Properties

Label 3042.2.a.c.1.1
Level $3042$
Weight $2$
Character 3042.1
Self dual yes
Analytic conductor $24.290$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2904922949\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3042.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} +2.00000 q^{7} -1.00000 q^{8} +2.00000 q^{10} -2.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} -6.00000 q^{19} -2.00000 q^{20} +4.00000 q^{23} -1.00000 q^{25} +2.00000 q^{28} +10.0000 q^{29} +10.0000 q^{31} -1.00000 q^{32} +2.00000 q^{34} -4.00000 q^{35} -8.00000 q^{37} +6.00000 q^{38} +2.00000 q^{40} -10.0000 q^{41} -4.00000 q^{43} -4.00000 q^{46} -12.0000 q^{47} -3.00000 q^{49} +1.00000 q^{50} +6.00000 q^{53} -2.00000 q^{56} -10.0000 q^{58} +4.00000 q^{59} +2.00000 q^{61} -10.0000 q^{62} +1.00000 q^{64} -2.00000 q^{67} -2.00000 q^{68} +4.00000 q^{70} +4.00000 q^{73} +8.00000 q^{74} -6.00000 q^{76} -2.00000 q^{80} +10.0000 q^{82} +4.00000 q^{83} +4.00000 q^{85} +4.00000 q^{86} -6.00000 q^{89} +4.00000 q^{92} +12.0000 q^{94} +12.0000 q^{95} -12.0000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 6.00000 0.973329
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) −10.0000 −1.31306
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −10.0000 −1.27000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 4.00000 0.478091
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) 10.0000 1.10432
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) 12.0000 1.23771
\(95\) 12.0000 1.23117
\(96\) 0 0
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 10.0000 0.928477
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) 10.0000 0.898027
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) −4.00000 −0.338062
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −20.0000 −1.66091
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) −8.00000 −0.657596
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 6.00000 0.486664
\(153\) 0 0
\(154\) 0 0
\(155\) −20.0000 −1.60644
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) 16.0000 1.17634
\(186\) 0 0
\(187\) 0 0
\(188\) −12.0000 −0.875190
\(189\) 0 0
\(190\) −12.0000 −0.870572
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 12.0000 0.861550
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −2.00000 −0.140720
\(203\) 20.0000 1.40372
\(204\) 0 0
\(205\) 20.0000 1.39686
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) 8.00000 0.546869
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 20.0000 1.35769
\(218\) −4.00000 −0.270914
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 14.0000 0.931266
\(227\) −8.00000 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(228\) 0 0
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) 8.00000 0.527504
\(231\) 0 0
\(232\) −10.0000 −0.656532
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 24.0000 1.56559
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) 4.00000 0.259281
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −20.0000 −1.28831 −0.644157 0.764894i \(-0.722792\pi\)
−0.644157 + 0.764894i \(0.722792\pi\)
\(242\) 11.0000 0.707107
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 6.00000 0.383326
\(246\) 0 0
\(247\) 0 0
\(248\) −10.0000 −0.635001
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −16.0000 −0.994192
\(260\) 0 0
\(261\) 0 0
\(262\) −8.00000 −0.494242
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 12.0000 0.735767
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) 10.0000 0.607457 0.303728 0.952759i \(-0.401768\pi\)
0.303728 + 0.952759i \(0.401768\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 2.00000 0.120824
\(275\) 0 0
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 20.0000 1.19952
\(279\) 0 0
\(280\) 4.00000 0.239046
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 20.0000 1.17444
\(291\) 0 0
\(292\) 4.00000 0.234082
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 14.0000 0.810998
\(299\) 0 0
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 10.0000 0.575435
\(303\) 0 0
\(304\) −6.00000 −0.344124
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 20.0000 1.13592
