Properties

Label 3042.2.b.c.1351.2
Level $3042$
Weight $2$
Character 3042.1351
Analytic conductor $24.290$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1351,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3042.1351
Dual form 3042.2.b.c.1351.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +2.00000i q^{5} -2.00000i q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} +2.00000i q^{5} -2.00000i q^{7} -1.00000i q^{8} -2.00000 q^{10} -4.00000i q^{11} +2.00000 q^{14} +1.00000 q^{16} +6.00000i q^{19} -2.00000i q^{20} +4.00000 q^{22} -4.00000 q^{23} +1.00000 q^{25} +2.00000i q^{28} -8.00000 q^{29} +2.00000i q^{31} +1.00000i q^{32} +4.00000 q^{35} +6.00000i q^{37} -6.00000 q^{38} +2.00000 q^{40} -6.00000i q^{41} +8.00000 q^{43} +4.00000i q^{44} -4.00000i q^{46} +8.00000i q^{47} +3.00000 q^{49} +1.00000i q^{50} +12.0000 q^{53} +8.00000 q^{55} -2.00000 q^{56} -8.00000i q^{58} +4.00000i q^{59} +10.0000 q^{61} -2.00000 q^{62} -1.00000 q^{64} +2.00000i q^{67} +4.00000i q^{70} +16.0000i q^{71} +14.0000i q^{73} -6.00000 q^{74} -6.00000i q^{76} -8.00000 q^{77} -4.00000 q^{79} +2.00000i q^{80} +6.00000 q^{82} +12.0000i q^{83} +8.00000i q^{86} -4.00000 q^{88} -6.00000i q^{89} +4.00000 q^{92} -8.00000 q^{94} -12.0000 q^{95} +10.0000i q^{97} +3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 4 q^{10} + 4 q^{14} + 2 q^{16} + 8 q^{22} - 8 q^{23} + 2 q^{25} - 16 q^{29} + 8 q^{35} - 12 q^{38} + 4 q^{40} + 16 q^{43} + 6 q^{49} + 24 q^{53} + 16 q^{55} - 4 q^{56} + 20 q^{61} - 4 q^{62} - 2 q^{64} - 12 q^{74} - 16 q^{77} - 8 q^{79} + 12 q^{82} - 8 q^{88} + 8 q^{92} - 16 q^{94} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.00000i 0.894427i 0.894427 + 0.447214i \(0.147584\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) − 2.00000i − 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) −2.00000 −0.632456
\(11\) − 4.00000i − 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 6.00000i 1.37649i 0.725476 + 0.688247i \(0.241620\pi\)
−0.725476 + 0.688247i \(0.758380\pi\)
\(20\) − 2.00000i − 0.447214i
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 2.00000i 0.377964i
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) − 6.00000i − 0.937043i −0.883452 0.468521i \(-0.844787\pi\)
0.883452 0.468521i \(-0.155213\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 4.00000i 0.603023i
\(45\) 0 0
\(46\) − 4.00000i − 0.589768i
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 1.00000i 0.141421i
\(51\) 0 0
\(52\) 0 0
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) − 8.00000i − 1.05045i
\(59\) 4.00000i 0.520756i 0.965507 + 0.260378i \(0.0838471\pi\)
−0.965507 + 0.260378i \(0.916153\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000i 0.244339i 0.992509 + 0.122169i \(0.0389851\pi\)
−0.992509 + 0.122169i \(0.961015\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 4.00000i 0.478091i
\(71\) 16.0000i 1.89885i 0.313993 + 0.949425i \(0.398333\pi\)
−0.313993 + 0.949425i \(0.601667\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) − 6.00000i − 0.688247i
\(77\) −8.00000 −0.911685
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 2.00000i 0.223607i
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.00000i 0.862662i
\(87\) 0 0
\(88\) −4.00000 −0.426401
\(89\) − 6.00000i − 0.635999i −0.948091 0.317999i \(-0.896989\pi\)
0.948091 0.317999i \(-0.103011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) −12.0000 −1.23117
\(96\) 0 0
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 16.0000 1.59206 0.796030 0.605257i \(-0.206930\pi\)
0.796030 + 0.605257i \(0.206930\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.0000i 1.16554i
\(107\) −20.0000 −1.93347 −0.966736 0.255774i \(-0.917670\pi\)
