3939 0.941807 0.470903 0.882185i \(-0.343928\pi\)
0.470903 + 0.882185i \(0.343928\pi\)
\(728\) −3.10102 −0.114931
\(729\) 0 0
\(730\) −24.4949 −0.906597
\(731\) 4.00000 0.147945
\(732\) 0 0
\(733\) 40.6969 1.50318 0.751588 0.659633i \(-0.229288\pi\)
0.751588 + 0.659633i \(0.229288\pi\)
\(734\) −34.2474 −1.26410
\(735\) 0 0
\(736\) −3.55051 −0.130874
\(737\) 14.2020 0.523139
\(738\) 0 0
\(739\) 23.3031 0.857217 0.428608 0.903490i \(-0.359004\pi\)
0.428608 + 0.903490i \(0.359004\pi\)
\(740\) −3.79796 −0.139616
\(741\) 0 0
\(742\) −0.494897 −0.0181683
\(743\) −30.2474 −1.10967 −0.554836 0.831960i \(-0.687219\pi\)
−0.554836 + 0.831960i \(0.687219\pi\)
\(744\) 0 0
\(745\) 44.0908 1.61536
\(746\) −0.696938 −0.0255167
\(747\) 0 0
\(748\) 4.89898 0.179124
\(749\) −3.19184 −0.116627
\(750\) 0 0
\(751\) −10.2474 −0.373935 −0.186967 0.982366i \(-0.559866\pi\)
−0.186967 + 0.982366i \(0.559866\pi\)
\(752\) 4.89898 0.178647
\(753\) 0 0
\(754\) −16.8990 −0.615425
\(755\) 43.5959 1.58662
\(756\) 0 0
\(757\) −7.79796 −0.283422 −0.141711 0.989908i \(-0.545260\pi\)
−0.141711 + 0.989908i \(0.545260\pi\)
\(758\) 29.7980 1.08231
\(759\) 0 0
\(760\) −7.10102 −0.257581
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) −6.89898 −0.249760
\(764\) −14.6969 −0.531717
\(765\) 0 0
\(766\) 4.89898 0.177007
\(767\) −75.1918 −2.71502
\(768\) 0 0
\(769\) 19.3939 0.699361 0.349681 0.936869i \(-0.386290\pi\)
0.349681 + 0.936869i \(0.386290\pi\)
\(770\) 5.39388 0.194382
\(771\) 0 0
\(772\) 9.10102 0.327553
\(773\) −25.5959 −0.920621 −0.460311 0.887758i \(-0.652262\pi\)
−0.460311 + 0.887758i \(0.652262\pi\)
\(774\) 0 0
\(775\) 9.34847 0.335807
\(776\) −5.10102 −0.183116
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 17.3939 0.623200
\(780\) 0 0
\(781\) 65.3939 2.33998
\(782\) 3.55051 0.126966
\(783\) 0 0
\(784\) −6.79796 −0.242784
\(785\) −24.4949 −0.874260
\(786\) 0 0
\(787\) 32.4949 1.15832 0.579159 0.815215i \(-0.303381\pi\)
0.579159 + 0.815215i \(0.303381\pi\)
\(788\) 0.247449 0.00881500
\(789\) 0 0
\(790\) 22.8990 0.814709
\(791\) −4.89898 −0.174188
\(792\) 0 0
\(793\) −44.4949 −1.58006
\(794\) 27.3485 0.970561
\(795\) 0 0
\(796\) −20.0454 −0.710491
\(797\) 20.6969 0.733123 0.366562 0.930394i \(-0.380535\pi\)
0.366562 + 0.930394i \(0.380535\pi\)
\(798\) 0 0
\(799\) −4.89898 −0.173313
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −15.7980 −0.557845
\(803\) 48.9898 1.72881
\(804\) 0 0
\(805\) 3.90918 0.137781
\(806\) 64.4949 2.27174
\(807\) 0 0
\(808\) 10.8990 0.383425
\(809\) 15.7980 0.555427 0.277713 0.960664i \(-0.410423\pi\)
0.277713 + 0.960664i \(0.410423\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 1.10102 0.0386382
\(813\) 0 0
\(814\) 7.59592 0.266237
\(815\) −9.79796 −0.343208
\(816\) 0 0
\(817\) 11.5959 0.405690
\(818\) −6.20204 −0.216849
\(819\) 0 0
\(820\) −14.6969 −0.513239
\(821\) −53.1464 −1.85482 −0.927412 0.374042i \(-0.877971\pi\)
−0.927412 + 0.374042i \(0.877971\pi\)
\(822\) 0 0
\(823\) 28.9444 1.00894 0.504469 0.863430i \(-0.331688\pi\)
0.504469 + 0.863430i \(0.331688\pi\)
\(824\) 12.8990 0.449357
\(825\) 0 0
\(826\) 4.89898 0.170457