\(311\) −28.0000 −1.58773 −0.793867 0.608091i \(-0.791935\pi\)
−0.793867 + 0.608091i \(0.791935\pi\)
\(312\) 0 0
\(313\) −26.0000 −1.46961 −0.734803 0.678280i \(-0.762726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) 2.00000 0.112867
\(315\) 0 0
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.00000 −0.111803
\(321\) 0 0
\(322\) −8.00000 −0.445823
\(323\) 12.0000 0.667698
\(324\) 0 0
\(325\) 0 0
\(326\) −14.0000 −0.775388
\(327\) 0 0
\(328\) 10.0000 0.552158
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 4.00000 0.219529
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 4.00000 0.216930
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 16.0000 0.856460 0.428230 0.903670i \(-0.359137\pi\)
0.428230 + 0.903670i \(0.359137\pi\)
\(350\) 2.00000 0.106904
\(351\) 0 0
\(352\) 0 0
\(353\) −26.0000 −1.38384 −0.691920 0.721974i \(-0.743235\pi\)
−0.691920 + 0.721974i \(0.743235\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 0 0
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 22.0000 1.15629
\(363\) 0 0
\(364\) 0 0
\(365\) −8.00000 −0.418739
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 4.00000 0.208514
\(369\) 0 0
\(370\) −16.0000 −0.831800
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 0 0
\(378\) 0 0
\(379\) 34.0000 1.74646 0.873231 0.487306i \(-0.162020\pi\)
0.873231 + 0.487306i \(0.162020\pi\)
\(380\) 12.0000 0.615587
\(381\) 0 0
\(382\) 12.0000 0.613973
\(383\) 4.00000 0.204390 0.102195 0.994764i \(-0.467413\pi\)
0.102195 + 0.994764i \(0.467413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 16.0000 0.814379
\(387\) 0 0
\(388\) −12.0000 −0.609208
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 3.00000 0.151523
\(393\) 0 0
\(394\) −22.0000 −1.10834
\(395\) 0 0
\(396\) 0 0
\(397\) −8.00000 −0.401508 −0.200754 0.979642i \(-0.564339\pi\)
−0.200754 + 0.979642i \(0.564339\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 2.00000 0.0995037
\(405\) 0 0
\(406\) −20.0000 −0.992583
\(407\) 0 0
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) −20.0000 −0.987730
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −40.0000 −1.95413 −0.977064 0.212946i \(-0.931694\pi\)
−0.977064 + 0.212946i \(0.931694\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) −8.00000 −0.385794
\(431\) 20.0000 0.963366 0.481683 0.876346i \(-0.340026\pi\)
0.481683 + 0.876346i \(0.340026\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) −20.0000 −0.960031
\(435\) 0 0
\(436\) 4.00000 0.191565
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.0000 0.760183 0.380091 0.924949i \(-0.375893\pi\)
0.380091 + 0.924949i \(0.375893\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 14.0000 0.662919
\(447\) 0 0
\(448\) 2.00000 0.0944911
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −14.0000 −0.658505
\(453\) 0 0
\(454\) 8.00000 0.375459
\(455\) 0 0
\(456\) 0 0
\(457\) 28.0000 1.30978 0.654892 0.755722i \(-0.272714\pi\)
0.654892 + 0.755722i \(0.272714\pi\)
\(458\) 4.00000 0.186908
\(459\) 0 0
\(460\) −8.00000 −0.373002
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) −6.00000 −0.278844 −0.139422 0.990233i \(-0.544524\pi\)
−0.139422 + 0.990233i \(0.544524\pi\)
\(464\) 10.0000 0.464238
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) −24.0000 −1.10704
\(471\) 0 0
\(472\) −4.00000 −0.184115
\(473\) 0 0
\(474\) 0 0
\(475\) 6.00000 0.275299
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) −16.0000 −0.731823
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 20.0000 0.910975
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 24.0000 1.08978
\(486\) 0 0
\(487\) 18.0000 0.815658 0.407829 0.913058i \(-0.366286\pi\)
0.407829 + 0.913058i \(0.366286\pi\)
\(488\) −2.00000 −0.0905357
\(489\) 0 0
\(490\) −6.00000 −0.271052
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) −20.0000 −0.900755
\(494\) 0 0
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) 0 0
\(498\) 0 0
\(499\) 14.0000 0.626726 0.313363 0.949633i \(-0.398544\pi\)
0.313363 + 0.949633i \(0.398544\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) 28.0000 1.24970
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) −32.0000 −1.41009
\(516\) 0 0
\(517\) 0 0
\(518\) 16.0000 0.703000
