Properties

Label 3040.2.a.u.1.5
Level $3040$
Weight $2$
Character 3040.1
Self dual yes
Analytic conductor $24.275$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3040,2,Mod(1,3040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3040.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3040.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-4,0,-5,0,4,0,7,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2745222145\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.387268.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 7x^{3} + 4x^{2} + 12x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.160536\) of defining polynomial
Character \(\chi\) \(=\) 3040.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.13476 q^{3} -1.00000 q^{5} +0.878290 q^{7} +1.55722 q^{9} -4.50981 q^{11} -2.05398 q^{13} -2.13476 q^{15} -4.31693 q^{17} +1.00000 q^{19} +1.87494 q^{21} -2.15430 q^{23} +1.00000 q^{25} -3.08000 q^{27} +9.01549 q^{29} +4.35137 q^{31} -9.62738 q^{33} -0.878290 q^{35} -8.67901 q^{37} -4.38475 q^{39} +4.26953 q^{41} -12.3806 q^{43} -1.55722 q^{45} +2.76620 q^{47} -6.22861 q^{49} -9.21564 q^{51} -3.98510 q^{53} +4.50981 q^{55} +2.13476 q^{57} -11.5800 q^{59} -1.51630 q^{61} +1.36769 q^{63} +2.05398 q^{65} -1.10217 q^{67} -4.59893 q^{69} -14.4854 q^{71} -6.03444 q^{73} +2.13476 q^{75} -3.96092 q^{77} +7.34489 q^{79} -11.2467 q^{81} +1.34175 q^{83} +4.31693 q^{85} +19.2459 q^{87} -15.5455 q^{89} -1.80399 q^{91} +9.28915 q^{93} -1.00000 q^{95} +7.55630 q^{97} -7.02276 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{3} - 5 q^{5} + 4 q^{7} + 7 q^{9} - 2 q^{11} - 4 q^{13} + 4 q^{15} - 12 q^{17} + 5 q^{19} - 10 q^{21} + 8 q^{23} + 5 q^{25} - 16 q^{27} - 6 q^{29} + 10 q^{31} - 18 q^{33} - 4 q^{35} - 6 q^{37}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.13476 1.23251 0.616253 0.787548i \(-0.288650\pi\)
0.616253 + 0.787548i \(0.288650\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.878290 0.331962 0.165981 0.986129i \(-0.446921\pi\)
0.165981 + 0.986129i \(0.446921\pi\)
\(8\) 0 0
\(9\) 1.55722 0.519073
\(10\) 0 0
\(11\) −4.50981 −1.35976 −0.679880 0.733324i \(-0.737968\pi\)
−0.679880 + 0.733324i \(0.737968\pi\)
\(12\) 0 0
\(13\) −2.05398 −0.569670 −0.284835 0.958577i \(-0.591939\pi\)
−0.284835 + 0.958577i \(0.591939\pi\)
\(14\) 0 0
\(15\) −2.13476 −0.551194
\(16\) 0 0
\(17\) −4.31693 −1.04701 −0.523505 0.852022i \(-0.675376\pi\)
−0.523505 + 0.852022i \(0.675376\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 1.87494 0.409146
\(22\) 0 0
\(23\) −2.15430 −0.449203 −0.224602 0.974451i \(-0.572108\pi\)
−0.224602 + 0.974451i \(0.572108\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −3.08000 −0.592746
