Properties

Label 3042.2.a.h.1.1
Level $3042$
Weight $2$
Character 3042.1
Self dual yes
Analytic conductor $24.290$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3042.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +3.00000 q^{5} -2.00000 q^{7} -1.00000 q^{8} -3.00000 q^{10} +6.00000 q^{11} +2.00000 q^{14} +1.00000 q^{16} +3.00000 q^{17} -2.00000 q^{19} +3.00000 q^{20} -6.00000 q^{22} +6.00000 q^{23} +4.00000 q^{25} -2.00000 q^{28} -3.00000 q^{29} +4.00000 q^{31} -1.00000 q^{32} -3.00000 q^{34} -6.00000 q^{35} +7.00000 q^{37} +2.00000 q^{38} -3.00000 q^{40} -3.00000 q^{41} -10.0000 q^{43} +6.00000 q^{44} -6.00000 q^{46} +6.00000 q^{47} -3.00000 q^{49} -4.00000 q^{50} -3.00000 q^{53} +18.0000 q^{55} +2.00000 q^{56} +3.00000 q^{58} -7.00000 q^{61} -4.00000 q^{62} +1.00000 q^{64} +10.0000 q^{67} +3.00000 q^{68} +6.00000 q^{70} +6.00000 q^{71} +13.0000 q^{73} -7.00000 q^{74} -2.00000 q^{76} -12.0000 q^{77} -4.00000 q^{79} +3.00000 q^{80} +3.00000 q^{82} -6.00000 q^{83} +9.00000 q^{85} +10.0000 q^{86} -6.00000 q^{88} +18.0000 q^{89} +6.00000 q^{92} -6.00000 q^{94} -6.00000 q^{95} -14.0000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 3.00000 0.670820
\(21\) 0 0
\(22\) −6.00000 −1.27920
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) −6.00000 −1.01419
\(36\) 0 0
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 2.00000 0.324443
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 6.00000 0.904534
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) 0 0
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) 0 0
\(55\) 18.0000 2.42712
\(56\) 2.00000 0.267261
\(57\) 0 0
\(58\) 3.00000 0.393919
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 10.0000 1.22169 0.610847 0.791748i \(-0.290829\pi\)
0.610847 + 0.791748i \(0.290829\pi\)
\(68\) 3.00000 0.363803
\(69\) 0 0
\(70\) 6.00000 0.717137
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 13.0000 1.52153 0.760767 0.649025i \(-0.224823\pi\)
0.760767 + 0.649025i \(0.224823\pi\)
\(74\) −7.00000 −0.813733
\(75\) 0 0
\(76\) −2.00000 −0.229416
\(77\) −12.0000 −1.36753
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 3.00000 0.335410
\(81\) 0 0
\(82\) 3.00000 0.331295
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 9.00000 0.976187
\(86\) 10.0000 1.07833
\(87\) 0 0
\(88\) −6.00000 −0.639602
\(89\) 18.0000 1.90800 0.953998 0.299813i \(-0.0969242\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) −6.00000 −0.618853
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) −15.0000 −1.49256 −0.746278 0.665635i \(-0.768161\pi\)
−0.746278 + 0.665635i \(0.768161\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) −18.0000 −1.71623
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) 3.00000 0.282216 0.141108 0.989994i \(-0.454933\pi\)
0.141108 + 0.989994i \(0.454933\pi\)
\(114\) 0 0
\(115\) 18.0000 1.67851
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 7.00000 0.633750
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) −10.0000 −0.863868
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) 9.00000 0.768922 0.384461 0.923141i \(-0.374387\pi\)
0.384461 + 0.923141i \(0.374387\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −6.00000 −0.507093
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) 0 0