\(519\) 0 0
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 8.00000 0.349482
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) −20.0000 −0.871214
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 12.0000 0.521247
\(531\) 0 0
\(532\) −12.0000 −0.520266
\(533\) 0 0
\(534\) 0 0
\(535\) 16.0000 0.691740
\(536\) 2.00000 0.0863868
\(537\) 0 0
\(538\) −10.0000 −0.431131
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) −10.0000 −0.429537
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) −8.00000 −0.342682
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −2.00000 −0.0854358
\(549\) 0 0
\(550\) 0 0
\(551\) −60.0000 −2.55609
\(552\) 0 0
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) −16.0000 −0.674320 −0.337160 0.941447i \(-0.609466\pi\)
−0.337160 + 0.941447i \(0.609466\pi\)
\(564\) 0 0
\(565\) 28.0000 1.17797
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 0 0
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 20.0000 0.834784
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 8.00000 0.333044 0.166522 0.986038i \(-0.446746\pi\)
0.166522 + 0.986038i \(0.446746\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) −20.0000 −0.830455
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 0 0
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) −28.0000 −1.15568 −0.577842 0.816149i \(-0.696105\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(588\) 0 0
\(589\) −60.0000 −2.47226
\(590\) 8.00000 0.329355
\(591\) 0 0
\(592\) −8.00000 −0.328798
\(593\) 26.0000 1.06769 0.533846 0.845582i \(-0.320746\pi\)
0.533846 + 0.845582i \(0.320746\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) −14.0000 −0.573462
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 8.00000 0.326056
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 22.0000 0.894427
\(606\) 0 0
\(607\) −32.0000 −1.29884 −0.649420 0.760430i \(-0.724988\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) 6.00000 0.243332
\(609\) 0 0
\(610\) 4.00000 0.161955
\(611\) 0 0
\(612\) 0 0
\(613\) 16.0000 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(614\) −2.00000 −0.0807134
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) 26.0000 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) −20.0000 −0.803219
\(621\) 0 0
\(622\) 28.0000 1.12270
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 26.0000 1.03917
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) 16.0000 0.637962
\(630\) 0 0
\(631\) −10.0000 −0.398094 −0.199047 0.979990i \(-0.563785\pi\)
−0.199047 + 0.979990i \(0.563785\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 18.0000 0.714871
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 6.00000 0.236617 0.118308 0.992977i \(-0.462253\pi\)
0.118308 + 0.992977i \(0.462253\pi\)
\(644\) 8.00000 0.315244
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 14.0000 0.548282
\(653\) 26.0000 1.01746 0.508729 0.860927i \(-0.330115\pi\)
0.508729 + 0.860927i \(0.330115\pi\)
\(654\) 0 0
\(655\) −16.0000 −0.625172
\(656\) −10.0000 −0.390434
\(657\) 0 0
\(658\) 24.0000 0.935617
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 0 0
\(661\) 40.0000 1.55582 0.777910 0.628376i \(-0.216280\pi\)
0.777910 + 0.628376i \(0.216280\pi\)
\(662\) 10.0000 0.388661
\(663\) 0 0
\(664\) −4.00000 −0.155230
\(665\) 24.0000 0.930680
\(666\) 0 0
\(667\) 40.0000 1.54881
\(668\) −12.0000 −0.464294
\(669\) 0 0
\(670\) −4.00000 −0.154533
\(671\) 0 0
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) −2.00000 −0.0770371
\(675\) 0 0
\(676\) 0 0
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) −24.0000 −0.921035
\(680\) −4.00000 −0.153393
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 4.00000 0.152832
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) 0 0
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 40.0000 1.51729
\(696\) 0 0
\(697\) 20.0000 0.757554
\(698\) −16.0000 −0.605609
\(699\) 0 0
\(700\) −2.00000 −0.0755929
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 0 0
\(703\) 48.0000 1.81035
\(704\) 0 0
\(705\) 0 0
\(706\) 26.0000 0.978523
\(707\) 4.00000 0.150435
\(708\) 0 0
\(709\) 36.0000 1.35201 0.676004 0.736898i \(-0.263710\pi\)
