Properties

Label 306.2.a.f.1.1
Level $306$
Weight $2$
Character 306.1
Self dual yes
Analytic conductor $2.443$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [306,2,Mod(1,306)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(306, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("306.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 306.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.44342230185\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 306.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -2.44949 q^{5} +4.44949 q^{7} +1.00000 q^{8} -2.44949 q^{10} +4.89898 q^{11} -2.89898 q^{13} +4.44949 q^{14} +1.00000 q^{16} -1.00000 q^{17} +6.89898 q^{19} -2.44949 q^{20} +4.89898 q^{22} -8.44949 q^{23} +1.00000 q^{25} -2.89898 q^{26} +4.44949 q^{28} +2.44949 q^{29} -5.34847 q^{31} +1.00000 q^{32} -1.00000 q^{34} -10.8990 q^{35} -6.44949 q^{37} +6.89898 q^{38} -2.44949 q^{40} -6.00000 q^{41} -4.00000 q^{43} +4.89898 q^{44} -8.44949 q^{46} -4.89898 q^{47} +12.7980 q^{49} +1.00000 q^{50} -2.89898 q^{52} +10.8990 q^{53} -12.0000 q^{55} +4.44949 q^{56} +2.44949 q^{58} -1.10102 q^{59} -1.55051 q^{61} -5.34847 q^{62} +1.00000 q^{64} +7.10102 q^{65} +6.89898 q^{67} -1.00000 q^{68} -10.8990 q^{70} +1.34847 q^{71} -10.0000 q^{73} -6.44949 q^{74} +6.89898 q^{76} +21.7980 q^{77} -5.34847 q^{79} -2.44949 q^{80} -6.00000 q^{82} +1.10102 q^{83} +2.44949 q^{85} -4.00000 q^{86} +4.89898 q^{88} -3.79796 q^{89} -12.8990 q^{91} -8.44949 q^{92} -4.89898 q^{94} -16.8990 q^{95} -14.8990 q^{97} +12.7980 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 4 q^{7} + 2 q^{8} + 4 q^{13} + 4 q^{14} + 2 q^{16} - 2 q^{17} + 4 q^{19} - 12 q^{23} + 2 q^{25} + 4 q^{26} + 4 q^{28} + 4 q^{31} + 2 q^{32} - 2 q^{34} - 12 q^{35} - 8 q^{37} + 4 q^{38}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.44949 −1.09545 −0.547723 0.836660i \(-0.684505\pi\)
−0.547723 + 0.836660i \(0.684505\pi\)
\(6\) 0 0
\(7\) 4.44949 1.68175 0.840875 0.541230i \(-0.182041\pi\)
0.840875 + 0.541230i \(0.182041\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.44949 −0.774597
\(11\) 4.89898 1.47710 0.738549 0.674200i \(-0.235511\pi\)
0.738549 + 0.674200i \(0.235511\pi\)
\(12\) 0 0
\(13\) −2.89898 −0.804032 −0.402016 0.915633i \(-0.631690\pi\)
−0.402016 + 0.915633i \(0.631690\pi\)
\(14\) 4.44949 1.18918
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 6.89898 1.58273 0.791367 0.611341i \(-0.209370\pi\)
0.791367 + 0.611341i \(0.209370\pi\)
\(20\) −2.44949 −0.547723
\(21\) 0 0
\(22\) 4.89898 1.04447
\(23\) −8.44949 −1.76184 −0.880920 0.473265i \(-0.843075\pi\)
−0.880920 + 0.473265i \(0.843075\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −2.89898 −0.568537
\(27\) 0 0
\(28\) 4.44949 0.840875
\(29\) 2.44949 0.454859 0.227429 0.973795i \(-0.426968\pi\)
0.227429 + 0.973795i \(0.426968\pi\)
\(30\) 0 0
\(31\) −5.34847 −0.960613 −0.480307 0.877101i \(-0.659475\pi\)
−0.480307 + 0.877101i \(0.659475\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) −10.8990 −1.84226
\(36\) 0 0
\(37\) −6.44949 −1.06029 −0.530145 0.847907i \(-0.677862\pi\)
−0.530145 + 0.847907i \(0.677862\pi\)
\(38\) 6.89898 1.11916
\(39\) 0 0
\(40\) −2.44949 −0.387298
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 4.89898 0.738549
\(45\) 0 0
\(46\) −8.44949 −1.24581
\(47\) −4.89898 −0.714590 −0.357295 0.933992i \(-0.616301\pi\)
−0.357295 + 0.933992i \(0.616301\pi\)
\(48\) 0 0
\(49\) 12.7980 1.82828
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −2.89898 −0.402016
\(53\) 10.8990 1.49709 0.748545 0.663084i \(-0.230753\pi\)
0.748545 + 0.663084i \(0.230753\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) 4.44949 0.594588
\(57\) 0 0
\(58\) 2.44949 0.321634
\(59\) −1.10102 −0.143341 −0.0716703 0.997428i \(-0.522833\pi\)
−0.0716703 + 0.997428i \(0.522833\pi\)
\(60\) 0 0
\(61\) −1.55051 −0.198522 −0.0992612 0.995061i \(-0.531648\pi\)
−0.0992612 + 0.995061i \(0.531648\pi\)
\(62\) −5.34847 −0.679256
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 7.10102 0.880773
\(66\) 0 0
\(67\) 6.89898 0.842844 0.421422 0.906865i \(-0.361531\pi\)
0.421422 + 0.906865i \(0.361531\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) −10.8990 −1.30268
\(71\) 1.34847 0.160034 0.0800169 0.996794i \(-0.474503\pi\)
0.0800169 + 0.996794i \(0.474503\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −6.44949 −0.749738