\(145\) −9.00000 −0.747409
\(146\) −13.0000 −1.07589
\(147\) 0 0
\(148\) 7.00000 0.575396
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 2.00000 0.162221
\(153\) 0 0
\(154\) 12.0000 0.966988
\(155\) 12.0000 0.963863
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) −3.00000 −0.237171
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −3.00000 −0.234261
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −9.00000 −0.690268
\(171\) 0 0
\(172\) −10.0000 −0.762493
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) −8.00000 −0.604743
\(176\) 6.00000 0.452267
\(177\) 0 0
\(178\) −18.0000 −1.34916
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) 21.0000 1.54395
\(186\) 0 0
\(187\) 18.0000 1.31629
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 6.00000 0.435286
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) −23.0000 −1.65558 −0.827788 0.561041i \(-0.810401\pi\)
−0.827788 + 0.561041i \(0.810401\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) −4.00000 −0.282843
\(201\) 0 0
\(202\) 15.0000 1.05540
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) −9.00000 −0.628587
\(206\) −14.0000 −0.975426
\(207\) 0 0
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) −3.00000 −0.206041
\(213\) 0 0
\(214\) −6.00000 −0.410152
\(215\) −30.0000 −2.04598
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 14.0000 0.948200
\(219\) 0 0
\(220\) 18.0000 1.21356
\(221\) 0 0
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) −3.00000 −0.199557
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) −18.0000 −1.18688
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 18.0000 1.17419
\(236\) 0 0
\(237\) 0 0
\(238\) 6.00000 0.388922
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) −25.0000 −1.60706
\(243\) 0 0
\(244\) −7.00000 −0.448129
\(245\) −9.00000 −0.574989
\(246\) 0 0
\(247\) 0 0
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) 3.00000 0.189737
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 36.0000 2.26330
\(254\) 4.00000 0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 3.00000 0.187135 0.0935674 0.995613i \(-0.470173\pi\)
0.0935674 + 0.995613i \(0.470173\pi\)
\(258\) 0 0
\(259\) −14.0000 −0.869918
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.00000 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) −4.00000 −0.245256
\(267\) 0 0
\(268\) 10.0000 0.610847
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) −9.00000 −0.543710
\(275\) 24.0000 1.44725
\(276\) 0 0
\(277\) 17.0000 1.02143 0.510716 0.859750i \(-0.329381\pi\)
0.510716 + 0.859750i \(0.329381\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 6.00000 0.358569
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) 0 0
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 9.00000 0.528498
\(291\) 0 0
\(292\) 13.0000 0.760767
\(293\) −21.0000 −1.22683 −0.613417 0.789760i \(-0.710205\pi\)
−0.613417 + 0.789760i \(0.710205\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −7.00000 −0.406867
\(297\) 0 0
\(298\) 9.00000 0.521356
\(299\) 0 0
\(300\) 0 0
\(301\) 20.0000 1.15278
\(302\) −10.0000 −0.575435
\(303\) 0 0
\(304\) −2.00000 −0.114708
\(305\) −21.0000 −1.20246
\(306\) 0 0
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) −12.0000 −0.683763
