Properties

Label 3042.2.b.p
Level $3042$
Weight $2$
Character orbit 3042.b
Analytic conductor $24.290$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3042,2,Mod(1351,3042)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3042.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,0,2,0,0,0,-2,0,6,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} - q^{4} + \beta_1 q^{5} + (\beta_{5} + \beta_{3} - 3 \beta_1) q^{7} + \beta_{5} q^{8} + \beta_{4} q^{10} + ( - 2 \beta_{5} + \beta_{3} - 2 \beta_1) q^{11} + ( - 2 \beta_{4} + \beta_{2}) q^{14}+ \cdots + ( - \beta_{5} - 7 \beta_{3} + 8 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 2 q^{10} - 2 q^{14} + 6 q^{16} - 28 q^{17} - 18 q^{22} - 24 q^{23} + 20 q^{25} + 22 q^{29} + 24 q^{35} - 8 q^{38} - 2 q^{40} + 20 q^{43} - 24 q^{49} + 30 q^{53} + 20 q^{55} + 2 q^{56} + 4 q^{61}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 5x^{4} + 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 3\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 4\nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1351.1
1.24698i
0.445042i
1.80194i
1.80194i
0.445042i
1.24698i
1.00000i 0 −1.00000 1.24698i 0 2.93900i 1.00000i 0 −1.24698
1351.2 1.00000i 0 −1.00000 0.445042i 0 0.911854i 1.00000i 0 0.445042
1351.3 1.00000i 0 −1.00000 1.80194i 0 4.85086i 1.00000i 0 1.80194
1351.4 1.00000i 0 −1.00000 1.80194i 0 4.85086i 1.00000i 0 1.80194
1351.5 1.00000i 0 −1.00000 0.445042i 0 0.911854i 1.00000i 0 0.445042
1351.6 1.00000i 0 −1.00000 1.24698i 0 2.93900i 1.00000i 0 −1.24698
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1351.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3042.2.b.p 6
3.b odd 2 1 3042.2.b.q 6
13.b even 2 1 inner 3042.2.b.p 6
13.d odd 4 1 3042.2.a.bc yes 3
13.d odd 4 1 3042.2.a.bf yes 3
39.d odd 2 1 3042.2.b.q 6
39.f even 4 1 3042.2.a.bb 3
39.f even 4 1 3042.2.a.bg yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3042.2.a.bb 3 39.f even 4 1
3042.2.a.bc yes 3 13.d odd 4 1
3042.2.a.bf yes 3 13.d odd 4 1
3042.2.a.bg yes 3 39.f even 4 1
3042.2.b.p 6 1.a even 1 1 trivial
3042.2.b.p 6 13.b even 2 1 inner
3042.2.b.q 6 3.b odd 2 1
3042.2.b.q 6 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3042, [\chi])\):

\( T_{5}^{6} + 5T_{5}^{4} + 6T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{6} + 33T_{7}^{4} + 230T_{7}^{2} + 169 \) Copy content Toggle raw display
\( T_{17}^{3} + 14T_{17}^{2} + 56T_{17} + 56 \) Copy content Toggle raw display
\( T_{23}^{3} + 12T_{23}^{2} + 20T_{23} - 104 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} + 33 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$11$ \( T^{6} + 41 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( (T^{3} + 14 T^{2} + \cdots + 56)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 24 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( (T^{3} + 12 T^{2} + \cdots - 104)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} - 11 T^{2} + \cdots - 41)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 89 T^{4} + \cdots + 16129 \) Copy content Toggle raw display
$37$ \( T^{6} + 108 T^{4} + \cdots + 10816 \) Copy content Toggle raw display
$41$ \( T^{6} + 164 T^{4} + \cdots + 107584 \) Copy content Toggle raw display
$43$ \( (T^{3} - 10 T^{2} + \cdots + 104)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 136 T^{4} + \cdots + 53824 \) Copy content Toggle raw display
$53$ \( (T^{3} - 15 T^{2} + \cdots + 211)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 321 T^{4} + \cdots + 1104601 \) Copy content Toggle raw display
$61$ \( (T^{3} - 2 T^{2} - 36 T + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 180 T^{4} + \cdots + 10816 \) Copy content Toggle raw display
$71$ \( T^{6} + 404 T^{4} + \cdots + 1236544 \) Copy content Toggle raw display
$73$ \( T^{6} + 77 T^{4} + \cdots + 49 \) Copy content Toggle raw display
$79$ \( (T^{3} - 9 T^{2} + \cdots + 911)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 201 T^{4} + \cdots + 27889 \) Copy content Toggle raw display
$89$ \( T^{6} + 584 T^{4} + \cdots + 817216 \) Copy content Toggle raw display
$97$ \( T^{6} + 237 T^{4} + \cdots + 6889 \) Copy content Toggle raw display
show more
show less