−0.966736 + 0.255774i \(0.917670\pi\)
\(108\) 0 0
\(109\) − 10.0000i − 0.957826i −0.877862 0.478913i \(-0.841031\pi\)
0.877862 0.478913i \(-0.158969\pi\)
\(110\) 8.00000i 0.762770i
\(111\) 0 0
\(112\) − 2.00000i − 0.188982i
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) − 8.00000i − 0.746004i
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 10.0000i 0.905357i
\(123\) 0 0
\(124\) − 2.00000i − 0.179605i
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 12.0000 1.04053
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) 0 0
\(137\) − 18.0000i − 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) −4.00000 −0.338062
\(141\) 0 0
\(142\) −16.0000 −1.34269
\(143\) 0 0
\(144\) 0 0
\(145\) − 16.0000i − 1.32873i
\(146\) −14.0000 −1.15865
\(147\) 0 0
\(148\) − 6.00000i − 0.493197i
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) 18.0000i 1.46482i 0.680864 + 0.732410i \(0.261604\pi\)
−0.680864 + 0.732410i \(0.738396\pi\)
\(152\) 6.00000 0.486664
\(153\) 0 0
\(154\) − 8.00000i − 0.644658i
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) − 4.00000i − 0.318223i
\(159\) 0 0
\(160\) −2.00000 −0.158114
\(161\) 8.00000i 0.630488i
\(162\) 0 0
\(163\) − 10.0000i − 0.783260i −0.920123 0.391630i \(-0.871911\pi\)
0.920123 0.391630i \(-0.128089\pi\)
\(164\) 6.00000i 0.468521i
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −16.0000 −1.21646 −0.608229 0.793762i \(-0.708120\pi\)
−0.608229 + 0.793762i \(0.708120\pi\)
\(174\) 0 0
\(175\) − 2.00000i − 0.151186i
\(176\) − 4.00000i − 0.301511i
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.00000i 0.294884i
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) 0 0
\(188\) − 8.00000i − 0.583460i
\(189\) 0 0
\(190\) − 12.0000i − 0.870572i
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) 2.00000i 0.143963i 0.997406 + 0.0719816i \(0.0229323\pi\)
−0.997406 + 0.0719816i \(0.977068\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) − 1.00000i − 0.0707107i
\(201\) 0 0
\(202\) 16.0000i 1.12576i
\(203\) 16.0000i 1.12298i
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) − 4.00000i − 0.278693i
\(207\) 0 0
\(208\) 0 0
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) −12.0000 −0.824163
\(213\) 0 0
\(214\) − 20.0000i − 1.36717i
\(215\) 16.0000i 1.09119i
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 10.0000 0.677285
\(219\) 0 0
\(220\) −8.00000 −0.539360
\(221\) 0 0
\(222\) 0 0
\(223\) − 6.00000i − 0.401790i −0.979613 0.200895i \(-0.935615\pi\)
0.979613 0.200895i \(-0.0643850\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) 4.00000i 0.266076i
\(227\) − 12.0000i − 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) − 30.0000i − 1.98246i −0.132164 0.991228i \(-0.542192\pi\)
0.132164 0.991228i \(-0.457808\pi\)
\(230\) 8.00000 0.527504
\(231\) 0 0
\(232\) 8.00000i 0.525226i
\(233\) −20.0000 −1.31024 −0.655122 0.755523i \(-0.727383\pi\)
−0.655122 + 0.755523i \(0.727383\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) − 4.00000i − 0.260378i
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000i 1.55243i 0.630468 + 0.776215i \(0.282863\pi\)
−0.630468 + 0.776215i \(0.717137\pi\)
\(240\) 0 0
\(241\) 6.00000i 0.386494i 0.981150 + 0.193247i \(0.0619019\pi\)
−0.981150 + 0.193247i \(0.938098\pi\)
\(242\) − 5.00000i − 0.321412i
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 6.00000i 0.383326i
\(246\) 0 0
\(247\) 0 0
\(248\) 2.00000 0.127000
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 8.00000i 0.501965i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 0 0
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) 0 0
\(262\) 4.00000i 0.247121i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 24.0000i 1.47431i