\(75\) 0 0
\(76\) 6.89898 0.791367
\(77\) 21.7980 2.48411
\(78\) 0 0
\(79\) −5.34847 −0.601750 −0.300875 0.953664i \(-0.597279\pi\)
−0.300875 + 0.953664i \(0.597279\pi\)
\(80\) −2.44949 −0.273861
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 1.10102 0.120853 0.0604264 0.998173i \(-0.480754\pi\)
0.0604264 + 0.998173i \(0.480754\pi\)
\(84\) 0 0
\(85\) 2.44949 0.265684
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 4.89898 0.522233
\(89\) −3.79796 −0.402583 −0.201291 0.979531i \(-0.564514\pi\)
−0.201291 + 0.979531i \(0.564514\pi\)
\(90\) 0 0
\(91\) −12.8990 −1.35218
\(92\) −8.44949 −0.880920
\(93\) 0 0
\(94\) −4.89898 −0.505291
\(95\) −16.8990 −1.73380
\(96\) 0 0
\(97\) −14.8990 −1.51276 −0.756381 0.654131i \(-0.773034\pi\)
−0.756381 + 0.654131i \(0.773034\pi\)
\(98\) 12.7980 1.29279
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 1.10102 0.109556 0.0547778 0.998499i \(-0.482555\pi\)
0.0547778 + 0.998499i \(0.482555\pi\)
\(102\) 0 0
\(103\) 3.10102 0.305553 0.152776 0.988261i \(-0.451179\pi\)
0.152776 + 0.988261i \(0.451179\pi\)
\(104\) −2.89898 −0.284268
\(105\) 0 0
\(106\) 10.8990 1.05860
\(107\) 16.8990 1.63369 0.816843 0.576860i \(-0.195722\pi\)
0.816843 + 0.576860i \(0.195722\pi\)
\(108\) 0 0
\(109\) 0.651531 0.0624053 0.0312027 0.999513i \(-0.490066\pi\)
0.0312027 + 0.999513i \(0.490066\pi\)
\(110\) −12.0000 −1.14416
\(111\) 0 0
\(112\) 4.44949 0.420437
\(113\) 1.10102 0.103575 0.0517876 0.998658i \(-0.483508\pi\)
0.0517876 + 0.998658i \(0.483508\pi\)
\(114\) 0 0
\(115\) 20.6969 1.93000
\(116\) 2.44949 0.227429
\(117\) 0 0
\(118\) −1.10102 −0.101357
\(119\) −4.44949 −0.407884
\(120\) 0 0
\(121\) 13.0000 1.18182
\(122\) −1.55051 −0.140377
\(123\) 0 0
\(124\) −5.34847 −0.480307
\(125\) 9.79796 0.876356
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 7.10102 0.622801
\(131\) −16.8990 −1.47647 −0.738235 0.674543i \(-0.764341\pi\)
−0.738235 + 0.674543i \(0.764341\pi\)
\(132\) 0 0
\(133\) 30.6969 2.66176
\(134\) 6.89898 0.595981
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 19.5959 1.67419 0.837096 0.547056i \(-0.184251\pi\)
0.837096 + 0.547056i \(0.184251\pi\)
\(138\) 0 0
\(139\) 3.10102 0.263025 0.131513 0.991315i \(-0.458017\pi\)
0.131513 + 0.991315i \(0.458017\pi\)
\(140\) −10.8990 −0.921132
\(141\) 0 0
\(142\) 1.34847 0.113161
\(143\) −14.2020 −1.18763
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) −6.44949 −0.530145
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −1.79796 −0.146316 −0.0731579 0.997320i \(-0.523308\pi\)
−0.0731579 + 0.997320i \(0.523308\pi\)
\(152\) 6.89898 0.559581
\(153\) 0 0
\(154\) 21.7980 1.75653
\(155\) 13.1010 1.05230
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) −5.34847 −0.425501
\(159\) 0 0
\(160\) −2.44949 −0.193649
\(161\) −37.5959 −2.96297
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 1.10102 0.0854558
\(167\) 8.44949 0.653841 0.326921 0.945052i \(-0.393989\pi\)
0.326921 + 0.945052i \(0.393989\pi\)
\(168\) 0 0
\(169\) −4.59592 −0.353532
\(170\) 2.44949 0.187867
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −17.1464 −1.30362 −0.651809 0.758383i \(-0.725990\pi\)
−0.651809 + 0.758383i \(0.725990\pi\)
\(174\) 0 0
\(175\) 4.44949 0.336350
\(176\) 4.89898 0.369274
\(177\) 0 0
\(178\) −3.79796 −0.284669
\(179\) 2.20204 0.164588 0.0822941 0.996608i \(-0.473775\pi\)
0.0822941 + 0.996608i \(0.473775\pi\)
\(180\) 0 0
\(181\) 8.24745 0.613028 0.306514 0.951866i \(-0.400837\pi\)
0.306514 + 0.951866i \(0.400837\pi\)
\(182\) −12.8990 −0.956136
\(183\) 0 0
\(184\) −8.44949 −0.622905
\(185\) 15.7980 1.16149
\(186\) 0 0
\(187\) −4.89898 −0.358249
\(188\) −4.89898 −0.357295
\(189\) 0 0
\(190\) −16.8990 −1.22598
\(191\) 14.6969 1.06343 0.531717 0.846922i \(-0.321547\pi\)
0.531717 + 0.846922i \(0.321547\pi\)
\(192\) 0 0
\(193\) 18.8990 1.36038 0.680189 0.733037i \(-0.261898\pi\)
0.680189 + 0.733037i \(0.261898\pi\)
\(194\) −14.8990 −1.06968
\(195\) 0 0
\(196\) 12.7980 0.914140
\(197\) −24.2474 −1.72756 −0.863780 0.503870i \(-0.831909\pi\)
−0.863780 + 0.503870i \(0.831909\pi\)
\(198\) 0 0
\(199\) 24.0454 1.70453 0.852267 0.523107i \(-0.175227\pi\)
0.852267 + 0.523107i \(0.175227\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 1.10102 0.0774675
\(203\) 10.8990 0.764958