\(28\) 0 0
\(29\) 9.01549 1.67413 0.837067 0.547101i \(-0.184268\pi\)
0.837067 + 0.547101i \(0.184268\pi\)
\(30\) 0 0
\(31\) 4.35137 0.781529 0.390765 0.920491i \(-0.372211\pi\)
0.390765 + 0.920491i \(0.372211\pi\)
\(32\) 0 0
\(33\) −9.62738 −1.67591
\(34\) 0 0
\(35\) −0.878290 −0.148458
\(36\) 0 0
\(37\) −8.67901 −1.42682 −0.713410 0.700746i \(-0.752850\pi\)
−0.713410 + 0.700746i \(0.752850\pi\)
\(38\) 0 0
\(39\) −4.38475 −0.702123
\(40\) 0 0
\(41\) 4.26953 0.666788 0.333394 0.942788i \(-0.391806\pi\)
0.333394 + 0.942788i \(0.391806\pi\)
\(42\) 0 0
\(43\) −12.3806 −1.88803 −0.944013 0.329908i \(-0.892982\pi\)
−0.944013 + 0.329908i \(0.892982\pi\)
\(44\) 0 0
\(45\) −1.55722 −0.232136
\(46\) 0 0
\(47\) 2.76620 0.403492 0.201746 0.979438i \(-0.435338\pi\)
0.201746 + 0.979438i \(0.435338\pi\)
\(48\) 0 0
\(49\) −6.22861 −0.889801
\(50\) 0 0
\(51\) −9.21564 −1.29045
\(52\) 0 0
\(53\) −3.98510 −0.547396 −0.273698 0.961816i \(-0.588247\pi\)
−0.273698 + 0.961816i \(0.588247\pi\)
\(54\) 0 0
\(55\) 4.50981 0.608103
\(56\) 0 0
\(57\) 2.13476 0.282756
\(58\) 0 0
\(59\) −11.5800 −1.50758 −0.753792 0.657113i \(-0.771778\pi\)
−0.753792 + 0.657113i \(0.771778\pi\)
\(60\) 0 0
\(61\) −1.51630 −0.194142 −0.0970709 0.995277i \(-0.530947\pi\)
−0.0970709 + 0.995277i \(0.530947\pi\)
\(62\) 0 0
\(63\) 1.36769 0.172313
\(64\) 0 0
\(65\) 2.05398 0.254764
\(66\) 0 0
\(67\) −1.10217 −0.134652 −0.0673258 0.997731i \(-0.521447\pi\)
−0.0673258 + 0.997731i \(0.521447\pi\)
\(68\) 0 0
\(69\) −4.59893 −0.553646
\(70\) 0 0
\(71\) −14.4854 −1.71910 −0.859552 0.511048i \(-0.829257\pi\)
−0.859552 + 0.511048i \(0.829257\pi\)
\(72\) 0 0
\(73\) −6.03444 −0.706277 −0.353139 0.935571i \(-0.614886\pi\)
−0.353139 + 0.935571i \(0.614886\pi\)
\(74\) 0 0
\(75\) 2.13476 0.246501
\(76\) 0 0
\(77\) −3.96092 −0.451389
\(78\) 0 0
\(79\) 7.34489 0.826364 0.413182 0.910648i \(-0.364417\pi\)
0.413182 + 0.910648i \(0.364417\pi\)
\(80\) 0 0
\(81\) −11.2467 −1.24964
\(82\) 0 0
\(83\) 1.34175 0.147276 0.0736381 0.997285i \(-0.476539\pi\)
0.0736381 + 0.997285i \(0.476539\pi\)
\(84\) 0 0
\(85\) 4.31693 0.468237
\(86\) 0 0
\(87\) 19.2459 2.06338
\(88\) 0 0
\(89\) −15.5455 −1.64782 −0.823912 0.566718i \(-0.808213\pi\)
−0.823912 + 0.566718i \(0.808213\pi\)
\(90\) 0 0
\(91\) −1.80399 −0.189109
\(92\) 0 0
\(93\) 9.28915 0.963240
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 7.55630 0.767226 0.383613 0.923494i \(-0.374680\pi\)
0.383613 + 0.923494i \(0.374680\pi\)
\(98\) 0 0
\(99\) −7.02276 −0.705814
\(100\) 0 0
\(101\) −8.50981 −0.846758 −0.423379 0.905953i \(-0.639156\pi\)
−0.423379 + 0.905953i \(0.639156\pi\)
\(102\) 0 0
\(103\) −0.763993 −0.0752784 −0.0376392 0.999291i \(-0.511984\pi\)
