Properties

Label 3042.2.a.be
Level $3042$
Weight $2$
Character orbit 3042.a
Self dual yes
Analytic conductor $24.290$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2904922949\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1014)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + ( - \beta_{2} - \beta_1 - 1) q^{5} + (2 \beta_{2} - \beta_1) q^{7} + q^{8} + ( - \beta_{2} - \beta_1 - 1) q^{10} + (\beta_{2} + 2 \beta_1) q^{11} + (2 \beta_{2} - \beta_1) q^{14}+ \cdots + ( - 7 \beta_{2} + 4 \beta_1 - 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 3 q^{5} - 3 q^{7} + 3 q^{8} - 3 q^{10} + q^{11} - 3 q^{14} + 3 q^{16} - 12 q^{17} - 4 q^{19} - 3 q^{20} + q^{22} - 16 q^{23} + 2 q^{25} - 3 q^{28} - 13 q^{29} + 9 q^{31} + 3 q^{32}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
1.00000 0 1.00000 −4.04892 0 0.692021 1.00000 0 −4.04892
1.2 1.00000 0 1.00000 0.356896 0 −4.04892 1.00000 0 0.356896
1.3 1.00000 0 1.00000 0.692021 0 0.356896 1.00000 0 0.692021
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3042.2.a.be 3
3.b odd 2 1 1014.2.a.m 3
12.b even 2 1 8112.2.a.ce 3
13.b even 2 1 3042.2.a.bd 3
13.d odd 4 2 3042.2.b.r 6
39.d odd 2 1 1014.2.a.o yes 3
39.f even 4 2 1014.2.b.g 6
39.h odd 6 2 1014.2.e.k 6
39.i odd 6 2 1014.2.e.m 6
39.k even 12 4 1014.2.i.g 12
156.h even 2 1 8112.2.a.bz 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1014.2.a.m 3 3.b odd 2 1
1014.2.a.o yes 3 39.d odd 2 1
1014.2.b.g 6 39.f even 4 2
1014.2.e.k 6 39.h odd 6 2
1014.2.e.m 6 39.i odd 6 2
1014.2.i.g 12 39.k even 12 4
3042.2.a.bd 3 13.b even 2 1
3042.2.a.be 3 1.a even 1 1 trivial
3042.2.b.r 6 13.d odd 4 2
8112.2.a.bz 3 156.h even 2 1
8112.2.a.ce 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3042))\):

\( T_{5}^{3} + 3T_{5}^{2} - 4T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{3} + 3T_{7}^{2} - 4T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{3} - T_{11}^{2} - 16T_{11} - 13 \) Copy content Toggle raw display
\( T_{17}^{3} + 12T_{17}^{2} + 20T_{17} - 104 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 3 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{3} + 3 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{3} - T^{2} + \cdots - 13 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 12 T^{2} + \cdots - 104 \) Copy content Toggle raw display
$19$ \( T^{3} + 4 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$23$ \( T^{3} + 16 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$29$ \( T^{3} + 13 T^{2} + \cdots - 223 \) Copy content Toggle raw display
$31$ \( T^{3} - 9 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$37$ \( T^{3} - 12 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$41$ \( T^{3} + 14 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$43$ \( T^{3} + 8 T^{2} + \cdots - 344 \) Copy content Toggle raw display
$47$ \( T^{3} - 4 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$53$ \( T^{3} + 15 T^{2} + \cdots - 1247 \) Copy content Toggle raw display
$59$ \( T^{3} + 9 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$61$ \( T^{3} + 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$67$ \( T^{3} - 6 T^{2} + \cdots + 1112 \) Copy content Toggle raw display
$71$ \( T^{3} - 6 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$73$ \( T^{3} + 5 T^{2} + \cdots - 13 \) Copy content Toggle raw display
$79$ \( T^{3} + 5 T^{2} + \cdots - 1469 \) Copy content Toggle raw display
$83$ \( T^{3} + 7 T^{2} + \cdots - 1477 \) Copy content Toggle raw display
$89$ \( T^{3} + 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$97$ \( T^{3} + 7 T^{2} + \cdots - 7 \) Copy content Toggle raw display
show more
show less