# Properties

 Label 3042.2.b.r Level $3042$ Weight $2$ Character orbit 3042.b Analytic conductor $24.290$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3042 = 2 \cdot 3^{2} \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3042.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$24.2904922949$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: 6.0.153664.1 Defining polynomial: $$x^{6} + 5x^{4} + 6x^{2} + 1$$ x^6 + 5*x^4 + 6*x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1014) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{5} q^{2} - q^{4} + ( - \beta_{5} + \beta_{3} + \beta_1) q^{5} + ( - \beta_{3} + 2 \beta_1) q^{7} - \beta_{5} q^{8}+O(q^{10})$$ q + b5 * q^2 - q^4 + (-b5 + b3 + b1) * q^5 + (-b3 + 2*b1) * q^7 - b5 * q^8 $$q + \beta_{5} q^{2} - q^{4} + ( - \beta_{5} + \beta_{3} + \beta_1) q^{5} + ( - \beta_{3} + 2 \beta_1) q^{7} - \beta_{5} q^{8} + ( - 2 \beta_{4} - \beta_{2} + 2) q^{10} + (2 \beta_{3} + \beta_1) q^{11} + ( - \beta_{4} + \beta_{2} - 1) q^{14} + q^{16} + ( - 2 \beta_{4} + 2 \beta_{2} + 4) q^{17} + ( - 4 \beta_{5} - 4 \beta_{3} + 4 \beta_1) q^{19} + (\beta_{5} - \beta_{3} - \beta_1) q^{20} + ( - 3 \beta_{4} - 2 \beta_{2} + 2) q^{22} + ( - 2 \beta_{2} + 6) q^{23} + (7 \beta_{4} + 3 \beta_{2} - 4) q^{25} + (\beta_{3} - 2 \beta_1) q^{28} + ( - 5 \beta_{4} - 2 \beta_{2} - 2) q^{29} + ( - 4 \beta_{3} + 5 \beta_1) q^{31} + \beta_{5} q^{32} + (6 \beta_{5} + 2 \beta_{3} - 4 \beta_1) q^{34} + (\beta_{4} + \beta_{2} - 2) q^{35} + ( - 6 \beta_{5} - 4 \beta_{3} + 2 \beta_1) q^{37} + 4 \beta_{2} q^{38} + (2 \beta_{4} + \beta_{2} - 2) q^{40} + ( - 4 \beta_{5} - 2 \beta_1) q^{41} + ( - 4 \beta_{4} - 6 \beta_{2} + 6) q^{43} + ( - 2 \beta_{3} - \beta_1) q^{44} + (4 \beta_{5} - 2 \beta_{3} + 2 \beta_1) q^{46} + 4 \beta_{3} q^{47} + ( - 3 \beta_{4} + 4 \beta_{2} + 1) q^{49} + ( - \beta_{5} + 3 \beta_{3} + 4 \beta_1) q^{50} + (6 \beta_{4} + 9 \beta_{2} - 10) q^{53} + (8 \beta_{4} + 3 \beta_{2} - 11) q^{55} + (\beta_{4} - \beta_{2} + 1) q^{56} + ( - 4 \beta_{5} - 2 \beta_{3} - 3 \beta_1) q^{58} + (2 \beta_{5} - \beta_{3} + 2 \beta_1) q^{59} + ( - 2 \beta_{4} - 2 \beta_{2} - 2) q^{61} + ( - \beta_{4} + 4 \beta_{2} - 4) q^{62} - q^{64} + (8 \beta_{5} + 8 \beta_{3} - 10 \beta_1) q^{67} + (2 \beta_{4} - 2 \beta_{2} - 4) q^{68} + ( - \beta_{5} + \beta_{3}) q^{70} + ( - 2 \beta_{5} - 6 \beta_{3} + 6 \beta_1) q^{71} + (\beta_{5} - 3 \beta_{3} - \beta_1) q^{73} + (2 \beta_{4} + 4 \beta_{2} + 2) q^{74} + (4 \beta_{5} + 4 \beta_{3} - 4 \beta_1) q^{76} + (\beta_{4} + 2 \beta_{2} - 3) q^{77} + (5 \beta_{4} + 11 \beta_{2} - 7) q^{79} + ( - \beta_{5} + \beta_{3} + \beta_1) q^{80} + (2 \beta_{4} + 4) q^{82} + (2 \beta_{5} + 11 \beta_{3} - 2 \beta_1) q^{83} + ( - 8 \beta_{5} + 8 \beta_{3} + 6 \beta_1) q^{85} + ( - 6 \beta_{3} + 2 \beta_1) q^{86} + (3 \beta_{4} + 2 \beta_{2} - 2) q^{88} + (2 \beta_{5} - 2 \beta_{3} + 2 \beta_1) q^{89} + (2 \beta_{2} - 6) q^{92} + ( - 4 \beta_{4} - 4 \beta_{2} + 4) q^{94} + (4 \beta_{4} + 4 \beta_{2} - 4) q^{95} + ( - 3 \beta_{5} + \beta_{3} + 3 \beta_1) q^{97} + (5 \beta_{5} + 4 \beta_{3} - 7 \beta_1) q^{98}+O(q^{100})$$ q + b5 * q^2 - q^4 + (-b5 + b3 + b1) * q^5 + (-b3 + 2*b1) * q^7 - b5 * q^8 + (-2*b4 - b2 + 2) * q^10 + (2*b3 + b1) * q^11 + (-b4 + b2 - 1) * q^14 + q^16 + (-2*b4 + 2*b2 + 4) * q^17 + (-4*b5 - 4*b3 + 4*b1) * q^19 + (b5 - b3 - b1) * q^20 + (-3*b4 - 2*b2 + 2) * q^22 + (-2*b2 + 6) * q^23 + (7*b4 + 3*b2 - 4) * q^25 + (b3 - 2*b1) * q^28 + (-5*b4 - 2*b2 - 2) * q^29 + (-4*b3 + 5*b1) * q^31 + b5 * q^32 + (6*b5 + 2*b3 - 4*b1) * q^34 + (b4 + b2 - 2) * q^35 + (-6*b5 - 4*b3 + 2*b1) * q^37 + 4*b2 * q^38 + (2*b4 + b2 - 2) * q^40 + (-4*b5 - 2*b1) * q^41 + (-4*b4 - 6*b2 + 6) * q^43 + (-2*b3 - b1) * q^44 + (4*b5 - 2*b3 + 2*b1) * q^46 + 4*b3 * q^47 + (-3*b4 + 4*b2 + 1) * q^49 + (-b5 + 3*b3 + 4*b1) * q^50 + (6*b4 + 9*b2 - 10) * q^53 + (8*b4 + 3*b2 - 11) * q^55 + (b4 - b2 + 1) * q^56 + (-4*b5 - 2*b3 - 3*b1) * q^58 + (2*b5 - b3 + 2*b1) * q^59 + (-2*b4 - 2*b2 - 2) * q^61 + (-b4 + 4*b2 - 4) * q^62 - q^64 + (8*b5 + 8*b3 - 10*b1) * q^67 + (2*b4 - 2*b2 - 4) * q^68 + (-b5 + b3) * q^70 + (-2*b5 - 6*b3 + 6*b1) * q^71 + (b5 - 3*b3 - b1) * q^73 + (2*b4 + 4*b2 + 2) * q^74 + (4*b5 + 4*b3 - 4*b1) * q^76 + (b4 + 2*b2 - 3) * q^77 + (5*b4 + 11*b2 - 7) * q^79 + (-b5 + b3 + b1) * q^80 + (2*b4 + 4) * q^82 + (2*b5 + 11*b3 - 2*b1) * q^83 + (-8*b5 + 8*b3 + 6*b1) * q^85 + (-6*b3 + 2*b1) * q^86 + (3*b4 + 2*b2 - 2) * q^88 + (2*b5 - 2*b3 + 2*b1) * q^89 + (2*b2 - 6) * q^92 + (-4*b4 - 4*b2 + 4) * q^94 + (4*b4 + 4*b2 - 4) * q^95 + (-3*b5 + b3 + 