\(266\) 12.0000i 0.735767i
\(267\) 0 0
\(268\) − 2.00000i − 0.122169i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 22.0000i 1.33640i 0.743980 + 0.668202i \(0.232936\pi\)
−0.743980 + 0.668202i \(0.767064\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) − 4.00000i − 0.241209i
\(276\) 0 0
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) − 20.0000i − 1.19952i
\(279\) 0 0
\(280\) − 4.00000i − 0.239046i
\(281\) − 10.0000i − 0.596550i −0.954480 0.298275i \(-0.903589\pi\)
0.954480 0.298275i \(-0.0964112\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) − 16.0000i − 0.949425i
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 16.0000 0.939552
\(291\) 0 0
\(292\) − 14.0000i − 0.819288i
\(293\) 2.00000i 0.116841i 0.998292 + 0.0584206i \(0.0186065\pi\)
−0.998292 + 0.0584206i \(0.981394\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) − 16.0000i − 0.922225i
\(302\) −18.0000 −1.03578
\(303\) 0 0
\(304\) 6.00000i 0.344124i
\(305\) 20.0000i 1.14520i
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 8.00000 0.455842
\(309\) 0 0
\(310\) − 4.00000i − 0.227185i
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 2.00000i 0.112867i
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) − 6.00000i − 0.336994i −0.985702 0.168497i \(-0.946109\pi\)
0.985702 0.168497i \(-0.0538913\pi\)
\(318\) 0 0
\(319\) 32.0000i 1.79166i
\(320\) − 2.00000i − 0.111803i
\(321\) 0 0
\(322\) −8.00000 −0.445823
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 10.0000 0.553849
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 10.0000i 0.549650i 0.961494 + 0.274825i \(0.0886199\pi\)
−0.961494 + 0.274825i \(0.911380\pi\)
\(332\) − 12.0000i − 0.658586i
\(333\) 0 0
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) 34.0000 1.85210 0.926049 0.377403i \(-0.123183\pi\)
0.926049 + 0.377403i \(0.123183\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) − 20.0000i − 1.07990i
\(344\) − 8.00000i − 0.431331i
\(345\) 0 0
\(346\) − 16.0000i − 0.860165i
\(347\) −24.0000 −1.28839 −0.644194 0.764862i \(-0.722807\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(348\) 0 0
\(349\) 22.0000i 1.17763i 0.808267 + 0.588817i \(0.200406\pi\)
−0.808267 + 0.588817i \(0.799594\pi\)
\(350\) 2.00000 0.106904
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) − 14.0000i − 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) 0 0
\(355\) −32.0000 −1.69838
\(356\) 6.00000i 0.317999i
\(357\) 0 0
\(358\) − 12.0000i − 0.634220i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 18.0000i 0.946059i
\(363\) 0 0
\(364\) 0 0
\(365\) −28.0000 −1.46559
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) − 12.0000i − 0.623850i
\(371\) − 24.0000i − 1.24602i
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 0 0
\(378\) 0 0
\(379\) − 10.0000i − 0.513665i −0.966456 0.256833i \(-0.917321\pi\)
0.966456 0.256833i \(-0.0826790\pi\)
\(380\) 12.0000 0.615587
\(381\) 0 0
\(382\) − 4.00000i − 0.204658i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) − 16.0000i − 0.815436i
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) − 10.0000i − 0.507673i
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 3.00000i − 0.151523i
\(393\) 0 0
\(394\) −18.0000 −0.906827
\(395\) − 8.00000i − 0.402524i
\(396\) 0 0
\(397\) − 10.0000i − 0.501886i −0.968002 0.250943i \(-0.919259\pi\)
0.968002 0.250943i \(-0.0807406\pi\)
\(398\) − 8.00000i − 0.401004i
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) − 6.00000i − 0.299626i −0.988714 0.149813i \(-0.952133\pi\)
0.988714 0.149813i \(-0.0478671\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −16.0000 −0.796030
\(405\) 0 0
\(406\) −16.0000 −0.794067