\(309\) 0 0
\(310\) −12.0000 −0.681554
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) −5.00000 −0.282166
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 3.00000 0.168497 0.0842484 0.996445i \(-0.473151\pi\)
0.0842484 + 0.996445i \(0.473151\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 3.00000 0.167705
\(321\) 0 0
\(322\) 12.0000 0.668734
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) 3.00000 0.165647
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) −6.00000 −0.329293
\(333\) 0 0
\(334\) 0 0
\(335\) 30.0000 1.63908
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 9.00000 0.488094
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 10.0000 0.539164
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 30.0000 1.61048 0.805242 0.592946i \(-0.202035\pi\)
0.805242 + 0.592946i \(0.202035\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 8.00000 0.427618
\(351\) 0 0
\(352\) −6.00000 −0.319801
\(353\) −15.0000 −0.798369 −0.399185 0.916871i \(-0.630707\pi\)
−0.399185 + 0.916871i \(0.630707\pi\)
\(354\) 0 0
\(355\) 18.0000 0.955341
\(356\) 18.0000 0.953998
\(357\) 0 0
\(358\) 6.00000 0.317110
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 7.00000 0.367912
\(363\) 0 0
\(364\) 0 0
\(365\) 39.0000 2.04135
\(366\) 0 0
\(367\) 2.00000 0.104399 0.0521996 0.998637i \(-0.483377\pi\)
0.0521996 + 0.998637i \(0.483377\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) −21.0000 −1.09174
\(371\) 6.00000 0.311504
\(372\) 0 0
\(373\) 29.0000 1.50156 0.750782 0.660551i \(-0.229677\pi\)
0.750782 + 0.660551i \(0.229677\pi\)
\(374\) −18.0000 −0.930758
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) 0 0
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) −6.00000 −0.307794
\(381\) 0 0
\(382\) −12.0000 −0.613973
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) −36.0000 −1.83473
\(386\) 23.0000 1.17067
\(387\) 0 0
\(388\) −14.0000 −0.710742
\(389\) −39.0000 −1.97738 −0.988689 0.149979i \(-0.952080\pi\)
−0.988689 + 0.149979i \(0.952080\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 3.00000 0.151523
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 10.0000 0.501255
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −3.00000 −0.149813 −0.0749064 0.997191i \(-0.523866\pi\)
−0.0749064 + 0.997191i \(0.523866\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −15.0000 −0.746278
\(405\) 0 0
\(406\) −6.00000 −0.297775
\(407\) 42.0000 2.08186
\(408\) 0 0
\(409\) 1.00000 0.0494468 0.0247234 0.999694i \(-0.492129\pi\)
0.0247234 + 0.999694i \(0.492129\pi\)
\(410\) 9.00000 0.444478
\(411\) 0 0
\(412\) 14.0000 0.689730
\(413\) 0 0
\(414\) 0 0
\(415\) −18.0000 −0.883585
\(416\) 0 0
\(417\) 0 0
\(418\) 12.0000 0.586939
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) −29.0000 −1.41337 −0.706687 0.707527i \(-0.749811\pi\)
−0.706687 + 0.707527i \(0.749811\pi\)
\(422\) 16.0000 0.778868
\(423\) 0 0
\(424\) 3.00000 0.145693
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) 14.0000 0.677507
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) 30.0000 1.44673
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 0 0
\(433\) −13.0000 −0.624740 −0.312370 0.949960i \(-0.601123\pi\)