\(204\) 0 0
\(205\) 14.6969 1.02648
\(206\) 3.10102 0.216058
\(207\) 0 0
\(208\) −2.89898 −0.201008
\(209\) 33.7980 2.33785
\(210\) 0 0
\(211\) 12.8990 0.888002 0.444001 0.896026i \(-0.353559\pi\)
0.444001 + 0.896026i \(0.353559\pi\)
\(212\) 10.8990 0.748545
\(213\) 0 0
\(214\) 16.8990 1.15519
\(215\) 9.79796 0.668215
\(216\) 0 0
\(217\) −23.7980 −1.61551
\(218\) 0.651531 0.0441272
\(219\) 0 0
\(220\) −12.0000 −0.809040
\(221\) 2.89898 0.195006
\(222\) 0 0
\(223\) −18.6969 −1.25204 −0.626020 0.779807i \(-0.715317\pi\)
−0.626020 + 0.779807i \(0.715317\pi\)
\(224\) 4.44949 0.297294
\(225\) 0 0
\(226\) 1.10102 0.0732388
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 20.6969 1.36472
\(231\) 0 0
\(232\) 2.44949 0.160817
\(233\) 8.69694 0.569755 0.284878 0.958564i \(-0.408047\pi\)
0.284878 + 0.958564i \(0.408047\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) −1.10102 −0.0716703
\(237\) 0 0
\(238\) −4.44949 −0.288418
\(239\) −26.6969 −1.72688 −0.863441 0.504450i \(-0.831695\pi\)
−0.863441 + 0.504450i \(0.831695\pi\)
\(240\) 0 0
\(241\) 16.6969 1.07554 0.537772 0.843090i \(-0.319266\pi\)
0.537772 + 0.843090i \(0.319266\pi\)
\(242\) 13.0000 0.835672
\(243\) 0 0
\(244\) −1.55051 −0.0992612
\(245\) −31.3485 −2.00278
\(246\) 0 0
\(247\) −20.0000 −1.27257
\(248\) −5.34847 −0.339628
\(249\) 0 0
\(250\) 9.79796 0.619677
\(251\) 2.20204 0.138992 0.0694958 0.997582i \(-0.477861\pi\)
0.0694958 + 0.997582i \(0.477861\pi\)
\(252\) 0 0
\(253\) −41.3939 −2.60241
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.0000 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(258\) 0 0
\(259\) −28.6969 −1.78314
\(260\) 7.10102 0.440387
\(261\) 0 0
\(262\) −16.8990 −1.04402
\(263\) −19.1010 −1.17782 −0.588910 0.808199i \(-0.700443\pi\)
−0.588910 + 0.808199i \(0.700443\pi\)
\(264\) 0 0
\(265\) −26.6969 −1.63998
\(266\) 30.6969 1.88215
\(267\) 0 0
\(268\) 6.89898 0.421422
\(269\) −2.44949 −0.149348 −0.0746740 0.997208i \(-0.523792\pi\)
−0.0746740 + 0.997208i \(0.523792\pi\)
\(270\) 0 0
\(271\) 17.7980 1.08115 0.540575 0.841296i \(-0.318207\pi\)
0.540575 + 0.841296i \(0.318207\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) 19.5959 1.18383
\(275\) 4.89898 0.295420
\(276\) 0 0
\(277\) −23.3485 −1.40287 −0.701437 0.712732i \(-0.747458\pi\)
−0.701437 + 0.712732i \(0.747458\pi\)
\(278\) 3.10102 0.185987
\(279\) 0 0
\(280\) −10.8990 −0.651339
\(281\) −15.7980 −0.942427 −0.471214 0.882019i \(-0.656184\pi\)
−0.471214 + 0.882019i \(0.656184\pi\)
\(282\) 0 0
\(283\) 10.6969 0.635867 0.317933 0.948113i \(-0.397011\pi\)
0.317933 + 0.948113i \(0.397011\pi\)
\(284\) 1.34847 0.0800169
\(285\) 0 0
\(286\) −14.2020 −0.839784
\(287\) −26.6969 −1.57587
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −6.00000 −0.352332
\(291\) 0 0
\(292\) −10.0000 −0.585206
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 2.69694 0.157022
\(296\) −6.44949 −0.374869
\(297\) 0 0
\(298\) 18.0000 1.04271
\(299\) 24.4949 1.41658
\(300\) 0 0
\(301\) −17.7980 −1.02586
\(302\) −1.79796 −0.103461
\(303\) 0 0
\(304\) 6.89898 0.395684
\(305\) 3.79796 0.217470
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 21.7980 1.24205
\(309\) 0 0
\(310\) 13.1010 0.744088
\(311\) −18.2474 −1.03472 −0.517359 0.855768i \(-0.673085\pi\)
−0.517359 + 0.855768i \(0.673085\pi\)
\(312\) 0 0
\(313\) 6.89898 0.389953 0.194977 0.980808i \(-0.437537\pi\)
0.194977 + 0.980808i \(0.437537\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) −5.34847 −0.300875
\(317\) −5.14643 −0.289052 −0.144526 0.989501i \(-0.546166\pi\)
−0.144526 + 0.989501i \(0.546166\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) −2.44949 −0.136931
\(321\) 0 0
\(322\) −37.5959 −2.09514
\(323\) −6.89898 −0.383869
\(324\) 0 0
\(325\) −2.89898 −0.160806
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) −21.7980 −1.20176
\(330\) 0 0
\(331\) −13.7980 −0.758404 −0.379202 0.925314i \(-0.623802\pi\)
−0.379202 + 0.925314i \(0.623802\pi\)
\(332\) 1.10102 0.0604264
\(333\) 0 0
\(334\) 8.44949 0.462336
\(335\) −16.8990 −0.923290
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) −4.59592 −0.249985
\(339\) 0 0
\(340\) 2.44949 0.132842
\(341\) −26.2020 −1.41892
\(342\) 0 0
\(343\) 25.7980 1.39296
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) −17.1464 −0.921798