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 26.0000i 1.28562i 0.766027 + 0.642809i \(0.222231\pi\)
−0.766027 + 0.642809i \(0.777769\pi\)
\(410\) 12.0000i 0.592638i
\(411\) 0 0
\(412\) 4.00000 0.197066
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) 0 0
\(418\) 24.0000i 1.17388i
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) − 10.0000i − 0.487370i −0.969854 0.243685i \(-0.921644\pi\)
0.969854 0.243685i \(-0.0783563\pi\)
\(422\) 8.00000i 0.389434i
\(423\) 0 0
\(424\) − 12.0000i − 0.582772i
\(425\) 0 0
\(426\) 0 0
\(427\) − 20.0000i − 0.967868i
\(428\) 20.0000 0.966736
\(429\) 0 0
\(430\) −16.0000 −0.771589
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 4.00000i 0.192006i
\(435\) 0 0
\(436\) 10.0000i 0.478913i
\(437\) − 24.0000i − 1.14808i
\(438\) 0 0
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) − 8.00000i − 0.381385i
\(441\) 0 0
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 6.00000 0.284108
\(447\) 0 0
\(448\) 2.00000i 0.0944911i
\(449\) 26.0000i 1.22702i 0.789689 + 0.613508i \(0.210242\pi\)
−0.789689 + 0.613508i \(0.789758\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) −4.00000 −0.188144
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000i 0.0935561i 0.998905 + 0.0467780i \(0.0148953\pi\)
−0.998905 + 0.0467780i \(0.985105\pi\)
\(458\) 30.0000 1.40181
\(459\) 0 0
\(460\) 8.00000i 0.373002i
\(461\) − 30.0000i − 1.39724i −0.715493 0.698620i \(-0.753798\pi\)
0.715493 0.698620i \(-0.246202\pi\)
\(462\) 0 0
\(463\) 22.0000i 1.02243i 0.859454 + 0.511213i \(0.170804\pi\)
−0.859454 + 0.511213i \(0.829196\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) − 20.0000i − 0.926482i
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) − 16.0000i − 0.738025i
\(471\) 0 0
\(472\) 4.00000 0.184115
\(473\) − 32.0000i − 1.47136i
\(474\) 0 0
\(475\) 6.00000i 0.275299i
\(476\) 0 0
\(477\) 0 0
\(478\) −24.0000 −1.09773
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −6.00000 −0.273293
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −20.0000 −0.908153
\(486\) 0 0
\(487\) − 38.0000i − 1.72194i −0.508652 0.860972i \(-0.669856\pi\)
0.508652 0.860972i \(-0.330144\pi\)
\(488\) − 10.0000i − 0.452679i
\(489\) 0 0
\(490\) −6.00000 −0.271052
\(491\) 16.0000 0.722070 0.361035 0.932552i \(-0.382424\pi\)
0.361035 + 0.932552i \(0.382424\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 2.00000i 0.0898027i
\(497\) 32.0000 1.43540
\(498\) 0 0
\(499\) − 22.0000i − 0.984855i −0.870353 0.492428i \(-0.836110\pi\)
0.870353 0.492428i \(-0.163890\pi\)
\(500\) − 12.0000i − 0.536656i
\(501\) 0 0
\(502\) 0 0
\(503\) 32.0000 1.42681 0.713405 0.700752i \(-0.247152\pi\)
0.713405 + 0.700752i \(0.247152\pi\)
\(504\) 0 0
\(505\) 32.0000i 1.42398i
\(506\) −16.0000 −0.711287
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) 10.0000i 0.443242i 0.975133 + 0.221621i \(0.0711348\pi\)
−0.975133 + 0.221621i \(0.928865\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) − 12.0000i − 0.529297i
\(515\) − 8.00000i − 0.352522i
\(516\) 0 0
\(517\) 32.0000 1.40736
\(518\) 12.0000i 0.527250i
\(519\) 0 0
\(520\) 0 0
\(521\) −36.0000 −1.57719 −0.788594 0.614914i \(-0.789191\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(522\) 0 0
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −24.0000 −1.04249
\(531\) 0 0
\(532\) −12.0000 −0.520266
\(533\) 0 0
\(534\) 0 0
\(535\) − 40.0000i − 1.72935i
\(536\) 2.00000 0.0863868
\(537\) 0 0
\(538\) 0 0
\(539\) − 12.0000i − 0.516877i
\(540\) 0 0
\(541\) 2.00000i 0.0859867i 0.999075 + 0.0429934i \(0.0136894\pi\)
−0.999075 + 0.0429934i \(0.986311\pi\)
\(542\) −22.0000 −0.944981
\(543\) 0 0
\(544\) 0 0
\(545\) 20.0000 0.856706
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 0 0