−0.0376392 + 0.999291i \(0.511984\pi\)
\(104\) 0 0
\(105\) −1.87494 −0.182976
\(106\) 0 0
\(107\) 16.4092 1.58633 0.793167 0.609005i \(-0.208431\pi\)
0.793167 + 0.609005i \(0.208431\pi\)
\(108\) 0 0
\(109\) 19.0286 1.82261 0.911306 0.411730i \(-0.135075\pi\)
0.911306 + 0.411730i \(0.135075\pi\)
\(110\) 0 0
\(111\) −18.5276 −1.75857
\(112\) 0 0
\(113\) 6.40121 0.602175 0.301088 0.953596i \(-0.402650\pi\)
0.301088 + 0.953596i \(0.402650\pi\)
\(114\) 0 0
\(115\) 2.15430 0.200890
\(116\) 0 0
\(117\) −3.19849 −0.295700
\(118\) 0 0
\(119\) −3.79152 −0.347568
\(120\) 0 0
\(121\) 9.33840 0.848946
\(122\) 0 0
\(123\) 9.11444 0.821821
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 14.1135 1.25237 0.626184 0.779675i \(-0.284616\pi\)
0.626184 + 0.779675i \(0.284616\pi\)
\(128\) 0 0
\(129\) −26.4297 −2.32700
\(130\) 0 0
\(131\) 10.7289 0.937384 0.468692 0.883362i \(-0.344725\pi\)
0.468692 + 0.883362i \(0.344725\pi\)
\(132\) 0 0
\(133\) 0.878290 0.0761574
\(134\) 0 0
\(135\) 3.08000 0.265084
\(136\) 0 0
\(137\) −21.3366 −1.82291 −0.911453 0.411405i \(-0.865038\pi\)
−0.911453 + 0.411405i \(0.865038\pi\)
\(138\) 0 0
\(139\) 6.49684 0.551055 0.275527 0.961293i \(-0.411147\pi\)
0.275527 + 0.961293i \(0.411147\pi\)
\(140\) 0 0
\(141\) 5.90519 0.497306
\(142\) 0 0
\(143\) 9.26304 0.774615
\(144\) 0 0
\(145\) −9.01549 −0.748695
\(146\) 0 0
\(147\) −13.2966 −1.09669
\(148\) 0 0
\(149\) −13.4904 −1.10517 −0.552587 0.833456i \(-0.686359\pi\)
−0.552587 + 0.833456i \(0.686359\pi\)
\(150\) 0 0
\(151\) 19.7890 1.61040 0.805201 0.593001i \(-0.202057\pi\)
0.805201 + 0.593001i \(0.202057\pi\)
\(152\) 0 0
\(153\) −6.72241 −0.543475
\(154\) 0 0
\(155\) −4.35137 −0.349511
\(156\) 0 0
\(157\) 2.37748 0.189744 0.0948718 0.995490i \(-0.469756\pi\)
0.0948718 + 0.995490i \(0.469756\pi\)
\(158\) 0 0
\(159\) −8.50725 −0.674669
\(160\) 0 0
\(161\) −1.89210 −0.149119
\(162\) 0 0
\(163\) −8.86118 −0.694061 −0.347031 0.937854i \(-0.612810\pi\)
−0.347031 + 0.937854i \(0.612810\pi\)
\(164\) 0 0
\(165\) 9.62738 0.749491
\(166\) 0 0
\(167\) 6.26190 0.484561 0.242280 0.970206i \(-0.422105\pi\)
0.242280 + 0.970206i \(0.422105\pi\)
\(168\) 0 0
\(169\) −8.78118 −0.675476
\(170\) 0 0
\(171\) 1.55722 0.119083
\(172\) 0 0
\(173\) −18.2673 −1.38884 −0.694419 0.719571i \(-0.744339\pi\)
−0.694419 + 0.719571i \(0.744339\pi\)
\(174\) 0 0
\(175\) 0.878290 0.0663925
\(176\) 0 0
\(177\) −24.7205 −1.85811
\(178\) 0 0
\(179\) −14.1211 −1.05546 −0.527730 0.849412i \(-0.676957\pi\)
−0.527730 + 0.849412i \(0.676957\pi\)
\(180\) 0 0
\(181\) −3.34489 −0.248623 −0.124312 0.992243i \(-0.539672\pi\)
−0.124312 + 0.992243i \(0.539672\pi\)
\(182\) 0 0
\(183\) −3.23694 −0.239281
