Properties

Label 3042.2.b.j
Level $3042$
Weight $2$
Character orbit 3042.b
Analytic conductor $24.290$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3042,2,Mod(1351,3042)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3042.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,-4,0,0,0,0,0,4,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{4} + (\beta_{2} + \beta_1) q^{5} + \beta_{2} q^{7} - \beta_1 q^{8} + ( - \beta_{3} - 1) q^{10} + (\beta_{2} - 2 \beta_1) q^{11} - \beta_{3} q^{14} + q^{16} - 3 q^{17} + (\beta_{2} + 2 \beta_1) q^{19}+ \cdots - 3 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{10} + 4 q^{16} - 12 q^{17} + 8 q^{22} + 16 q^{23} - 24 q^{25} + 20 q^{29} - 40 q^{35} - 8 q^{38} + 4 q^{40} - 24 q^{43} - 12 q^{49} + 12 q^{53} - 32 q^{55} - 12 q^{61} - 4 q^{64} + 12 q^{68}+ \cdots - 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 5\nu ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{3} + 5\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1351.1
1.58114 1.58114i
−1.58114 + 1.58114i
−1.58114 1.58114i
1.58114 + 1.58114i
1.00000i 0 −1.00000 4.16228i 0 3.16228i 1.00000i 0 −4.16228
1351.2 1.00000i 0 −1.00000 2.16228i 0 3.16228i 1.00000i 0 2.16228
1351.3 1.00000i 0 −1.00000 2.16228i 0 3.16228i 1.00000i 0 2.16228
1351.4 1.00000i 0 −1.00000 4.16228i 0 3.16228i 1.00000i 0 −4.16228
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3042.2.b.j 4
3.b odd 2 1 3042.2.b.k 4
13.b even 2 1 inner 3042.2.b.j 4
13.d odd 4 1 3042.2.a.r 2
13.d odd 4 1 3042.2.a.x 2
13.f odd 12 2 234.2.h.e yes 4
39.d odd 2 1 3042.2.b.k 4
39.f even 4 1 3042.2.a.q 2
39.f even 4 1 3042.2.a.w 2
39.k even 12 2 234.2.h.d 4
52.l even 12 2 1872.2.t.n 4
156.v odd 12 2 1872.2.t.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.2.h.d 4 39.k even 12 2
234.2.h.e yes 4 13.f odd 12 2
1872.2.t.n 4 52.l even 12 2
1872.2.t.p 4 156.v odd 12 2
3042.2.a.q 2 39.f even 4 1
3042.2.a.r 2 13.d odd 4 1
3042.2.a.w 2 39.f even 4 1
3042.2.a.x 2 13.d odd 4 1
3042.2.b.j 4 1.a even 1 1 trivial
3042.2.b.j 4 13.b even 2 1 inner
3042.2.b.k 4 3.b odd 2 1
3042.2.b.k 4 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3042, [\chi])\):

\( T_{5}^{4} + 22T_{5}^{2} + 81 \) Copy content Toggle raw display
\( T_{7}^{2} + 10 \) Copy content Toggle raw display
\( T_{17} + 3 \) Copy content Toggle raw display
\( T_{23}^{2} - 8T_{23} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 22T^{2} + 81 \) Copy content Toggle raw display
$7$ \( (T^{2} + 10)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 28T^{2} + 36 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T + 3)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 28T^{2} + 36 \) Copy content Toggle raw display
$23$ \( (T^{2} - 8 T + 6)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 10 T + 15)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 40)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 118T^{2} + 1521 \) Copy content Toggle raw display
$41$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 12 T + 26)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 148T^{2} + 2916 \) Copy content Toggle raw display
$53$ \( (T^{2} - 6 T - 81)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 112T^{2} + 576 \) Copy content Toggle raw display
$61$ \( (T^{2} + 6 T - 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 92T^{2} + 676 \) Copy content Toggle raw display
$71$ \( T^{4} + 52T^{2} + 36 \) Copy content Toggle raw display
$73$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 252T^{2} + 2916 \) Copy content Toggle raw display
$89$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
show more
show less