\(347\) −21.7980 −1.17018 −0.585088 0.810970i \(-0.698940\pi\)
−0.585088 + 0.810970i \(0.698940\pi\)
\(348\) 0 0
\(349\) 28.6969 1.53611 0.768056 0.640383i \(-0.221224\pi\)
0.768056 + 0.640383i \(0.221224\pi\)
\(350\) 4.44949 0.237835
\(351\) 0 0
\(352\) 4.89898 0.261116
\(353\) 13.5959 0.723638 0.361819 0.932248i \(-0.382156\pi\)
0.361819 + 0.932248i \(0.382156\pi\)
\(354\) 0 0
\(355\) −3.30306 −0.175308
\(356\) −3.79796 −0.201291
\(357\) 0 0
\(358\) 2.20204 0.116381
\(359\) 21.7980 1.15045 0.575226 0.817994i \(-0.304914\pi\)
0.575226 + 0.817994i \(0.304914\pi\)
\(360\) 0 0
\(361\) 28.5959 1.50505
\(362\) 8.24745 0.433476
\(363\) 0 0
\(364\) −12.8990 −0.676090
\(365\) 24.4949 1.28212
\(366\) 0 0
\(367\) −9.75255 −0.509079 −0.254540 0.967062i \(-0.581924\pi\)
−0.254540 + 0.967062i \(0.581924\pi\)
\(368\) −8.44949 −0.440460
\(369\) 0 0
\(370\) 15.7980 0.821297
\(371\) 48.4949 2.51773
\(372\) 0 0
\(373\) 28.6969 1.48587 0.742936 0.669363i \(-0.233433\pi\)
0.742936 + 0.669363i \(0.233433\pi\)
\(374\) −4.89898 −0.253320
\(375\) 0 0
\(376\) −4.89898 −0.252646
\(377\) −7.10102 −0.365721
\(378\) 0 0
\(379\) 10.2020 0.524044 0.262022 0.965062i \(-0.415611\pi\)
0.262022 + 0.965062i \(0.415611\pi\)
\(380\) −16.8990 −0.866899
\(381\) 0 0
\(382\) 14.6969 0.751961
\(383\) −4.89898 −0.250326 −0.125163 0.992136i \(-0.539945\pi\)
−0.125163 + 0.992136i \(0.539945\pi\)
\(384\) 0 0
\(385\) −53.3939 −2.72120
\(386\) 18.8990 0.961933
\(387\) 0 0
\(388\) −14.8990 −0.756381
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 8.44949 0.427309
\(392\) 12.7980 0.646395
\(393\) 0 0
\(394\) −24.2474 −1.22157
\(395\) 13.1010 0.659184
\(396\) 0 0
\(397\) 12.6515 0.634962 0.317481 0.948265i \(-0.397163\pi\)
0.317481 + 0.948265i \(0.397163\pi\)
\(398\) 24.0454 1.20529
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 3.79796 0.189661 0.0948305 0.995493i \(-0.469769\pi\)
0.0948305 + 0.995493i \(0.469769\pi\)
\(402\) 0 0
\(403\) 15.5051 0.772364
\(404\) 1.10102 0.0547778
\(405\) 0 0
\(406\) 10.8990 0.540907
\(407\) −31.5959 −1.56615
\(408\) 0 0
\(409\) −25.7980 −1.27563 −0.637813 0.770191i \(-0.720161\pi\)
−0.637813 + 0.770191i \(0.720161\pi\)
\(410\) 14.6969 0.725830
\(411\) 0 0
\(412\) 3.10102 0.152776
\(413\) −4.89898 −0.241063
\(414\) 0 0
\(415\) −2.69694 −0.132388
\(416\) −2.89898 −0.142134
\(417\) 0 0
\(418\) 33.7980 1.65311
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −17.1010 −0.833453 −0.416726 0.909032i \(-0.636823\pi\)
−0.416726 + 0.909032i \(0.636823\pi\)
\(422\) 12.8990 0.627912
\(423\) 0 0
\(424\) 10.8990 0.529301
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) −6.89898 −0.333865
\(428\) 16.8990 0.816843
\(429\) 0 0
\(430\) 9.79796 0.472500
\(431\) −20.9444 −1.00886 −0.504428 0.863454i \(-0.668297\pi\)
−0.504428 + 0.863454i \(0.668297\pi\)
\(432\) 0 0
\(433\) 37.3939 1.79704 0.898518 0.438938i \(-0.144645\pi\)
0.898518 + 0.438938i \(0.144645\pi\)
\(434\) −23.7980 −1.14234
\(435\) 0 0
\(436\) 0.651531 0.0312027
\(437\) −58.2929 −2.78853
\(438\) 0 0
\(439\) 18.6515 0.890189 0.445094 0.895484i \(-0.353170\pi\)
0.445094 + 0.895484i \(0.353170\pi\)
\(440\) −12.0000 −0.572078
\(441\) 0 0
\(442\) 2.89898 0.137890
\(443\) −17.3939 −0.826408 −0.413204 0.910638i \(-0.635590\pi\)
−0.413204 + 0.910638i \(0.635590\pi\)
\(444\) 0 0
\(445\) 9.30306 0.441007
\(446\) −18.6969 −0.885326
\(447\) 0 0
\(448\) 4.44949 0.210219
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −29.3939 −1.38410
\(452\) 1.10102 0.0517876
\(453\) 0 0
\(454\) 0 0
\(455\) 31.5959 1.48124
\(456\) 0 0
\(457\) 37.3939 1.74921 0.874606 0.484835i \(-0.161120\pi\)
0.874606 + 0.484835i \(0.161120\pi\)
\(458\) 2.00000 0.0934539
\(459\) 0 0
\(460\) 20.6969 0.965000
\(461\) −8.69694 −0.405057 −0.202528 0.979276i \(-0.564916\pi\)
−0.202528 + 0.979276i \(0.564916\pi\)
\(462\) 0 0
\(463\) 8.49490 0.394791 0.197396 0.980324i \(-0.436752\pi\)
0.197396 + 0.980324i \(0.436752\pi\)
\(464\) 2.44949 0.113715
\(465\) 0 0
\(466\) 8.69694 0.402878
\(467\) 31.5959 1.46208 0.731042 0.682332i \(-0.239034\pi\)
0.731042 + 0.682332i \(0.239034\pi\)
\(468\) 0 0
\(469\) 30.6969 1.41745
\(470\) 12.0000 0.553519
\(471\) 0 0
\(472\) −1.10102 −0.0506786
\(473\) −19.5959 −0.901021
\(474\) 0 0
\(475\) 6.89898 0.316547
\(476\) −4.44949 −0.203942
\(477\) 0 0
\(478\) −26.6969 −1.22109