0.676004 + 0.736898i \(0.263710\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 40.0000 1.49801
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −4.00000 −0.149279
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) −17.0000 −0.632674
\(723\) 0 0
\(724\) −22.0000 −0.817624
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 8.00000 0.296093
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) −44.0000 −1.62518 −0.812589 0.582838i \(-0.801942\pi\)
−0.812589 + 0.582838i \(0.801942\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) 0 0
\(738\) 0 0
\(739\) 26.0000 0.956425 0.478213 0.878244i \(-0.341285\pi\)
0.478213 + 0.878244i \(0.341285\pi\)
\(740\) 16.0000 0.588172
\(741\) 0 0
\(742\) −12.0000 −0.440534
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) 28.0000 1.02584
\(746\) 6.00000 0.219676
\(747\) 0 0
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) −12.0000 −0.437595
\(753\) 0 0
\(754\) 0 0
\(755\) 20.0000 0.727875
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −34.0000 −1.23494
\(759\) 0 0
\(760\) −12.0000 −0.435286
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) 8.00000 0.289619
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −4.00000 −0.144526
\(767\) 0 0
\(768\) 0 0
\(769\) 24.0000 0.865462 0.432731 0.901523i \(-0.357550\pi\)
0.432731 + 0.901523i \(0.357550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −16.0000 −0.575853
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) −10.0000 −0.359211
\(776\) 12.0000 0.430775
\(777\) 0 0
\(778\) −30.0000 −1.07555
\(779\) 60.0000 2.14972
\(780\) 0 0
\(781\) 0 0
\(782\) 8.00000 0.286079
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) −38.0000 −1.35455 −0.677277 0.735728i \(-0.736840\pi\)
−0.677277 + 0.735728i \(0.736840\pi\)
\(788\) 22.0000 0.783718
\(789\) 0 0
\(790\) 0 0
\(791\) −28.0000 −0.995565
\(792\) 0 0
\(793\) 0 0
\(794\) 8.00000 0.283909
\(795\) 0 0
\(796\) 0 0
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 30.0000 1.05934
\(803\) 0 0
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 0 0
\(807\) 0 0
\(808\) −2.00000 −0.0703598
\(809\) 50.0000 1.75791 0.878953 0.476908i \(-0.158243\pi\)
0.878953 + 0.476908i \(0.158243\pi\)
\(810\) 0 0
\(811\) 10.0000 0.351147 0.175574 0.984466i \(-0.443822\pi\)
0.175574 + 0.984466i \(0.443822\pi\)
\(812\) 20.0000 0.701862
\(813\) 0 0
\(814\) 0 0
\(815\) −28.0000 −0.980797
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) −4.00000 −0.139857
\(819\) 0 0
\(820\) 20.0000 0.698430
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) −16.0000 −0.557386
\(825\) 0 0
\(826\) −8.00000 −0.278356
\(827\) 48.0000 1.66912 0.834562 0.550914i \(-0.185721\pi\)
0.834562 + 0.550914i \(0.185721\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 8.00000 0.277684
\(831\) 0 0
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 24.0000 0.830554
\(836\) 0 0
\(837\) 0 0
\(838\) 40.0000 1.38178
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) −20.0000 −0.689246
\(843\) 0 0
\(844\) 12.0000 0.413057
\(845\) 0 0
\(846\) 0 0
\(847\) −22.0000 −0.755929
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) −2.00000 −0.0685994
\(851\) −32.0000 −1.09695
\(852\) 0 0
\(853\) −56.0000 −1.91740 −0.958702 0.284413i \(-0.908201\pi\)
−0.958702 + 0.284413i \(0.908201\pi\)
\(854\) −4.00000 −0.136877
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 8.00000 0.272798
\(861\) 0 0
\(862\) −20.0000 −0.681203
\(863\) 44.0000 1.49778 0.748889 0.662696i \(-0.230588\pi\)
0.748889 + 0.662696i \(0.230588\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) −26.0000 −0.883516
\(867\) 0 0
\(868\) 20.0000 0.678844
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −4.00000 −0.135457
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) 8.00000 0.270141 0.135070 0.990836i \(-0.456874\pi\)
0.135070 + 0.990836i \(0.456874\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −16.0000 −0.537531
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) −14.0000 −0.468755
\(893\) 72.0000 2.40939
\(894\) 0 0
\(895\) 0 0
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) 6.00000 0.200223
\(899\) 100.000 3.33519
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 14.0000 0.465633