−0.312370 + 0.949960i \(0.601123\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) −14.0000 −0.670478
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) 14.0000 0.668184 0.334092 0.942541i \(-0.391570\pi\)
0.334092 + 0.942541i \(0.391570\pi\)
\(440\) −18.0000 −0.858116
\(441\) 0 0
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 54.0000 2.55985
\(446\) 8.00000 0.378811
\(447\) 0 0
\(448\) −2.00000 −0.0944911
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 3.00000 0.141108
\(453\) 0 0
\(454\) −18.0000 −0.844782
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0000 −0.514558 −0.257279 0.966337i \(-0.582826\pi\)
−0.257279 + 0.966337i \(0.582826\pi\)
\(458\) −22.0000 −1.02799
\(459\) 0 0
\(460\) 18.0000 0.839254
\(461\) 15.0000 0.698620 0.349310 0.937007i \(-0.386416\pi\)
0.349310 + 0.937007i \(0.386416\pi\)
\(462\) 0 0
\(463\) −38.0000 −1.76601 −0.883005 0.469364i \(-0.844483\pi\)
−0.883005 + 0.469364i \(0.844483\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 0 0
\(469\) −20.0000 −0.923514
\(470\) −18.0000 −0.830278
\(471\) 0 0
\(472\) 0 0
\(473\) −60.0000 −2.75880
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) −6.00000 −0.275010
\(477\) 0 0
\(478\) −6.00000 −0.274434
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −1.00000 −0.0455488
\(483\) 0 0
\(484\) 25.0000 1.13636
\(485\) −42.0000 −1.90712
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 7.00000 0.316875
\(489\) 0 0
\(490\) 9.00000 0.406579
\(491\) 18.0000 0.812329 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) 0 0
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) −3.00000 −0.134164
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −45.0000 −2.00247
\(506\) −36.0000 −1.60040
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) 3.00000 0.132973 0.0664863 0.997787i \(-0.478821\pi\)
0.0664863 + 0.997787i \(0.478821\pi\)
\(510\) 0 0
\(511\) −26.0000 −1.15017
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −3.00000 −0.132324
\(515\) 42.0000 1.85074
\(516\) 0 0
\(517\) 36.0000 1.58328
\(518\) 14.0000 0.615125
\(519\) 0 0
\(520\) 0 0
\(521\) −33.0000 −1.44576 −0.722878 0.690976i \(-0.757181\pi\)
−0.722878 + 0.690976i \(0.757181\pi\)
\(522\) 0 0
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −6.00000 −0.261612
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 9.00000 0.390935
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) 0 0
\(534\) 0 0
\(535\) 18.0000 0.778208
\(536\) −10.0000 −0.431934
\(537\) 0 0
\(538\) 18.0000 0.776035
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) −29.0000 −1.24681 −0.623404 0.781900i \(-0.714251\pi\)
−0.623404 + 0.781900i \(0.714251\pi\)
\(542\) −16.0000 −0.687259
\(543\) 0 0
\(544\) −3.00000 −0.128624
\(545\) −42.0000 −1.79908
\(546\) 0 0
\(547\) −34.0000 −1.45374 −0.726868 0.686778i \(-0.759025\pi\)
−0.726868 + 0.686778i \(0.759025\pi\)
\(548\) 9.00000 0.384461
\(549\) 0 0
\(550\) −24.0000 −1.02336
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) −17.0000 −0.722261
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 3.00000 0.127114 0.0635570 0.997978i \(-0.479756\pi\)
0.0635570 + 0.997978i \(0.479756\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) −9.00000 −0.379642
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 9.00000 0.378633