\(479\) 18.2474 0.833747 0.416874 0.908964i \(-0.363126\pi\)
0.416874 + 0.908964i \(0.363126\pi\)
\(480\) 0 0
\(481\) 18.6969 0.852507
\(482\) 16.6969 0.760525
\(483\) 0 0
\(484\) 13.0000 0.590909
\(485\) 36.4949 1.65715
\(486\) 0 0
\(487\) 4.44949 0.201626 0.100813 0.994905i \(-0.467856\pi\)
0.100813 + 0.994905i \(0.467856\pi\)
\(488\) −1.55051 −0.0701883
\(489\) 0 0
\(490\) −31.3485 −1.41618
\(491\) 41.3939 1.86808 0.934040 0.357169i \(-0.116258\pi\)
0.934040 + 0.357169i \(0.116258\pi\)
\(492\) 0 0
\(493\) −2.44949 −0.110319
\(494\) −20.0000 −0.899843
\(495\) 0 0
\(496\) −5.34847 −0.240153
\(497\) 6.00000 0.269137
\(498\) 0 0
\(499\) 5.30306 0.237398 0.118699 0.992930i \(-0.462128\pi\)
0.118699 + 0.992930i \(0.462128\pi\)
\(500\) 9.79796 0.438178
\(501\) 0 0
\(502\) 2.20204 0.0982819
\(503\) 18.2474 0.813614 0.406807 0.913514i \(-0.366642\pi\)
0.406807 + 0.913514i \(0.366642\pi\)
\(504\) 0 0
\(505\) −2.69694 −0.120012
\(506\) −41.3939 −1.84018
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) 15.7980 0.700232 0.350116 0.936706i \(-0.386142\pi\)
0.350116 + 0.936706i \(0.386142\pi\)
\(510\) 0 0
\(511\) −44.4949 −1.96834
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 24.0000 1.05859
\(515\) −7.59592 −0.334716
\(516\) 0 0
\(517\) −24.0000 −1.05552
\(518\) −28.6969 −1.26087
\(519\) 0 0
\(520\) 7.10102 0.311400
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) −12.6969 −0.555198 −0.277599 0.960697i \(-0.589539\pi\)
−0.277599 + 0.960697i \(0.589539\pi\)
\(524\) −16.8990 −0.738235
\(525\) 0 0
\(526\) −19.1010 −0.832844
\(527\) 5.34847 0.232983
\(528\) 0 0
\(529\) 48.3939 2.10408
\(530\) −26.6969 −1.15964
\(531\) 0 0
\(532\) 30.6969 1.33088
\(533\) 17.3939 0.753412
\(534\) 0 0
\(535\) −41.3939 −1.78961
\(536\) 6.89898 0.297991
\(537\) 0 0
\(538\) −2.44949 −0.105605
\(539\) 62.6969 2.70055
\(540\) 0 0
\(541\) 12.6515 0.543932 0.271966 0.962307i \(-0.412326\pi\)
0.271966 + 0.962307i \(0.412326\pi\)
\(542\) 17.7980 0.764488
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) −1.59592 −0.0683616
\(546\) 0 0
\(547\) −11.1010 −0.474645 −0.237323 0.971431i \(-0.576270\pi\)
−0.237323 + 0.971431i \(0.576270\pi\)
\(548\) 19.5959 0.837096
\(549\) 0 0
\(550\) 4.89898 0.208893
\(551\) 16.8990 0.719921
\(552\) 0 0
\(553\) −23.7980 −1.01199
\(554\) −23.3485 −0.991981
\(555\) 0 0
\(556\) 3.10102 0.131513
\(557\) −22.8990 −0.970261 −0.485130 0.874442i \(-0.661228\pi\)
−0.485130 + 0.874442i \(0.661228\pi\)
\(558\) 0 0
\(559\) 11.5959 0.490455
\(560\) −10.8990 −0.460566
\(561\) 0 0
\(562\) −15.7980 −0.666397
\(563\) −10.8990 −0.459337 −0.229669 0.973269i \(-0.573764\pi\)
−0.229669 + 0.973269i \(0.573764\pi\)
\(564\) 0 0
\(565\) −2.69694 −0.113461
\(566\) 10.6969 0.449626
\(567\) 0 0
\(568\) 1.34847 0.0565805
\(569\) −39.1918 −1.64301 −0.821504 0.570203i \(-0.806864\pi\)
−0.821504 + 0.570203i \(0.806864\pi\)
\(570\) 0 0
\(571\) −25.7980 −1.07961 −0.539805 0.841790i \(-0.681502\pi\)
−0.539805 + 0.841790i \(0.681502\pi\)
\(572\) −14.2020 −0.593817
\(573\) 0 0
\(574\) −26.6969 −1.11431
\(575\) −8.44949 −0.352368
\(576\) 0 0
\(577\) 33.5959 1.39862 0.699308 0.714820i \(-0.253492\pi\)
0.699308 + 0.714820i \(0.253492\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) −6.00000 −0.249136
\(581\) 4.89898 0.203244
\(582\) 0 0
\(583\) 53.3939 2.21135
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −36.8990 −1.52040
\(590\) 2.69694 0.111031
\(591\) 0 0
\(592\) −6.44949 −0.265072
\(593\) −2.20204 −0.0904270 −0.0452135 0.998977i \(-0.514397\pi\)
−0.0452135 + 0.998977i \(0.514397\pi\)
\(594\) 0 0
\(595\) 10.8990 0.446815
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) 24.4949 1.00167
\(599\) −14.2020 −0.580280 −0.290140 0.956984i \(-0.593702\pi\)
−0.290140 + 0.956984i \(0.593702\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) −17.7980 −0.725391
\(603\) 0 0
\(604\) −1.79796 −0.0731579
\(605\) −31.8434 −1.29462
\(606\) 0 0
\(607\) 31.1464 1.26419 0.632097 0.774889i \(-0.282194\pi\)
0.632097 + 0.774889i \(0.282194\pi\)
\(608\) 6.89898 0.279791
\(609\) 0 0
\(610\) 3.79796 0.153775
\(611\) 14.2020 0.574553
\(612\) 0 0
\(613\) −7.79796 −0.314957 −0.157478 0.987522i \(-0.550336\pi\)
−0.157478 + 0.987522i \(0.550336\pi\)
\(614\) −28.0000 −1.12999
\(615\) 0 0
\(616\) 21.7980 0.878265
\(617\) −3.30306 −0.132976 −0.0664881 0.997787i \(-0.521179\pi\)