\(905\) 44.0000 1.46261
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) −8.00000 −0.265489
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −28.0000 −0.926158
\(915\) 0 0
\(916\) −4.00000 −0.132164
\(917\) 16.0000 0.528367
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 8.00000 0.263752
\(921\) 0 0
\(922\) −30.0000 −0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 6.00000 0.197172
\(927\) 0 0
\(928\) −10.0000 −0.328266
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) −6.00000 −0.196537
\(933\) 0 0
\(934\) 12.0000 0.392652
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 4.00000 0.130605
\(939\) 0 0
\(940\) 24.0000 0.782794
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) 0 0
\(943\) −40.0000 −1.30258
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 0 0
\(947\) −52.0000 −1.68977 −0.844886 0.534946i \(-0.820332\pi\)
−0.844886 + 0.534946i \(0.820332\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −6.00000 −0.194666
\(951\) 0 0
\(952\) 4.00000 0.129641
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 24.0000 0.776622
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) 0 0
\(964\) −20.0000 −0.644157
\(965\) 32.0000 1.03012
\(966\) 0 0
\(967\) −22.0000 −0.707472 −0.353736 0.935345i \(-0.615089\pi\)
−0.353736 + 0.935345i \(0.615089\pi\)
\(968\) 11.0000 0.353553
\(969\) 0 0
\(970\) −24.0000 −0.770594
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) −40.0000 −1.28234
\(974\) −18.0000 −0.576757
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 6.00000 0.191663
\(981\) 0 0
\(982\) 28.0000 0.893516
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) −44.0000 −1.40196
\(986\) 20.0000 0.636930
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) −10.0000 −0.317500
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −42.0000 −1.33015 −0.665077 0.746775i \(-0.731601\pi\)
−0.665077 + 0.746775i \(0.731601\pi\)
\(998\) −14.0000 −0.443162
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.c.1.1 1
3.2 odd 2 1014.2.a.g.1.1 1
12.11 even 2 8112.2.a.j.1.1 1
13.5 odd 4 234.2.b.a.181.2 2
13.8 odd 4 234.2.b.a.181.1 2
13.12 even 2 3042.2.a.n.1.1 1
39.2 even 12 1014.2.i.c.823.2 4
39.5 even 4 78.2.b.a.25.1 2
39.8 even 4 78.2.b.a.25.2 yes 2
39.11 even 12 1014.2.i.c.823.1 4
39.17 odd 6 1014.2.e.e.991.1 2
39.20 even 12 1014.2.i.c.361.2 4
39.23 odd 6 1014.2.e.e.529.1 2
39.29 odd 6 1014.2.e.b.529.1 2
39.32 even 12 1014.2.i.c.361.1 4
39.35 odd 6 1014.2.e.b.991.1 2
39.38 odd 2 1014.2.a.b.1.1 1
52.31 even 4 1872.2.c.b.1585.2 2
52.47 even 4 1872.2.c.b.1585.1 2
156.47 odd 4 624.2.c.a.337.2 2
156.83 odd 4 624.2.c.a.337.1 2
156.155 even 2 8112.2.a.g.1.1 1
195.8 odd 4 1950.2.f.g.649.2 2
195.44 even 4 1950.2.b.c.1351.2 2
195.47 odd 4 1950.2.f.d.649.1 2
195.83 odd 4 1950.2.f.d.649.2 2
195.122 odd 4 1950.2.f.g.649.1 2
195.164 even 4 1950.2.b.c.1351.1 2
273.83 odd 4 3822.2.c.d.883.1 2
273.125 odd 4 3822.2.c.d.883.2 2
312.5 even 4 2496.2.c.f.961.2 2
312.83 odd 4 2496.2.c.m.961.2 2
312.125 even 4 2496.2.c.f.961.1 2
312.203 odd 4 2496.2.c.m.961.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.b.a.25.1 2 39.5 even 4
78.2.b.a.25.2 yes 2 39.8 even 4
234.2.b.a.181.1 2 13.8 odd 4
234.2.b.a.181.2 2 13.5 odd 4
624.2.c.a.337.1 2 156.83 odd 4
624.2.c.a.337.2 2 156.47 odd 4
1014.2.a.b.1.1 1 39.38 odd 2
1014.2.a.g.1.1 1 3.2 odd 2
1014.2.e.b.529.1 2 39.29 odd 6
1014.2.e.b.991.1 2 39.35 odd 6
1014.2.e.e.529.1 2 39.23 odd 6
1014.2.e.e.991.1 2 39.17 odd 6
1014.2.i.c.361.1 4 39.32 even 12
1014.2.i.c.361.2 4 39.20 even 12
1014.2.i.c.823.1 4 39.11 even 12
1014.2.i.c.823.2 4 39.2 even 12
1872.2.c.b.1585.1 2 52.47 even 4
1872.2.c.b.1585.2 2 52.31 even 4
1950.2.b.c.1351.1 2 195.164 even 4
1950.2.b.c.1351.2 2 195.44 even 4
1950.2.f.d.649.1 2 195.47 odd 4
1950.2.f.d.649.2 2 195.83 odd 4
1950.2.f.g.649.1 2 195.122 odd 4
1950.2.f.g.649.2 2 195.8 odd 4
2496.2.c.f.961.1 2 312.125 even 4
2496.2.c.f.961.2 2 312.5 even 4
2496.2.c.m.961.1 2 312.203 odd 4
2496.2.c.m.961.2 2 312.83 odd 4
3042.2.a.c.1.1 1 1.1 even 1 trivial
3042.2.a.n.1.1 1 13.12 even 2
3822.2.c.d.883.1 2 273.83 odd 4
3822.2.c.d.883.2 2 273.125 odd 4
8112.2.a.g.1.1 1 156.155 even 2
8112.2.a.j.1.1 1 12.11 even 2