3*b1) * q^97 + (5*b5 + 4*b3 - 7*b1) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q - 6 q^{4}+O(q^{10})$$ 6 * q - 6 * q^4 $$6 q - 6 q^{4} + 6 q^{10} - 6 q^{14} + 6 q^{16} + 24 q^{17} + 2 q^{22} + 32 q^{23} - 4 q^{25} - 26 q^{29} - 8 q^{35} + 8 q^{38} - 6 q^{40} + 16 q^{43} + 8 q^{49} - 30 q^{53} - 44 q^{55} + 6 q^{56} - 20 q^{61} - 18 q^{62} - 6 q^{64} - 24 q^{68} + 24 q^{74} - 12 q^{77} - 10 q^{79} + 28 q^{82} - 2 q^{88} - 32 q^{92} + 8 q^{94} - 8 q^{95}+O(q^{100})$$ 6 * q - 6 * q^4 + 6 * q^10 - 6 * q^14 + 6 * q^16 + 24 * q^17 + 2 * q^22 + 32 * q^23 - 4 * q^25 - 26 * q^29 - 8 * q^35 + 8 * q^38 - 6 * q^40 + 16 * q^43 + 8 * q^49 - 30 * q^53 - 44 * q^55 + 6 * q^56 - 20 * q^61 - 18 * q^62 - 6 * q^64 - 24 * q^68 + 24 * q^74 - 12 * q^77 - 10 * q^79 + 28 * q^82 - 2 * q^88 - 32 * q^92 + 8 * q^94 - 8 * q^95

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} + 5x^{4} + 6x^{2} + 1$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} + 2$$ v^2 + 2 $$\beta_{3}$$ $$=$$ $$\nu^{3} + 3\nu$$ v^3 + 3*v $$\beta_{4}$$ $$=$$ $$\nu^{4} + 3\nu^{2} + 1$$ v^4 + 3*v^2 + 1 $$\beta_{5}$$ $$=$$ $$\nu^{5} + 4\nu^{3} + 3\nu$$ v^5 + 4*v^3 + 3*v
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} - 2$$ b2 - 2 $$\nu^{3}$$ $$=$$ $$\beta_{3} - 3\beta_1$$ b3 - 3*b1 $$\nu^{4}$$ $$=$$ $$\beta_{4} - 3\beta_{2} + 5$$ b4 - 3*b2 + 5 $$\nu^{5}$$ $$=$$ $$\beta_{5} - 4\beta_{3} + 9\beta_1$$ b5 - 4*b3 + 9*b1

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times$$.

 $$n$$ $$677$$ $$847$$ $$\chi(n)$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1351.1
 − 0.445042i − 1.80194i 1.24698i − 1.24698i 1.80194i 0.445042i
1.00000i 0 −1.00000 0.692021i 0 0.356896i 1.00000i 0 −0.692021
1351.2 1.00000i 0 −1.00000 0.356896i 0 4.04892i 1.00000i 0 −0.356896
1351.3 1.00000i 0 −1.00000 4.04892i 0 0.692021i 1.00000i 0 4.04892
1351.4 1.00000i 0 −1.00000 4.04892i 0 0.692021i 1.00000i 0 4.04892
1351.5 1.00000i 0 −1.00000 0.356896i 0 4.04892i 1.00000i 0 −0.356896
1351.6 1.00000i 0 −1.00000 0.692021i 0 0.356896i 1.00000i 0 −0.692021
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1351.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3042.2.b.r 6
3.b odd 2 1 1014.2.b.g 6
13.b even 2 1 inner 3042.2.b.r 6
13.d odd 4 1 3042.2.a.bd 3
13.d odd 4 1 3042.2.a.be 3