−0.0664881 + 0.997787i \(0.521179\pi\)
\(618\) 0 0
\(619\) 25.3939 1.02067 0.510333 0.859977i \(-0.329522\pi\)
0.510333 + 0.859977i \(0.329522\pi\)
\(620\) 13.1010 0.526150
\(621\) 0 0
\(622\) −18.2474 −0.731656
\(623\) −16.8990 −0.677043
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 6.89898 0.275739
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 6.44949 0.257158
\(630\) 0 0
\(631\) 20.4949 0.815889 0.407944 0.913007i \(-0.366246\pi\)
0.407944 + 0.913007i \(0.366246\pi\)
\(632\) −5.34847 −0.212751
\(633\) 0 0
\(634\) −5.14643 −0.204391
\(635\) 9.79796 0.388820
\(636\) 0 0
\(637\) −37.1010 −1.47000
\(638\) 12.0000 0.475085
\(639\) 0 0
\(640\) −2.44949 −0.0968246
\(641\) 15.7980 0.623982 0.311991 0.950085i \(-0.399004\pi\)
0.311991 + 0.950085i \(0.399004\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) −37.5959 −1.48149
\(645\) 0 0
\(646\) −6.89898 −0.271437
\(647\) 24.4949 0.962994 0.481497 0.876448i \(-0.340093\pi\)
0.481497 + 0.876448i \(0.340093\pi\)
\(648\) 0 0
\(649\) −5.39388 −0.211728
\(650\) −2.89898 −0.113707
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 16.6515 0.651625 0.325812 0.945434i \(-0.394362\pi\)
0.325812 + 0.945434i \(0.394362\pi\)
\(654\) 0 0
\(655\) 41.3939 1.61739
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −21.7980 −0.849773
\(659\) 10.8990 0.424564 0.212282 0.977208i \(-0.431910\pi\)
0.212282 + 0.977208i \(0.431910\pi\)
\(660\) 0 0
\(661\) −46.4949 −1.80844 −0.904221 0.427065i \(-0.859548\pi\)
−0.904221 + 0.427065i \(0.859548\pi\)
\(662\) −13.7980 −0.536273
\(663\) 0 0
\(664\) 1.10102 0.0427279
\(665\) −75.1918 −2.91581
\(666\) 0 0
\(667\) −20.6969 −0.801389
\(668\) 8.44949 0.326921
\(669\) 0 0
\(670\) −16.8990 −0.652865
\(671\) −7.59592 −0.293237
\(672\) 0 0
\(673\) −22.4949 −0.867115 −0.433557 0.901126i \(-0.642742\pi\)
−0.433557 + 0.901126i \(0.642742\pi\)
\(674\) 2.00000 0.0770371
\(675\) 0 0
\(676\) −4.59592 −0.176766
\(677\) 14.9444 0.574359 0.287180 0.957877i \(-0.407282\pi\)
0.287180 + 0.957877i \(0.407282\pi\)
\(678\) 0 0
\(679\) −66.2929 −2.54409
\(680\) 2.44949 0.0939336
\(681\) 0 0
\(682\) −26.2020 −1.00333
\(683\) −27.1918 −1.04047 −0.520233 0.854024i \(-0.674155\pi\)
−0.520233 + 0.854024i \(0.674155\pi\)
\(684\) 0 0
\(685\) −48.0000 −1.83399
\(686\) 25.7980 0.984971
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) −31.5959 −1.20371
\(690\) 0 0
\(691\) −1.30306 −0.0495708 −0.0247854 0.999693i \(-0.507890\pi\)
−0.0247854 + 0.999693i \(0.507890\pi\)
\(692\) −17.1464 −0.651809
\(693\) 0 0
\(694\) −21.7980 −0.827439
\(695\) −7.59592 −0.288130
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) 28.6969 1.08620
\(699\) 0 0
\(700\) 4.44949 0.168175
\(701\) 20.6969 0.781713 0.390856 0.920452i \(-0.372179\pi\)
0.390856 + 0.920452i \(0.372179\pi\)
\(702\) 0 0
\(703\) −44.4949 −1.67816
\(704\) 4.89898 0.184637
\(705\) 0 0
\(706\) 13.5959 0.511689
\(707\) 4.89898 0.184245
\(708\) 0 0
\(709\) 34.9444 1.31236 0.656182 0.754603i \(-0.272170\pi\)
0.656182 + 0.754603i \(0.272170\pi\)
\(710\) −3.30306 −0.123962
\(711\) 0 0
\(712\) −3.79796 −0.142335
\(713\) 45.1918 1.69245
\(714\) 0 0
\(715\) 34.7878 1.30099
\(716\) 2.20204 0.0822941
\(717\) 0 0
\(718\) 21.7980 0.813493
\(719\) 15.5505 0.579936 0.289968 0.957036i \(-0.406355\pi\)
0.289968 + 0.957036i \(0.406355\pi\)
\(720\) 0 0
\(721\) 13.7980 0.513863
\(722\) 28.5959 1.06423
\(723\) 0 0
\(724\) 8.24745 0.306514
\(725\) 2.44949 0.0909718
\(726\) 0 0
\(727\) −33.3939 −1.23851 −0.619255 0.785190i \(-0.712565\pi\)
−0.619255 + 0.785190i \(0.712565\pi\)
\(728\) −12.8990 −0.478068
\(729\) 0 0
\(730\) 24.4949 0.906597
\(731\) 4.00000 0.147945
\(732\) 0 0
\(733\) 11.3031 0.417488 0.208744 0.977970i \(-0.433062\pi\)
0.208744 + 0.977970i \(0.433062\pi\)
\(734\) −9.75255 −0.359973
\(735\) 0 0
\(736\) −8.44949 −0.311452
\(737\) 33.7980 1.24496
\(738\) 0 0
\(739\) 52.6969 1.93849 0.969244 0.246101i \(-0.0791496\pi\)
0.969244 + 0.246101i \(0.0791496\pi\)
\(740\) 15.7980 0.580745
\(741\) 0 0
\(742\) 48.4949 1.78030
\(743\) −5.75255 −0.211041 −0.105520 0.994417i \(-0.533651\pi\)
−0.105520 + 0.994417i \(0.533651\pi\)
\(744\) 0 0
\(745\) −44.0908 −1.61536
\(746\) 28.6969 1.05067
\(747\) 0 0
\(748\) −4.89898 −0.179124
\(749\) 75.1918 2.74745
\(750\) 0 0
\(751\) 14.2474 0.519897 0.259948 0.965623i \(-0.416294\pi\)