\(550\) 4.00000 0.170561
\(551\) − 48.0000i − 2.04487i
\(552\) 0 0
\(553\) 8.00000i 0.340195i
\(554\) 6.00000i 0.254916i
\(555\) 0 0
\(556\) 20.0000 0.848189
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) 20.0000 0.842900 0.421450 0.906852i \(-0.361521\pi\)
0.421450 + 0.906852i \(0.361521\pi\)
\(564\) 0 0
\(565\) 8.00000i 0.336563i
\(566\) 20.0000i 0.840663i
\(567\) 0 0
\(568\) 16.0000 0.671345
\(569\) 4.00000 0.167689 0.0838444 0.996479i \(-0.473280\pi\)
0.0838444 + 0.996479i \(0.473280\pi\)
\(570\) 0 0
\(571\) −36.0000 −1.50655 −0.753277 0.657704i \(-0.771528\pi\)
−0.753277 + 0.657704i \(0.771528\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) − 12.0000i − 0.500870i
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 30.0000i 1.24892i 0.781058 + 0.624458i \(0.214680\pi\)
−0.781058 + 0.624458i \(0.785320\pi\)
\(578\) − 17.0000i − 0.707107i
\(579\) 0 0
\(580\) 16.0000i 0.664364i
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) − 48.0000i − 1.98796i
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) −2.00000 −0.0826192
\(587\) − 28.0000i − 1.15568i −0.816149 0.577842i \(-0.803895\pi\)
0.816149 0.577842i \(-0.196105\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) − 8.00000i − 0.329355i
\(591\) 0 0
\(592\) 6.00000i 0.246598i
\(593\) − 38.0000i − 1.56047i −0.625485 0.780236i \(-0.715099\pi\)
0.625485 0.780236i \(-0.284901\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 6.00000i − 0.245770i
\(597\) 0 0
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 16.0000 0.652111
\(603\) 0 0
\(604\) − 18.0000i − 0.732410i
\(605\) − 10.0000i − 0.406558i
\(606\) 0 0
\(607\) 24.0000 0.974130 0.487065 0.873366i \(-0.338067\pi\)
0.487065 + 0.873366i \(0.338067\pi\)
\(608\) −6.00000 −0.243332
\(609\) 0 0
\(610\) −20.0000 −0.809776
\(611\) 0 0
\(612\) 0 0
\(613\) 34.0000i 1.37325i 0.727013 + 0.686624i \(0.240908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) −2.00000 −0.0807134
\(615\) 0 0
\(616\) 8.00000i 0.322329i
\(617\) − 14.0000i − 0.563619i −0.959470 0.281809i \(-0.909065\pi\)
0.959470 0.281809i \(-0.0909346\pi\)
\(618\) 0 0
\(619\) 34.0000i 1.36658i 0.730149 + 0.683288i \(0.239451\pi\)
−0.730149 + 0.683288i \(0.760549\pi\)
\(620\) 4.00000 0.160644
\(621\) 0 0
\(622\) 12.0000i 0.481156i
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 26.0000i 1.03917i
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) 0 0
\(630\) 0 0
\(631\) − 14.0000i − 0.557331i −0.960388 0.278666i \(-0.910108\pi\)
0.960388 0.278666i \(-0.0898921\pi\)
\(632\) 4.00000i 0.159111i
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 16.0000i 0.634941i
\(636\) 0 0
\(637\) 0 0
\(638\) −32.0000 −1.26689
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) 40.0000 1.57991 0.789953 0.613168i \(-0.210105\pi\)
0.789953 + 0.613168i \(0.210105\pi\)
\(642\) 0 0
\(643\) 10.0000i 0.394362i 0.980367 + 0.197181i \(0.0631786\pi\)
−0.980367 + 0.197181i \(0.936821\pi\)
\(644\) − 8.00000i − 0.315244i
\(645\) 0 0
\(646\) 0 0
\(647\) −8.00000 −0.314512 −0.157256 0.987558i \(-0.550265\pi\)
−0.157256 + 0.987558i \(0.550265\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 0 0
\(652\) 10.0000i 0.391630i
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 8.00000i 0.312586i
\(656\) − 6.00000i − 0.234261i
\(657\) 0 0
\(658\) 16.0000i 0.623745i
\(659\) −48.0000 −1.86981 −0.934907 0.354892i \(-0.884518\pi\)
−0.934907 + 0.354892i \(0.884518\pi\)
\(660\) 0 0
\(661\) 14.0000i 0.544537i 0.962221 + 0.272268i \(0.0877739\pi\)
−0.962221 + 0.272268i \(0.912226\pi\)
\(662\) −10.0000 −0.388661
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 24.0000i 0.930680i
\(666\) 0 0
\(667\) 32.0000 1.23904
\(668\) 0 0
\(669\) 0 0