\(566\) −14.0000 −0.588464
\(567\) 0 0
\(568\) −6.00000 −0.251754
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −6.00000 −0.250435
\(575\) 24.0000 1.00087
\(576\) 0 0
\(577\) −11.0000 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 8.00000 0.332756
\(579\) 0 0
\(580\) −9.00000 −0.373705
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) −13.0000 −0.537944
\(585\) 0 0
\(586\) 21.0000 0.867502
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) 7.00000 0.287698
\(593\) 9.00000 0.369586 0.184793 0.982777i \(-0.440839\pi\)
0.184793 + 0.982777i \(0.440839\pi\)
\(594\) 0 0
\(595\) −18.0000 −0.737928
\(596\) −9.00000 −0.368654
\(597\) 0 0
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −37.0000 −1.50926 −0.754631 0.656150i \(-0.772184\pi\)
−0.754631 + 0.656150i \(0.772184\pi\)
\(602\) −20.0000 −0.815139
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 75.0000 3.04918
\(606\) 0 0
\(607\) 32.0000 1.29884 0.649420 0.760430i \(-0.275012\pi\)
0.649420 + 0.760430i \(0.275012\pi\)
\(608\) 2.00000 0.0811107
\(609\) 0 0
\(610\) 21.0000 0.850265
\(611\) 0 0
\(612\) 0 0
\(613\) 31.0000 1.25208 0.626039 0.779792i \(-0.284675\pi\)
0.626039 + 0.779792i \(0.284675\pi\)
\(614\) −10.0000 −0.403567
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) −15.0000 −0.603877 −0.301939 0.953327i \(-0.597634\pi\)
−0.301939 + 0.953327i \(0.597634\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) 12.0000 0.481932
\(621\) 0 0
\(622\) −30.0000 −1.20289
\(623\) −36.0000 −1.44231
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) 5.00000 0.199522
\(629\) 21.0000 0.837325
\(630\) 0 0
\(631\) −20.0000 −0.796187 −0.398094 0.917345i \(-0.630328\pi\)
−0.398094 + 0.917345i \(0.630328\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) −3.00000 −0.119145
\(635\) −12.0000 −0.476205
\(636\) 0 0
\(637\) 0 0
\(638\) 18.0000 0.712627
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) 3.00000 0.118493 0.0592464 0.998243i \(-0.481130\pi\)
0.0592464 + 0.998243i \(0.481130\pi\)
\(642\) 0 0
\(643\) 16.0000 0.630978 0.315489 0.948929i \(-0.397831\pi\)
0.315489 + 0.948929i \(0.397831\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 6.00000 0.236067
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) −42.0000 −1.64359 −0.821794 0.569785i \(-0.807026\pi\)
−0.821794 + 0.569785i \(0.807026\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) 0 0
\(658\) 12.0000 0.467809
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) −5.00000 −0.194477 −0.0972387 0.995261i \(-0.531001\pi\)
−0.0972387 + 0.995261i \(0.531001\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) 6.00000 0.232845
\(665\) 12.0000 0.465340
\(666\) 0 0
\(667\) −18.0000 −0.696963
\(668\) 0 0
\(669\) 0 0
\(670\) −30.0000 −1.15900
\(671\) −42.0000 −1.62139
\(672\) 0 0
\(673\) −13.0000 −0.501113 −0.250557 0.968102i \(-0.580614\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) −23.0000 −0.885927
\(675\) 0 0
\(676\) 0 0
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) 28.0000 1.07454
\(680\) −9.00000 −0.345134
\(681\) 0 0
\(682\) −24.0000 −0.919007
\(683\) −48.0000 −1.83667 −0.918334 0.395805i \(-0.870466\pi\)
−0.918334 + 0.395805i \(0.870466\pi\)
\(684\) 0 0
\(685\) 27.0000 1.03162
\(686\) −20.0000 −0.763604