0.259948 + 0.965623i \(0.416294\pi\)
\(752\) −4.89898 −0.178647
\(753\) 0 0
\(754\) −7.10102 −0.258604
\(755\) 4.40408 0.160281
\(756\) 0 0
\(757\) 11.7980 0.428804 0.214402 0.976745i \(-0.431220\pi\)
0.214402 + 0.976745i \(0.431220\pi\)
\(758\) 10.2020 0.370555
\(759\) 0 0
\(760\) −16.8990 −0.612990
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 2.89898 0.104950
\(764\) 14.6969 0.531717
\(765\) 0 0
\(766\) −4.89898 −0.177007
\(767\) 3.19184 0.115251
\(768\) 0 0
\(769\) −39.3939 −1.42058 −0.710290 0.703909i \(-0.751436\pi\)
−0.710290 + 0.703909i \(0.751436\pi\)
\(770\) −53.3939 −1.92418
\(771\) 0 0
\(772\) 18.8990 0.680189
\(773\) 13.5959 0.489011 0.244506 0.969648i \(-0.421374\pi\)
0.244506 + 0.969648i \(0.421374\pi\)
\(774\) 0 0
\(775\) −5.34847 −0.192123
\(776\) −14.8990 −0.534842
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) −41.3939 −1.48309
\(780\) 0 0
\(781\) 6.60612 0.236386
\(782\) 8.44949 0.302153
\(783\) 0 0
\(784\) 12.7980 0.457070
\(785\) 24.4949 0.874260
\(786\) 0 0
\(787\) −16.4949 −0.587980 −0.293990 0.955809i \(-0.594983\pi\)
−0.293990 + 0.955809i \(0.594983\pi\)
\(788\) −24.2474 −0.863780
\(789\) 0 0
\(790\) 13.1010 0.466113
\(791\) 4.89898 0.174188
\(792\) 0 0
\(793\) 4.49490 0.159618
\(794\) 12.6515 0.448986
\(795\) 0 0
\(796\) 24.0454 0.852267
\(797\) −8.69694 −0.308061 −0.154031 0.988066i \(-0.549225\pi\)
−0.154031 + 0.988066i \(0.549225\pi\)
\(798\) 0 0
\(799\) 4.89898 0.173313
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 3.79796 0.134111
\(803\) −48.9898 −1.72881
\(804\) 0 0
\(805\) 92.0908 3.24577
\(806\) 15.5051 0.546144
\(807\) 0 0
\(808\) 1.10102 0.0387338
\(809\) −3.79796 −0.133529 −0.0667646 0.997769i \(-0.521268\pi\)
−0.0667646 + 0.997769i \(0.521268\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 10.8990 0.382479
\(813\) 0 0
\(814\) −31.5959 −1.10744
\(815\) 9.79796 0.343208
\(816\) 0 0
\(817\) −27.5959 −0.965459
\(818\) −25.7980 −0.902004
\(819\) 0 0
\(820\) 14.6969 0.513239
\(821\) −18.8536 −0.657994 −0.328997 0.944331i \(-0.606711\pi\)
−0.328997 + 0.944331i \(0.606711\pi\)
\(822\) 0 0
\(823\) −24.9444 −0.869507 −0.434753 0.900550i \(-0.643164\pi\)
−0.434753 + 0.900550i \(0.643164\pi\)
\(824\) 3.10102 0.108029
\(825\) 0 0
\(826\) −4.89898 −0.170457
\(827\) −28.8990 −1.00492 −0.502458 0.864602i \(-0.667571\pi\)
−0.502458 + 0.864602i \(0.667571\pi\)
\(828\) 0 0
\(829\) 29.1918 1.01387 0.506937 0.861983i \(-0.330778\pi\)
0.506937 + 0.861983i \(0.330778\pi\)
\(830\) −2.69694 −0.0936121
\(831\) 0 0
\(832\) −2.89898 −0.100504
\(833\) −12.7980 −0.443423
\(834\) 0 0
\(835\) −20.6969 −0.716247
\(836\) 33.7980 1.16893
\(837\) 0 0
\(838\) 24.0000 0.829066
\(839\) −44.9444 −1.55165 −0.775826 0.630947i \(-0.782667\pi\)
−0.775826 + 0.630947i \(0.782667\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) −17.1010 −0.589340
\(843\) 0 0
\(844\) 12.8990 0.444001
\(845\) 11.2577 0.387275
\(846\) 0 0
\(847\) 57.8434 1.98752
\(848\) 10.8990 0.374272
\(849\) 0 0
\(850\) −1.00000 −0.0342997
\(851\) 54.4949 1.86806
\(852\) 0 0
\(853\) 10.4495 0.357784 0.178892 0.983869i \(-0.442749\pi\)
0.178892 + 0.983869i \(0.442749\pi\)
\(854\) −6.89898 −0.236078
\(855\) 0 0
\(856\) 16.8990 0.577595
\(857\) 27.7980 0.949560 0.474780 0.880104i \(-0.342528\pi\)
0.474780 + 0.880104i \(0.342528\pi\)
\(858\) 0 0
\(859\) 5.79796 0.197824 0.0989119 0.995096i \(-0.468464\pi\)
0.0989119 + 0.995096i \(0.468464\pi\)
\(860\) 9.79796 0.334108
\(861\) 0 0
\(862\) −20.9444 −0.713369
\(863\) −57.7980 −1.96747 −0.983733 0.179638i \(-0.942507\pi\)
−0.983733 + 0.179638i \(0.942507\pi\)
\(864\) 0 0
\(865\) 42.0000 1.42804
\(866\) 37.3939 1.27070
\(867\) 0 0
\(868\) −23.7980 −0.807755
\(869\) −26.2020 −0.888843
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 0.651531 0.0220636
\(873\) 0 0
\(874\) −58.2929 −1.97179
\(875\) 43.5959 1.47381
\(876\) 0 0
\(877\) 54.0454 1.82498 0.912492 0.409095i \(-0.134155\pi\)
0.912492 + 0.409095i \(0.134155\pi\)
\(878\) 18.6515 0.629459
\(879\) 0 0
\(880\) −12.0000 −0.404520
\(881\) −32.6969 −1.10159 −0.550794 0.834641i \(-0.685675\pi\)
−0.550794 + 0.834641i \(0.685675\pi\)
\(882\) 0 0
\(883\) −24.6969 −0.831118 −0.415559 0.909566i \(-0.636414\pi\)
−0.415559 + 0.909566i \(0.636414\pi\)
\(884\) 2.89898 0.0975032
\(885\) 0 0
\(886\) −17.3939 −0.584359