\(670\) − 4.00000i − 0.154533i
\(671\) − 40.0000i − 1.54418i
\(672\) 0 0
\(673\) −22.0000 −0.848038 −0.424019 0.905653i \(-0.639381\pi\)
−0.424019 + 0.905653i \(0.639381\pi\)
\(674\) 34.0000i 1.30963i
\(675\) 0 0
\(676\) 0 0
\(677\) −12.0000 −0.461197 −0.230599 0.973049i \(-0.574068\pi\)
−0.230599 + 0.973049i \(0.574068\pi\)
\(678\) 0 0
\(679\) 20.0000 0.767530
\(680\) 0 0
\(681\) 0 0
\(682\) 8.00000i 0.306336i
\(683\) − 4.00000i − 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 36.0000 1.37549
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) 8.00000 0.304997
\(689\) 0 0
\(690\) 0 0
\(691\) 26.0000i 0.989087i 0.869153 + 0.494543i \(0.164665\pi\)
−0.869153 + 0.494543i \(0.835335\pi\)
\(692\) 16.0000 0.608229
\(693\) 0 0
\(694\) − 24.0000i − 0.911028i
\(695\) − 40.0000i − 1.51729i
\(696\) 0 0
\(697\) 0 0
\(698\) −22.0000 −0.832712
\(699\) 0 0
\(700\) 2.00000i 0.0755929i
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) −36.0000 −1.35777
\(704\) 4.00000i 0.150756i
\(705\) 0 0
\(706\) 14.0000 0.526897
\(707\) − 32.0000i − 1.20348i
\(708\) 0 0
\(709\) − 22.0000i − 0.826227i −0.910679 0.413114i \(-0.864441\pi\)
0.910679 0.413114i \(-0.135559\pi\)
\(710\) − 32.0000i − 1.20094i
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) − 8.00000i − 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 0 0
\(719\) −28.0000 −1.04422 −0.522112 0.852877i \(-0.674856\pi\)
−0.522112 + 0.852877i \(0.674856\pi\)
\(720\) 0 0
\(721\) 8.00000i 0.297936i
\(722\) − 17.0000i − 0.632674i
\(723\) 0 0
\(724\) −18.0000 −0.668965
\(725\) −8.00000 −0.297113
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) − 28.0000i − 1.03633i
\(731\) 0 0
\(732\) 0 0
\(733\) 22.0000i 0.812589i 0.913742 + 0.406294i \(0.133179\pi\)
−0.913742 + 0.406294i \(0.866821\pi\)
\(734\) 8.00000i 0.295285i
\(735\) 0 0
\(736\) − 4.00000i − 0.147442i
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) − 54.0000i − 1.98642i −0.116326 0.993211i \(-0.537112\pi\)
0.116326 0.993211i \(-0.462888\pi\)
\(740\) 12.0000 0.441129
\(741\) 0 0
\(742\) 24.0000 0.881068
\(743\) 40.0000i 1.46746i 0.679442 + 0.733729i \(0.262222\pi\)
−0.679442 + 0.733729i \(0.737778\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) − 10.0000i − 0.366126i
\(747\) 0 0
\(748\) 0 0
\(749\) 40.0000i 1.46157i
\(750\) 0 0
\(751\) 12.0000 0.437886 0.218943 0.975738i \(-0.429739\pi\)
0.218943 + 0.975738i \(0.429739\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 0 0
\(754\) 0 0
\(755\) −36.0000 −1.31017
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) 10.0000 0.363216
\(759\) 0 0
\(760\) 12.0000i 0.435286i
\(761\) 30.0000i 1.08750i 0.839248 + 0.543750i \(0.182996\pi\)
−0.839248 + 0.543750i \(0.817004\pi\)
\(762\) 0 0
\(763\) −20.0000 −0.724049
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 30.0000i 1.08183i 0.841078 + 0.540914i \(0.181921\pi\)
−0.841078 + 0.540914i \(0.818079\pi\)
\(770\) 16.0000 0.576600
\(771\) 0 0
\(772\) − 2.00000i − 0.0719816i
\(773\) 14.0000i 0.503545i 0.967786 + 0.251773i \(0.0810135\pi\)
−0.967786 + 0.251773i \(0.918987\pi\)
\(774\) 0 0
\(775\) 2.00000i 0.0718421i
\(776\) 10.0000 0.358979
\(777\) 0 0
\(778\) 12.0000i 0.430221i
\(779\) 36.0000 1.28983
\(780\) 0 0
\(781\) 64.0000 2.29010
\(782\) 0 0
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) 4.00000i 0.142766i
\(786\) 0 0
\(787\) − 22.0000i − 0.784215i −0.919919 0.392108i \(-0.871746\pi\)
0.919919 0.392108i \(-0.128254\pi\)
\(788\) − 18.0000i − 0.641223i
\(789\) 0 0
\(790\) 8.00000 0.284627
\(791\) − 8.00000i − 0.284447i
\(792\) 0 0
\(793\) 0 0
\(794\) 10.0000 0.354887
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000i 0.0353553i
\(801\) 0 0
\(802\) 6.00000 0.211867
