Properties

Label 3042.3.c.e
Level $3042$
Weight $3$
Character orbit 3042.c
Analytic conductor $82.888$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3042.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(82.8884964184\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Defining polynomial: \(x^{2} + 2\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta q^{2} -2 q^{4} + 3 \beta q^{5} + 4 q^{7} + 2 \beta q^{8} +O(q^{10})\) \( q -\beta q^{2} -2 q^{4} + 3 \beta q^{5} + 4 q^{7} + 2 \beta q^{8} + 6 q^{10} -12 \beta q^{11} -4 \beta q^{14} + 4 q^{16} -9 \beta q^{17} + 16 q^{19} -6 \beta q^{20} -24 q^{22} -12 \beta q^{23} + 7 q^{25} -8 q^{28} + 3 \beta q^{29} -44 q^{31} -4 \beta q^{32} -18 q^{34} + 12 \beta q^{35} + 34 q^{37} -16 \beta q^{38} -12 q^{40} -33 \beta q^{41} -40 q^{43} + 24 \beta q^{44} -24 q^{46} + 60 \beta q^{47} -33 q^{49} -7 \beta q^{50} + 27 \beta q^{53} + 72 q^{55} + 8 \beta q^{56} + 6 q^{58} -24 \beta q^{59} + 50 q^{61} + 44 \beta q^{62} -8 q^{64} -8 q^{67} + 18 \beta q^{68} + 24 q^{70} + 36 \beta q^{71} + 16 q^{73} -34 \beta q^{74} -32 q^{76} -48 \beta q^{77} -76 q^{79} + 12 \beta q^{80} -66 q^{82} -84 \beta q^{83} + 54 q^{85} + 40 \beta q^{86} + 48 q^{88} -9 \beta q^{89} + 24 \beta q^{92} + 120 q^{94} + 48 \beta q^{95} -176 q^{97} + 33 \beta q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{4} + 8q^{7} + O(q^{10}) \) \( 2q - 4q^{4} + 8q^{7} + 12q^{10} + 8q^{16} + 32q^{19} - 48q^{22} + 14q^{25} - 16q^{28} - 88q^{31} - 36q^{34} + 68q^{37} - 24q^{40} - 80q^{43} - 48q^{46} - 66q^{49} + 144q^{55} + 12q^{58} + 100q^{61} - 16q^{64} - 16q^{67} + 48q^{70} + 32q^{73} - 64q^{76} - 152q^{79} - 132q^{82} + 108q^{85} + 96q^{88} + 240q^{94} - 352q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1691.1
1.41421i
1.41421i
1.41421i 0 −2.00000 4.24264i 0 4.00000 2.82843i 0 6.00000
1691.2 1.41421i 0 −2.00000 4.24264i 0 4.00000 2.82843i 0 6.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3042.3.c.e 2
3.b odd 2 1 inner 3042.3.c.e 2
13.b even 2 1 18.3.b.a 2
13.d odd 4 2 3042.3.d.a 4
39.d odd 2 1 18.3.b.a 2
39.f even 4 2 3042.3.d.a 4
52.b odd 2 1 144.3.e.b 2
65.d even 2 1 450.3.d.f 2
65.h odd 4 2 450.3.b.b 4
91.b odd 2 1 882.3.b.a 2
91.r even 6 2 882.3.s.b 4
91.s odd 6 2 882.3.s.d 4
104.e even 2 1 576.3.e.c 2
104.h odd 2 1 576.3.e.f 2
117.n odd 6 2 162.3.d.b 4
117.t even 6 2 162.3.d.b 4
143.d odd 2 1 2178.3.c.d 2
156.h even 2 1 144.3.e.b 2
195.e odd 2 1 450.3.d.f 2
195.s even 4 2 450.3.b.b 4
208.o odd 4 2 2304.3.h.c 4
208.p even 4 2 2304.3.h.f 4
260.g odd 2 1 3600.3.l.d 2
260.p even 4 2 3600.3.c.b 4
273.g even 2 1 882.3.b.a 2
273.w odd 6 2 882.3.s.b 4
273.ba even 6 2 882.3.s.d 4
312.b odd 2 1 576.3.e.c 2
312.h even 2 1 576.3.e.f 2
429.e even 2 1 2178.3.c.d 2
468.x even 6 2 1296.3.q.f 4
468.bg odd 6 2 1296.3.q.f 4
624.v even 4 2 2304.3.h.c 4
624.bi odd 4 2 2304.3.h.f 4
780.d even 2 1 3600.3.l.d 2
780.w odd 4 2 3600.3.c.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.3.b.a 2 13.b even 2 1
18.3.b.a 2 39.d odd 2 1
144.3.e.b 2 52.b odd 2 1
144.3.e.b 2 156.h even 2 1
162.3.d.b 4 117.n odd 6 2
162.3.d.b 4 117.t even 6 2
450.3.b.b 4 65.h odd 4 2
450.3.b.b 4 195.s even 4 2
450.3.d.f 2 65.d even 2 1
450.3.d.f 2 195.e odd 2 1
576.3.e.c 2 104.e even 2 1
576.3.e.c 2 312.b odd 2 1
576.3.e.f 2 104.h odd 2 1
576.3.e.f 2 312.h even 2 1
882.3.b.a 2 91.b odd 2 1
882.3.b.a 2 273.g even 2 1
882.3.s.b 4 91.r even 6 2
882.3.s.b 4 273.w odd 6 2
882.3.s.d 4 91.s odd 6 2
882.3.s.d 4 273.ba even 6 2
1296.3.q.f 4 468.x even 6 2
1296.3.q.f 4 468.bg odd 6 2
2178.3.c.d 2 143.d odd 2 1
2178.3.c.d 2 429.e even 2 1
2304.3.h.c 4 208.o odd 4 2
2304.3.h.c 4 624.v even 4 2
2304.3.h.f 4 208.p even 4 2
2304.3.h.f 4 624.bi odd 4 2
3042.3.c.e 2 1.a even 1 1 trivial
3042.3.c.e 2 3.b odd 2 1 inner
3042.3.d.a 4 13.d odd 4 2
3042.3.d.a 4 39.f even 4 2
3600.3.c.b 4 260.p even 4 2
3600.3.c.b 4 780.w odd 4 2
3600.3.l.d 2 260.g odd 2 1
3600.3.l.d 2 780.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(3042, [\chi])\):

\( T_{5}^{2} + 18 \)
\( T_{7} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 2 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 18 + T^{2} \)
$7$ \( ( -4 + T )^{2} \)
$11$ \( 288 + T^{2} \)
$13$ \( T^{2} \)
$17$ \( 162 + T^{2} \)
$19$ \( ( -16 + T )^{2} \)
$23$ \( 288 + T^{2} \)
$29$ \( 18 + T^{2} \)
$31$ \( ( 44 + T )^{2} \)
$37$ \( ( -34 + T )^{2} \)
$41$ \( 2178 + T^{2} \)
$43$ \( ( 40 + T )^{2} \)
$47$ \( 7200 + T^{2} \)
$53$ \( 1458 + T^{2} \)
$59$ \( 1152 + T^{2} \)
$61$ \( ( -50 + T )^{2} \)
$67$ \( ( 8 + T )^{2} \)
$71$ \( 2592 + T^{2} \)
$73$ \( ( -16 + T )^{2} \)
$79$ \( ( 76 + T )^{2} \)
$83$ \( 14112 + T^{2} \)
$89$ \( 162 + T^{2} \)
$97$ \( ( 176 + T )^{2} \)
show more
show less