\(887\) −52.0454 −1.74751 −0.873757 0.486363i \(-0.838323\pi\)
−0.873757 + 0.486363i \(0.838323\pi\)
\(888\) 0 0
\(889\) −17.7980 −0.596924
\(890\) 9.30306 0.311839
\(891\) 0 0
\(892\) −18.6969 −0.626020
\(893\) −33.7980 −1.13101
\(894\) 0 0
\(895\) −5.39388 −0.180297
\(896\) 4.44949 0.148647
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) −13.1010 −0.436943
\(900\) 0 0
\(901\) −10.8990 −0.363098
\(902\) −29.3939 −0.978709
\(903\) 0 0
\(904\) 1.10102 0.0366194
\(905\) −20.2020 −0.671539
\(906\) 0 0
\(907\) −8.89898 −0.295486 −0.147743 0.989026i \(-0.547201\pi\)
−0.147743 + 0.989026i \(0.547201\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 31.5959 1.04739
\(911\) −1.34847 −0.0446768 −0.0223384 0.999750i \(-0.507111\pi\)
−0.0223384 + 0.999750i \(0.507111\pi\)
\(912\) 0 0
\(913\) 5.39388 0.178511
\(914\) 37.3939 1.23688
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) −75.1918 −2.48305
\(918\) 0 0
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) 20.6969 0.682358
\(921\) 0 0
\(922\) −8.69694 −0.286418
\(923\) −3.90918 −0.128672
\(924\) 0 0
\(925\) −6.44949 −0.212058
\(926\) 8.49490 0.279160
\(927\) 0 0
\(928\) 2.44949 0.0804084
\(929\) 27.7980 0.912021 0.456011 0.889974i \(-0.349278\pi\)
0.456011 + 0.889974i \(0.349278\pi\)
\(930\) 0 0
\(931\) 88.2929 2.89368
\(932\) 8.69694 0.284878
\(933\) 0 0
\(934\) 31.5959 1.03385
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) −1.79796 −0.0587368 −0.0293684 0.999569i \(-0.509350\pi\)
−0.0293684 + 0.999569i \(0.509350\pi\)
\(938\) 30.6969 1.00229
\(939\) 0 0
\(940\) 12.0000 0.391397
\(941\) −5.14643 −0.167769 −0.0838844 0.996475i \(-0.526733\pi\)
−0.0838844 + 0.996475i \(0.526733\pi\)
\(942\) 0 0
\(943\) 50.6969 1.65092
\(944\) −1.10102 −0.0358352
\(945\) 0 0
\(946\) −19.5959 −0.637118
\(947\) 0.494897 0.0160820 0.00804100 0.999968i \(-0.497440\pi\)
0.00804100 + 0.999968i \(0.497440\pi\)
\(948\) 0 0
\(949\) 28.9898 0.941049
\(950\) 6.89898 0.223832
\(951\) 0 0
\(952\) −4.44949 −0.144209
\(953\) −49.5959 −1.60657 −0.803285 0.595595i \(-0.796916\pi\)
−0.803285 + 0.595595i \(0.796916\pi\)
\(954\) 0 0
\(955\) −36.0000 −1.16493
\(956\) −26.6969 −0.863441
\(957\) 0 0
\(958\) 18.2474 0.589548
\(959\) 87.1918 2.81557
\(960\) 0 0
\(961\) −2.39388 −0.0772218
\(962\) 18.6969 0.602813
\(963\) 0 0
\(964\) 16.6969 0.537772
\(965\) −46.2929 −1.49022
\(966\) 0 0
\(967\) −48.0908 −1.54650 −0.773248 0.634103i \(-0.781369\pi\)
−0.773248 + 0.634103i \(0.781369\pi\)
\(968\) 13.0000 0.417836
\(969\) 0 0
\(970\) 36.4949 1.17178
\(971\) 28.2929 0.907961 0.453980 0.891012i \(-0.350004\pi\)
0.453980 + 0.891012i \(0.350004\pi\)
\(972\) 0 0
\(973\) 13.7980 0.442342
\(974\) 4.44949 0.142571
\(975\) 0 0
\(976\) −1.55051 −0.0496306
\(977\) 48.0000 1.53566 0.767828 0.640656i \(-0.221338\pi\)
0.767828 + 0.640656i \(0.221338\pi\)
\(978\) 0 0
\(979\) −18.6061 −0.594654
\(980\) −31.3485 −1.00139
\(981\) 0 0
\(982\) 41.3939 1.32093
\(983\) −39.5505 −1.26147 −0.630733 0.776000i \(-0.717246\pi\)
−0.630733 + 0.776000i \(0.717246\pi\)
\(984\) 0 0
\(985\) 59.3939 1.89245
\(986\) −2.44949 −0.0780076
\(987\) 0 0
\(988\) −20.0000 −0.636285
\(989\) 33.7980 1.07471
\(990\) 0 0
\(991\) −8.04541 −0.255571 −0.127785 0.991802i \(-0.540787\pi\)
−0.127785 + 0.991802i \(0.540787\pi\)
\(992\) −5.34847 −0.169814
\(993\) 0 0
\(994\) 6.00000 0.190308
\(995\) −58.8990 −1.86722
\(996\) 0 0
\(997\) 12.6515 0.400678 0.200339 0.979727i \(-0.435796\pi\)
0.200339 + 0.979727i \(0.435796\pi\)
\(998\) 5.30306 0.167865
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 306.2.a.f.1.1 yes 2
3.2 odd 2 306.2.a.e.1.2 2
4.3 odd 2 2448.2.a.w.1.1 2
5.4 even 2 7650.2.a.cq.1.1 2
8.3 odd 2 9792.2.a.cp.1.2 2
8.5 even 2 9792.2.a.ct.1.2 2
12.11 even 2 2448.2.a.x.1.2 2
15.14 odd 2 7650.2.a.cz.1.1 2
17.16 even 2 5202.2.a.z.1.2 2
24.5 odd 2 9792.2.a.cu.1.1 2
24.11 even 2 9792.2.a.cq.1.1 2
51.50 odd 2 5202.2.a.q.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
306.2.a.e.1.2 2 3.2 odd 2
306.2.a.f.1.1 yes 2 1.1 even 1 trivial
2448.2.a.w.1.1 2 4.3 odd 2
2448.2.a.x.1.2 2 12.11 even 2
5202.2.a.q.1.1 2 51.50 odd 2
5202.2.a.z.1.2 2 17.16 even 2
7650.2.a.cq.1.1 2 5.4 even 2
7650.2.a.cz.1.1 2 15.14 odd 2
9792.2.a.cp.1.2 2 8.3 odd 2
9792.2.a.cq.1.1 2 24.11 even 2
9792.2.a.ct.1.2 2 8.5 even 2
9792.2.a.cu.1.1 2 24.5 odd 2