\(687\) 0 0
\(688\) −10.0000 −0.381246
\(689\) 0 0
\(690\) 0 0
\(691\) −26.0000 −0.989087 −0.494543 0.869153i \(-0.664665\pi\)
−0.494543 + 0.869153i \(0.664665\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −30.0000 −1.13878
\(695\) −12.0000 −0.455186
\(696\) 0 0
\(697\) −9.00000 −0.340899
\(698\) −10.0000 −0.378506
\(699\) 0 0
\(700\) −8.00000 −0.302372
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) 6.00000 0.226134
\(705\) 0 0
\(706\) 15.0000 0.564532
\(707\) 30.0000 1.12827
\(708\) 0 0
\(709\) −5.00000 −0.187779 −0.0938895 0.995583i \(-0.529930\pi\)
−0.0938895 + 0.995583i \(0.529930\pi\)
\(710\) −18.0000 −0.675528
\(711\) 0 0
\(712\) −18.0000 −0.674579
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) 0 0
\(716\) −6.00000 −0.224231
\(717\) 0 0
\(718\) −6.00000 −0.223918
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) 15.0000 0.558242
\(723\) 0 0
\(724\) −7.00000 −0.260153
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) 14.0000 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −39.0000 −1.44345
\(731\) −30.0000 −1.10959
\(732\) 0 0
\(733\) 31.0000 1.14501 0.572506 0.819901i \(-0.305971\pi\)
0.572506 + 0.819901i \(0.305971\pi\)
\(734\) −2.00000 −0.0738213
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) 60.0000 2.21013
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 21.0000 0.771975
\(741\) 0 0
\(742\) −6.00000 −0.220267
\(743\) −36.0000 −1.32071 −0.660356 0.750953i \(-0.729595\pi\)
−0.660356 + 0.750953i \(0.729595\pi\)
\(744\) 0 0
\(745\) −27.0000 −0.989203
\(746\) −29.0000 −1.06177
\(747\) 0 0
\(748\) 18.0000 0.658145
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) 14.0000 0.510867 0.255434 0.966827i \(-0.417782\pi\)
0.255434 + 0.966827i \(0.417782\pi\)
\(752\) 6.00000 0.218797
\(753\) 0 0
\(754\) 0 0
\(755\) 30.0000 1.09181
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 20.0000 0.726433
\(759\) 0 0
\(760\) 6.00000 0.217643
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 28.0000 1.01367
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) 0 0
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 36.0000 1.29735
\(771\) 0 0
\(772\) −23.0000 −0.827788
\(773\) −30.0000 −1.07903 −0.539513 0.841978i \(-0.681391\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(774\) 0 0
\(775\) 16.0000 0.574737
\(776\) 14.0000 0.502571
\(777\) 0 0
\(778\) 39.0000 1.39822
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) −18.0000 −0.643679
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 15.0000 0.535373
\(786\) 0 0
\(787\) 28.0000 0.998092 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) 12.0000 0.426941
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 0 0
\(794\) 14.0000 0.496841
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) 18.0000 0.636794
\(800\) −4.00000 −0.141421
\(801\) 0 0
\(802\) 3.00000 0.105934
\(803\) 78.0000 2.75256
\(804\) 0 0
\(805\) −36.0000 −1.26883
\(806\) 0 0
\(807\) 0 0
\(808\) 15.0000 0.527698
\(809\) 51.0000 1.79306 0.896532 0.442978i \(-0.146078\pi\)
0.896532 + 0.442978i \(0.146078\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) 6.00000 0.210559
\(813\) 0 0
\(814\) −42.0000 −1.47210
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) 20.0000 0.699711
\(818\) −1.00000 −0.0349642