\(803\) 56.0000 1.97620
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 0 0
\(807\) 0 0
\(808\) − 16.0000i − 0.562878i
\(809\) 36.0000 1.26569 0.632846 0.774277i \(-0.281886\pi\)
0.632846 + 0.774277i \(0.281886\pi\)
\(810\) 0 0
\(811\) − 50.0000i − 1.75574i −0.478901 0.877869i \(-0.658965\pi\)
0.478901 0.877869i \(-0.341035\pi\)
\(812\) − 16.0000i − 0.561490i
\(813\) 0 0
\(814\) 24.0000i 0.841200i
\(815\) 20.0000 0.700569
\(816\) 0 0
\(817\) 48.0000i 1.67931i
\(818\) −26.0000 −0.909069
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) − 34.0000i − 1.18661i −0.804978 0.593304i \(-0.797823\pi\)
0.804978 0.593304i \(-0.202177\pi\)
\(822\) 0 0
\(823\) 12.0000 0.418294 0.209147 0.977884i \(-0.432931\pi\)
0.209147 + 0.977884i \(0.432931\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 8.00000i 0.278356i
\(827\) − 12.0000i − 0.417281i −0.977992 0.208640i \(-0.933096\pi\)
0.977992 0.208640i \(-0.0669038\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) − 24.0000i − 0.833052i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −24.0000 −0.830057
\(837\) 0 0
\(838\) 36.0000i 1.24360i
\(839\) 16.0000i 0.552381i 0.961103 + 0.276191i \(0.0890721\pi\)
−0.961103 + 0.276191i \(0.910928\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 10.0000 0.344623
\(843\) 0 0
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) 0 0
\(847\) 10.0000i 0.343604i
\(848\) 12.0000 0.412082
\(849\) 0 0
\(850\) 0 0
\(851\) − 24.0000i − 0.822709i
\(852\) 0 0
\(853\) − 26.0000i − 0.890223i −0.895475 0.445112i \(-0.853164\pi\)
0.895475 0.445112i \(-0.146836\pi\)
\(854\) 20.0000 0.684386
\(855\) 0 0
\(856\) 20.0000i 0.683586i
\(857\) 28.0000 0.956462 0.478231 0.878234i \(-0.341278\pi\)
0.478231 + 0.878234i \(0.341278\pi\)
\(858\) 0 0
\(859\) 8.00000 0.272956 0.136478 0.990643i \(-0.456422\pi\)
0.136478 + 0.990643i \(0.456422\pi\)
\(860\) − 16.0000i − 0.545595i
\(861\) 0 0
\(862\) 0 0
\(863\) − 8.00000i − 0.272323i −0.990687 0.136162i \(-0.956523\pi\)
0.990687 0.136162i \(-0.0434766\pi\)
\(864\) 0 0
\(865\) − 32.0000i − 1.08803i
\(866\) 2.00000i 0.0679628i
\(867\) 0 0
\(868\) −4.00000 −0.135769
\(869\) 16.0000i 0.542763i
\(870\) 0 0
\(871\) 0 0
\(872\) −10.0000 −0.338643
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) − 6.00000i − 0.202606i −0.994856 0.101303i \(-0.967699\pi\)
0.994856 0.101303i \(-0.0323011\pi\)
\(878\) 4.00000i 0.134993i
\(879\) 0 0
\(880\) 8.00000 0.269680
\(881\) −36.0000 −1.21287 −0.606435 0.795133i \(-0.707401\pi\)
−0.606435 + 0.795133i \(0.707401\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 36.0000i 1.20944i
\(887\) 44.0000 1.47738 0.738688 0.674048i \(-0.235446\pi\)
0.738688 + 0.674048i \(0.235446\pi\)
\(888\) 0 0
\(889\) − 16.0000i − 0.536623i
\(890\) 12.0000i 0.402241i
\(891\) 0 0
\(892\) 6.00000i 0.200895i
\(893\) −48.0000 −1.60626
\(894\) 0 0
\(895\) − 24.0000i − 0.802232i
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) −26.0000 −0.867631
\(899\) − 16.0000i − 0.533630i
\(900\) 0 0
\(901\) 0 0
\(902\) − 24.0000i − 0.799113i
\(903\) 0 0
\(904\) − 4.00000i − 0.133038i
\(905\) 36.0000i 1.19668i
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 0 0
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 48.0000 1.58857
\(914\) −2.00000 −0.0661541
\(915\) 0 0
\(916\) 30.0000i 0.991228i
\(917\) − 8.00000i − 0.264183i
\(918\) 0 0
\(919\) 12.0000 0.395843 0.197922 0.980218i \(-0.436581\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(920\) −8.00000 −0.263752
\(921\) 0 0
\(922\) 30.0000 0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) 6.00000i 0.197279i
\(926\) −22.0000 −0.722965
\(927\) 0 0
\(928\) − 8.00000i − 0.262613i
\(929\) − 30.0000i − 0.984268i −0.870519 0.492134i \(-0.836217\pi\)