39.d odd 2 1 1014.2.b.g 6
39.f even 4 1 1014.2.a.m 3
39.f even 4 1 1014.2.a.o yes 3
39.h odd 6 2 1014.2.i.g 12
39.i odd 6 2 1014.2.i.g 12
39.k even 12 2 1014.2.e.k 6
39.k even 12 2 1014.2.e.m 6
156.l odd 4 1 8112.2.a.bz 3
156.l odd 4 1 8112.2.a.ce 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1014.2.a.m 3 39.f even 4 1
1014.2.a.o yes 3 39.f even 4 1
1014.2.b.g 6 3.b odd 2 1
1014.2.b.g 6 39.d odd 2 1
1014.2.e.k 6 39.k even 12 2
1014.2.e.m 6 39.k even 12 2
1014.2.i.g 12 39.h odd 6 2
1014.2.i.g 12 39.i odd 6 2
3042.2.a.bd 3 13.d odd 4 1
3042.2.a.be 3 13.d odd 4 1
3042.2.b.r 6 1.a even 1 1 trivial
3042.2.b.r 6 13.b even 2 1 inner
8112.2.a.bz 3 156.l odd 4 1
8112.2.a.ce 3 156.l odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3042, [\chi])$$:

 $$T_{5}^{6} + 17T_{5}^{4} + 10T_{5}^{2} + 1$$ T5^6 + 17*T5^4 + 10*T5^2 + 1 $$T_{7}^{6} + 17T_{7}^{4} + 10T_{7}^{2} + 1$$ T7^6 + 17*T7^4 + 10*T7^2 + 1 $$T_{17}^{3} - 12T_{17}^{2} + 20T_{17} + 104$$ T17^3 - 12*T17^2 + 20*T17 + 104 $$T_{23}^{3} - 16T_{23}^{2} + 76T_{23} - 104$$ T23^3 - 16*T23^2 + 76*T23 - 104

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T^{2} + 1)^{3}$$
$3$ $$T^{6}$$
$5$ $$T^{6} + 17 T^{4} + 10 T^{2} + 1$$
$7$ $$T^{6} + 17 T^{4} + 10 T^{2} + 1$$
$11$ $$T^{6} + 33 T^{4} + 230 T^{2} + \cdots + 169$$
$13$ $$T^{6}$$
$17$ $$(T^{3} - 12 T^{2} + 20 T + 104)^{2}$$
$19$ $$T^{6} + 80 T^{4} + 1536 T^{2} + \cdots + 4096$$
$23$ $$(T^{3} - 16 T^{2} + 76 T - 104)^{2}$$
$29$ $$(T^{3} + 13 T^{2} + 12 T - 223)^{2}$$
$31$ $$T^{6} + 125 T^{4} + 1006 T^{2} + \cdots + 841$$
$37$ $$T^{6} + 104 T^{4} + 208 T^{2} + \cdots + 64$$
$41$ $$T^{6} + 84 T^{4} + 1568 T^{2} + \cdots + 3136$$
$43$ $$(T^{3} - 8 T^{2} - 44 T + 344)^{2}$$
$47$ $$T^{6} + 80 T^{4} + 1536 T^{2} + \cdots + 4096$$
$53$ $$(T^{3} + 15 T^{2} - 72 T - 1247)^{2}$$
$59$ $$T^{6} + 41 T^{4} + 166 T^{2} + \cdots + 169$$
$61$ $$(T^{3} + 10 T^{2} + 24 T + 8)^{2}$$
$67$ $$T^{6} + 404 T^{4} + 47200 T^{2} + \cdots + 1236544$$
$71$ $$T^{6} + 180 T^{4} + 6432 T^{2} + \cdots + 10816$$
$73$ $$T^{6} + 69 T^{4} + 614 T^{2} + \cdots + 169$$
$79$ $$(T^{3} + 5 T^{2} - 204 T - 1469)^{2}$$
$83$ $$T^{6} + 497 T^{4} + 70854 T^{2} + \cdots + 2181529$$
$89$ $$T^{6} + 52 T^{4} + 416 T^{2} + \cdots + 64$$
$97$ $$T^{6} + 77 T^{4} + 294 T^{2} + \cdots + 49$$