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) −14.0000 −0.487713
\(825\) 0 0
\(826\) 0 0
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 0 0
\(829\) 17.0000 0.590434 0.295217 0.955430i \(-0.404608\pi\)
0.295217 + 0.955430i \(0.404608\pi\)
\(830\) 18.0000 0.624789
\(831\) 0 0
\(832\) 0 0
\(833\) −9.00000 −0.311832
\(834\) 0 0
\(835\) 0 0
\(836\) −12.0000 −0.415029
\(837\) 0 0
\(838\) 24.0000 0.829066
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 29.0000 0.999406
\(843\) 0 0
\(844\) −16.0000 −0.550743
\(845\) 0 0
\(846\) 0 0
\(847\) −50.0000 −1.71802
\(848\) −3.00000 −0.103020
\(849\) 0 0
\(850\) −12.0000 −0.411597
\(851\) 42.0000 1.43974
\(852\) 0 0
\(853\) 19.0000 0.650548 0.325274 0.945620i \(-0.394544\pi\)
0.325274 + 0.945620i \(0.394544\pi\)
\(854\) −14.0000 −0.479070
\(855\) 0 0
\(856\) −6.00000 −0.205076
\(857\) −21.0000 −0.717346 −0.358673 0.933463i \(-0.616771\pi\)
−0.358673 + 0.933463i \(0.616771\pi\)
\(858\) 0 0
\(859\) 26.0000 0.887109 0.443554 0.896248i \(-0.353717\pi\)
0.443554 + 0.896248i \(0.353717\pi\)
\(860\) −30.0000 −1.02299
\(861\) 0 0
\(862\) 6.00000 0.204361
\(863\) 18.0000 0.612727 0.306364 0.951915i \(-0.400888\pi\)
0.306364 + 0.951915i \(0.400888\pi\)
\(864\) 0 0
\(865\) 18.0000 0.612018
\(866\) 13.0000 0.441758
\(867\) 0 0
\(868\) −8.00000 −0.271538
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 0 0
\(872\) 14.0000 0.474100
\(873\) 0 0
\(874\) 12.0000 0.405906
\(875\) 6.00000 0.202837
\(876\) 0 0
\(877\) −41.0000 −1.38447 −0.692236 0.721671i \(-0.743374\pi\)
−0.692236 + 0.721671i \(0.743374\pi\)
\(878\) −14.0000 −0.472477
\(879\) 0 0
\(880\) 18.0000 0.606780
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −36.0000 −1.20944
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) −54.0000 −1.81008
\(891\) 0 0
\(892\) −8.00000 −0.267860
\(893\) −12.0000 −0.401565
\(894\) 0 0
\(895\) −18.0000 −0.601674
\(896\) 2.00000 0.0668153
\(897\) 0 0
\(898\) −18.0000 −0.600668
\(899\) −12.0000 −0.400222
\(900\) 0 0
\(901\) −9.00000 −0.299833
\(902\) 18.0000 0.599334
\(903\) 0 0
\(904\) −3.00000 −0.0997785
\(905\) −21.0000 −0.698064
\(906\) 0 0
\(907\) 44.0000 1.46100 0.730498 0.682915i \(-0.239288\pi\)
0.730498 + 0.682915i \(0.239288\pi\)
\(908\) 18.0000 0.597351
\(909\) 0 0
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) −36.0000 −1.19143
\(914\) 11.0000 0.363848
\(915\) 0 0
\(916\) 22.0000 0.726900
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) −18.0000 −0.593442
\(921\) 0 0
\(922\) −15.0000 −0.493999
\(923\) 0 0
\(924\) 0 0
\(925\) 28.0000 0.920634
\(926\) 38.0000 1.24876
\(927\) 0 0
\(928\) 3.00000 0.0984798
\(929\) 33.0000 1.08269 0.541347 0.840799i \(-0.317914\pi\)
0.541347 + 0.840799i \(0.317914\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) −18.0000 −0.588978
\(935\) 54.0000 1.76599
\(936\) 0 0
\(937\) 47.0000 1.53542 0.767712 0.640796i \(-0.221395\pi\)
0.767712 + 0.640796i \(0.221395\pi\)
\(938\) 20.0000 0.653023
\(939\) 0 0
\(940\) 18.0000 0.587095
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) −18.0000 −0.586161
\(944\) 0 0
\(945\) 0 0
\(946\) 60.0000 1.95077
\(947\) 24.0000 0.779895 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 8.00000 0.259554
\(951\) 0 0
\(952\) 6.00000 0.194461