0.870519 0.492134i \(-0.163783\pi\)
\(930\) 0 0
\(931\) 18.0000i 0.589926i
\(932\) 20.0000 0.655122
\(933\) 0 0
\(934\) 8.00000i 0.261768i
\(935\) 0 0
\(936\) 0 0
\(937\) 30.0000 0.980057 0.490029 0.871706i \(-0.336986\pi\)
0.490029 + 0.871706i \(0.336986\pi\)
\(938\) 4.00000i 0.130605i
\(939\) 0 0
\(940\) 16.0000 0.521862
\(941\) − 26.0000i − 0.847576i −0.905761 0.423788i \(-0.860700\pi\)
0.905761 0.423788i \(-0.139300\pi\)
\(942\) 0 0
\(943\) 24.0000i 0.781548i
\(944\) 4.00000i 0.130189i
\(945\) 0 0
\(946\) 32.0000 1.04041
\(947\) 36.0000i 1.16984i 0.811090 + 0.584921i \(0.198875\pi\)
−0.811090 + 0.584921i \(0.801125\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −6.00000 −0.194666
\(951\) 0 0
\(952\) 0 0
\(953\) −28.0000 −0.907009 −0.453504 0.891254i \(-0.649826\pi\)
−0.453504 + 0.891254i \(0.649826\pi\)
\(954\) 0 0
\(955\) − 8.00000i − 0.258874i
\(956\) − 24.0000i − 0.776215i
\(957\) 0 0
\(958\) 0 0
\(959\) −36.0000 −1.16250
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) − 6.00000i − 0.193247i
\(965\) −4.00000 −0.128765
\(966\) 0 0
\(967\) 58.0000i 1.86515i 0.360971 + 0.932577i \(0.382445\pi\)
−0.360971 + 0.932577i \(0.617555\pi\)
\(968\) 5.00000i 0.160706i
\(969\) 0 0
\(970\) − 20.0000i − 0.642161i
\(971\) 48.0000 1.54039 0.770197 0.637806i \(-0.220158\pi\)
0.770197 + 0.637806i \(0.220158\pi\)
\(972\) 0 0
\(973\) 40.0000i 1.28234i
\(974\) 38.0000 1.21760
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) − 18.0000i − 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) − 6.00000i − 0.191663i
\(981\) 0 0
\(982\) 16.0000i 0.510581i
\(983\) − 32.0000i − 1.02064i −0.859984 0.510321i \(-0.829527\pi\)
0.859984 0.510321i \(-0.170473\pi\)
\(984\) 0 0
\(985\) −36.0000 −1.14706
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) −48.0000 −1.52477 −0.762385 0.647124i \(-0.775972\pi\)
−0.762385 + 0.647124i \(0.775972\pi\)
\(992\) −2.00000 −0.0635001
\(993\) 0 0
\(994\) 32.0000i 1.01498i
\(995\) − 16.0000i − 0.507234i
\(996\) 0 0
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) 22.0000 0.696398
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.b.c.1351.2 2
3.2 odd 2 3042.2.b.b.1351.1 2
13.5 odd 4 3042.2.a.o.1.1 1
13.8 odd 4 234.2.a.a.1.1 1
13.12 even 2 inner 3042.2.b.c.1351.1 2
39.5 even 4 3042.2.a.b.1.1 1
39.8 even 4 234.2.a.d.1.1 yes 1
39.38 odd 2 3042.2.b.b.1351.2 2
52.47 even 4 1872.2.a.g.1.1 1
65.8 even 4 5850.2.e.d.5149.2 2
65.34 odd 4 5850.2.a.bv.1.1 1
65.47 even 4 5850.2.e.d.5149.1 2
104.21 odd 4 7488.2.a.bp.1.1 1
104.99 even 4 7488.2.a.bu.1.1 1
117.34 odd 12 2106.2.e.z.1405.1 2
117.47 even 12 2106.2.e.e.1405.1 2
117.86 even 12 2106.2.e.e.703.1 2
117.112 odd 12 2106.2.e.z.703.1 2
156.47 odd 4 1872.2.a.p.1.1 1
195.8 odd 4 5850.2.e.bd.5149.1 2
195.47 odd 4 5850.2.e.bd.5149.2 2
195.164 even 4 5850.2.a.v.1.1 1
312.125 even 4 7488.2.a.j.1.1 1
312.203 odd 4 7488.2.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.a.a.1.1 1 13.8 odd 4
234.2.a.d.1.1 yes 1 39.8 even 4
1872.2.a.g.1.1 1 52.47 even 4
1872.2.a.p.1.1 1 156.47 odd 4
2106.2.e.e.703.1 2 117.86 even 12
2106.2.e.e.1405.1 2 117.47 even 12
2106.2.e.z.703.1 2 117.112 odd 12
2106.2.e.z.1405.1 2 117.34 odd 12
3042.2.a.b.1.1 1 39.5 even 4
3042.2.a.o.1.1 1 13.5 odd 4
3042.2.b.b.1351.1 2 3.2 odd 2
3042.2.b.b.1351.2 2 39.38 odd 2
3042.2.b.c.1351.1 2 13.12 even 2 inner
3042.2.b.c.1351.2 2 1.1 even 1 trivial
5850.2.a.v.1.1 1 195.164 even 4
5850.2.a.bv.1.1 1 65.34 odd 4
5850.2.e.d.5149.1 2 65.47 even 4
5850.2.e.d.5149.2 2 65.8 even 4
5850.2.e.bd.5149.1 2 195.8 odd 4
5850.2.e.bd.5149.2 2 195.47 odd 4
7488.2.a.j.1.1 1 312.125 even 4
7488.2.a.s.1.1 1 312.203 odd 4
7488.2.a.bp.1.1 1 104.21 odd 4
7488.2.a.bu.1.1 1 104.99 even 4