\(827\) −19.1010 −0.664208 −0.332104 0.943243i \(-0.607758\pi\)
−0.332104 + 0.943243i \(0.607758\pi\)
\(828\) 0 0
\(829\) −49.1918 −1.70850 −0.854252 0.519860i \(-0.825984\pi\)
−0.854252 + 0.519860i \(0.825984\pi\)
\(830\) 26.6969 0.926664
\(831\) 0 0
\(832\) 6.89898 0.239179
\(833\) 6.79796 0.235535
\(834\) 0 0
\(835\) 8.69694 0.300970
\(836\) 14.2020 0.491188
\(837\) 0 0
\(838\) 24.0000 0.829066
\(839\) 8.94439 0.308795 0.154397 0.988009i \(-0.450656\pi\)
0.154397 + 0.988009i \(0.450656\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) −26.8990 −0.927000
\(843\) 0 0
\(844\) 3.10102 0.106742
\(845\) 84.7423 2.91523
\(846\) 0 0
\(847\) −5.84337 −0.200780
\(848\) 1.10102 0.0378092
\(849\) 0 0
\(850\) −1.00000 −0.0342997
\(851\) 5.50510 0.188712
\(852\) 0 0
\(853\) 5.55051 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(854\) 2.89898 0.0992010
\(855\) 0 0
\(856\) 7.10102 0.242708
\(857\) 8.20204 0.280176 0.140088 0.990139i \(-0.455261\pi\)
0.140088 + 0.990139i \(0.455261\pi\)
\(858\) 0 0
\(859\) −13.7980 −0.470780 −0.235390 0.971901i \(-0.575637\pi\)
−0.235390 + 0.971901i \(0.575637\pi\)
\(860\) −9.79796 −0.334108
\(861\) 0 0
\(862\) 32.9444 1.12209
\(863\) −38.2020 −1.30041 −0.650206 0.759758i \(-0.725318\pi\)
−0.650206 + 0.759758i \(0.725318\pi\)
\(864\) 0 0
\(865\) 42.0000 1.42804
\(866\) −21.3939 −0.726994
\(867\) 0 0
\(868\) −4.20204 −0.142627
\(869\) −45.7980 −1.55359
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 15.3485 0.519765
\(873\) 0 0
\(874\) 10.2929 0.348161
\(875\) 4.40408 0.148885
\(876\) 0 0
\(877\) 9.95459 0.336143 0.168071 0.985775i \(-0.446246\pi\)
0.168071 + 0.985775i \(0.446246\pi\)
\(878\) 33.3485 1.12546
\(879\) 0 0
\(880\) −12.0000 −0.404520
\(881\) −3.30306 −0.111283 −0.0556415 0.998451i \(-0.517720\pi\)
−0.0556415 + 0.998451i \(0.517720\pi\)
\(882\) 0 0
\(883\) 4.69694 0.158065 0.0790323 0.996872i \(-0.474817\pi\)
0.0790323 + 0.996872i \(0.474817\pi\)
\(884\) −6.89898 −0.232038
\(885\) 0 0
\(886\) 41.3939 1.39065
\(887\) −7.95459 −0.267089 −0.133545 0.991043i \(-0.542636\pi\)
−0.133545 + 0.991043i \(0.542636\pi\)
\(888\) 0 0
\(889\) 1.79796 0.0603016
\(890\) 38.6969 1.29712
\(891\) 0 0
\(892\) 10.6969 0.358160
\(893\) −14.2020 −0.475253
\(894\) 0 0
\(895\) 53.3939 1.78476
\(896\) −0.449490 −0.0150164
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) −22.8990 −0.763724
\(900\) 0 0
\(901\) −1.10102 −0.0366803
\(902\) 29.3939 0.978709
\(903\) 0 0
\(904\) 10.8990 0.362495
\(905\) −39.7980 −1.32293
\(906\) 0 0
\(907\) 0.898979 0.0298501 0.0149251 0.999889i \(-0.495249\pi\)
0.0149251 + 0.999889i \(0.495249\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −7.59592 −0.251802
\(911\) 13.3485 0.442255 0.221127 0.975245i \(-0.429026\pi\)
0.221127 + 0.975245i \(0.429026\pi\)
\(912\) 0 0
\(913\) −53.3939 −1.76708
\(914\) −21.3939 −0.707647
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) 3.19184 0.105404
\(918\) 0 0
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) −8.69694 −0.286730
\(921\) 0 0
\(922\) 20.6969 0.681617
\(923\) −92.0908 −3.03121
\(924\) 0 0
\(925\) −1.55051 −0.0509805
\(926\) −40.4949 −1.33074
\(927\) 0 0
\(928\) −2.44949 −0.0804084