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 0 0
\(955\) 36.0000 1.16493
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) 0 0
\(959\) −18.0000 −0.581250
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 1.00000 0.0322078
\(965\) −69.0000 −2.22119
\(966\) 0 0
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) −25.0000 −0.803530
\(969\) 0 0
\(970\) 42.0000 1.34854
\(971\) −60.0000 −1.92549 −0.962746 0.270408i \(-0.912841\pi\)
−0.962746 + 0.270408i \(0.912841\pi\)
\(972\) 0 0
\(973\) 8.00000 0.256468
\(974\) 2.00000 0.0640841
\(975\) 0 0
\(976\) −7.00000 −0.224065
\(977\) −3.00000 −0.0959785 −0.0479893 0.998848i \(-0.515281\pi\)
−0.0479893 + 0.998848i \(0.515281\pi\)
\(978\) 0 0
\(979\) 108.000 3.45169
\(980\) −9.00000 −0.287494
\(981\) 0 0
\(982\) −18.0000 −0.574403
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) 9.00000 0.286618
\(987\) 0 0
\(988\) 0 0
\(989\) −60.0000 −1.90789
\(990\) 0 0
\(991\) 38.0000 1.20711 0.603555 0.797321i \(-0.293750\pi\)
0.603555 + 0.797321i \(0.293750\pi\)
\(992\) −4.00000 −0.127000
\(993\) 0 0
\(994\) 12.0000 0.380617
\(995\) −30.0000 −0.951064
\(996\) 0 0
\(997\) 5.00000 0.158352 0.0791758 0.996861i \(-0.474771\pi\)
0.0791758 + 0.996861i \(0.474771\pi\)
\(998\) 32.0000 1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.h.1.1 1
3.2 odd 2 1014.2.a.f.1.1 1
12.11 even 2 8112.2.a.c.1.1 1
13.4 even 6 234.2.h.a.55.1 2
13.5 odd 4 3042.2.b.h.1351.2 2
13.8 odd 4 3042.2.b.h.1351.1 2
13.10 even 6 234.2.h.a.217.1 2
13.12 even 2 3042.2.a.i.1.1 1
39.2 even 12 1014.2.i.b.823.2 4
39.5 even 4 1014.2.b.c.337.1 2
39.8 even 4 1014.2.b.c.337.2 2
39.11 even 12 1014.2.i.b.823.1 4
39.17 odd 6 78.2.e.a.55.1 2
39.20 even 12 1014.2.i.b.361.2 4
39.23 odd 6 78.2.e.a.61.1 yes 2
39.29 odd 6 1014.2.e.a.529.1 2
39.32 even 12 1014.2.i.b.361.1 4
39.35 odd 6 1014.2.e.a.991.1 2
39.38 odd 2 1014.2.a.c.1.1 1
52.23 odd 6 1872.2.t.c.1153.1 2
52.43 odd 6 1872.2.t.c.289.1 2
156.23 even 6 624.2.q.g.529.1 2
156.95 even 6 624.2.q.g.289.1 2
156.155 even 2 8112.2.a.m.1.1 1
195.17 even 12 1950.2.z.g.1849.1 4
195.23 even 12 1950.2.z.g.1699.1 4
195.62 even 12 1950.2.z.g.1699.2 4
195.134 odd 6 1950.2.i.m.601.1 2
195.173 even 12 1950.2.z.g.1849.2 4
195.179 odd 6 1950.2.i.m.451.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.e.a.55.1 2 39.17 odd 6
78.2.e.a.61.1 yes 2 39.23 odd 6
234.2.h.a.55.1 2 13.4 even 6
234.2.h.a.217.1 2 13.10 even 6
624.2.q.g.289.1 2 156.95 even 6
624.2.q.g.529.1 2 156.23 even 6
1014.2.a.c.1.1 1 39.38 odd 2
1014.2.a.f.1.1 1 3.2 odd 2
1014.2.b.c.337.1 2 39.5 even 4
1014.2.b.c.337.2 2 39.8 even 4
1014.2.e.a.529.1 2 39.29 odd 6
1014.2.e.a.991.1 2 39.35 odd 6
1014.2.i.b.361.1 4 39.32 even 12
1014.2.i.b.361.2 4 39.20 even 12
1014.2.i.b.823.1 4 39.11 even 12
1014.2.i.b.823.2 4 39.2 even 12
1872.2.t.c.289.1 2 52.43 odd 6
1872.2.t.c.1153.1 2 52.23 odd 6
1950.2.i.m.451.1 2 195.179 odd 6
1950.2.i.m.601.1 2 195.134 odd 6
1950.2.z.g.1699.1 4 195.23 even 12
1950.2.z.g.1699.2 4 195.62 even 12
1950.2.z.g.1849.1 4 195.17 even 12
1950.2.z.g.1849.2 4 195.173 even 12
3042.2.a.h.1.1 1 1.1 even 1 trivial
3042.2.a.i.1.1 1 13.12 even 2
3042.2.b.h.1351.1 2 13.8 odd 4
3042.2.b.h.1351.2 2 13.5 odd 4
8112.2.a.c.1.1 1 12.11 even 2
8112.2.a.m.1.1 1 156.155 even 2