\(929\) 8.20204 0.269100 0.134550 0.990907i \(-0.457041\pi\)
0.134550 + 0.990907i \(0.457041\pi\)
\(930\) 0 0
\(931\) 19.7071 0.645876
\(932\) −20.6969 −0.677951
\(933\) 0 0
\(934\) −7.59592 −0.248546
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) 17.7980 0.581434 0.290717 0.956809i \(-0.406106\pi\)
0.290717 + 0.956809i \(0.406106\pi\)
\(938\) 1.30306 0.0425465
\(939\) 0 0
\(940\) 12.0000 0.391397
\(941\) 29.1464 0.950146 0.475073 0.879946i \(-0.342422\pi\)
0.475073 + 0.879946i \(0.342422\pi\)
\(942\) 0 0
\(943\) 21.3031 0.693723
\(944\) −10.8990 −0.354732
\(945\) 0 0
\(946\) 19.5959 0.637118
\(947\) −48.4949 −1.57587 −0.787936 0.615757i \(-0.788850\pi\)
−0.787936 + 0.615757i \(0.788850\pi\)
\(948\) 0 0
\(949\) −68.9898 −2.23950
\(950\) −2.89898 −0.0940553
\(951\) 0 0
\(952\) 0.449490 0.0145680
\(953\) −10.4041 −0.337021 −0.168511 0.985700i \(-0.553896\pi\)
−0.168511 + 0.985700i \(0.553896\pi\)
\(954\) 0 0
\(955\) −36.0000 −1.16493
\(956\) 2.69694 0.0872252
\(957\) 0 0
\(958\) −6.24745 −0.201846
\(959\) 8.80816 0.284430
\(960\) 0 0
\(961\) 56.3939 1.81916
\(962\) −10.6969 −0.344883
\(963\) 0 0
\(964\) −12.6969 −0.408941
\(965\) 22.2929 0.717632
\(966\) 0 0
\(967\) 40.0908 1.28923 0.644617 0.764506i \(-0.277017\pi\)
0.644617 + 0.764506i \(0.277017\pi\)
\(968\) 13.0000 0.417836
\(969\) 0 0
\(970\) −12.4949 −0.401187
\(971\) −40.2929 −1.29306 −0.646530 0.762889i \(-0.723780\pi\)
−0.646530 + 0.762889i \(0.723780\pi\)
\(972\) 0 0
\(973\) −5.79796 −0.185874
\(974\) −0.449490 −0.0144026
\(975\) 0 0
\(976\) −6.44949 −0.206443
\(977\) 48.0000 1.53566 0.767828 0.640656i \(-0.221338\pi\)
0.767828 + 0.640656i \(0.221338\pi\)
\(978\) 0 0
\(979\) −77.3939 −2.47352
\(980\) −16.6515 −0.531914
\(981\) 0 0
\(982\) −17.3939 −0.555061
\(983\) −44.4495 −1.41772 −0.708859 0.705350i \(-0.750790\pi\)
−0.708859 + 0.705350i \(0.750790\pi\)
\(984\) 0 0
\(985\) 0.606123 0.0193127
\(986\) 2.44949 0.0780076
\(987\) 0 0
\(988\) −20.0000 −0.636285
\(989\) 14.2020 0.451599
\(990\) 0 0
\(991\) 36.0454 1.14502 0.572510 0.819898i \(-0.305970\pi\)
0.572510 + 0.819898i \(0.305970\pi\)
\(992\) 9.34847 0.296814
\(993\) 0 0
\(994\) 6.00000 0.190308
\(995\) −49.1010 −1.55661
\(996\) 0 0
\(997\) 27.3485 0.866135 0.433067 0.901362i \(-0.357431\pi\)
0.433067 + 0.901362i \(0.357431\pi\)
\(998\) 34.6969 1.09831
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 306.2.a.f.1.2 yes 2
3.2 odd 2 306.2.a.e.1.1 2
4.3 odd 2 2448.2.a.w.1.2 2
5.4 even 2 7650.2.a.cq.1.2 2
8.3 odd 2 9792.2.a.cp.1.1 2
8.5 even 2 9792.2.a.ct.1.1 2
12.11 even 2 2448.2.a.x.1.1 2
15.14 odd 2 7650.2.a.cz.1.2 2
17.16 even 2 5202.2.a.z.1.1 2
24.5 odd 2 9792.2.a.cu.1.2 2
24.11 even 2 9792.2.a.cq.1.2 2
51.50 odd 2 5202.2.a.q.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
306.2.a.e.1.1 2 3.2 odd 2
306.2.a.f.1.2 yes 2 1.1 even 1 trivial
2448.2.a.w.1.2 2 4.3 odd 2
2448.2.a.x.1.1 2 12.11 even 2
5202.2.a.q.1.2 2 51.50 odd 2
5202.2.a.z.1.1 2 17.16 even 2
7650.2.a.cq.1.2 2 5.4 even 2
7650.2.a.cz.1.2 2 15.14 odd 2
9792.2.a.cp.1.1 2 8.3 odd 2
9792.2.a.cq.1.2 2 24.11 even 2
9792.2.a.ct.1.1 2 8.5 even 2
9792.2.a.cu.1.2 2 24.5 odd 2