\(184\) 0 0
\(185\) 8.67901 0.638094
\(186\) 0 0
\(187\) 19.4686 1.42368
\(188\) 0 0
\(189\) −2.70513 −0.196769
\(190\) 0 0
\(191\) 3.76558 0.272468 0.136234 0.990677i \(-0.456500\pi\)
0.136234 + 0.990677i \(0.456500\pi\)
\(192\) 0 0
\(193\) 14.7505 1.06176 0.530881 0.847446i \(-0.321861\pi\)
0.530881 + 0.847446i \(0.321861\pi\)
\(194\) 0 0
\(195\) 4.38475 0.313999
\(196\) 0 0
\(197\) −22.0976 −1.57439 −0.787193 0.616706i \(-0.788467\pi\)
−0.787193 + 0.616706i \(0.788467\pi\)
\(198\) 0 0
\(199\) 13.2198 0.937129 0.468564 0.883429i \(-0.344771\pi\)
0.468564 + 0.883429i \(0.344771\pi\)
\(200\) 0 0
\(201\) −2.35288 −0.165959
\(202\) 0 0
\(203\) 7.91821 0.555749
\(204\) 0 0
\(205\) −4.26953 −0.298197
\(206\) 0 0
\(207\) −3.35472 −0.233169
\(208\) 0 0
\(209\) −4.50981 −0.311950
\(210\) 0 0
\(211\) 4.41192 0.303729 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(212\) 0 0
\(213\) −30.9230 −2.11881
\(214\) 0 0
\(215\) 12.3806 0.844351
\(216\) 0 0
\(217\) 3.82177 0.259438
\(218\) 0 0
\(219\) −12.8821 −0.870492
\(220\) 0 0
\(221\) 8.86688 0.596451
\(222\) 0 0
\(223\) 26.0319 1.74322 0.871612 0.490196i \(-0.163075\pi\)
0.871612 + 0.490196i \(0.163075\pi\)
\(224\) 0 0
\(225\) 1.55722 0.103815
\(226\) 0 0
\(227\) −3.44727 −0.228803 −0.114402 0.993435i \(-0.536495\pi\)
−0.114402 + 0.993435i \(0.536495\pi\)
\(228\) 0 0
\(229\) 17.1177 1.13117 0.565586 0.824689i \(-0.308650\pi\)
0.565586 + 0.824689i \(0.308650\pi\)
\(230\) 0 0
\(231\) −8.45564 −0.556340
\(232\) 0 0
\(233\) 0.838212 0.0549131 0.0274565 0.999623i \(-0.491259\pi\)
0.0274565 + 0.999623i \(0.491259\pi\)
\(234\) 0 0
\(235\) −2.76620 −0.180447
\(236\) 0 0
\(237\) 15.6796 1.01850
\(238\) 0 0
\(239\) −9.10560 −0.588993 −0.294496 0.955653i \(-0.595152\pi\)
−0.294496 + 0.955653i \(0.595152\pi\)
\(240\) 0 0
\(241\) −10.4099 −0.670558 −0.335279 0.942119i \(-0.608831\pi\)
−0.335279 + 0.942119i \(0.608831\pi\)
\(242\) 0 0
\(243\) −14.7691 −0.947439
\(244\) 0 0
\(245\) 6.22861 0.397931
\(246\) 0 0
\(247\) −2.05398 −0.130691
\(248\) 0 0
\(249\) 2.86432 0.181519
\(250\) 0 0
\(251\) 18.1237 1.14396 0.571978 0.820269i \(-0.306176\pi\)
0.571978 + 0.820269i \(0.306176\pi\)
\(252\) 0 0
\(253\) 9.71550 0.610808
\(254\) 0 0
\(255\) 9.21564 0.577106
\(256\) 0 0
\(257\) 3.34726 0.208797 0.104398 0.994536i \(-0.466708\pi\)
0.104398 + 0.994536i \(0.466708\pi\)
\(258\) 0 0
\(259\) −7.62269 −0.473651
\(260\) 0 0
\(261\) 14.0391 0.868997
\(262\) 0 0
\(263\) −10.3379 −0.637459 −0.318730 0.947846i \(-0.603256\pi\)
−0.318730 + 0.947846i \(0.603256\pi\)
\(264\) 0 0
\(265\) 3.98510 0.244803
\(266\) 0 0
\(267\) −33.1861 −2.03095
\(268\) 0 0
\(269\) 3.82804 0.233400 0.116700 0.993167i \(-0.462768\pi\)
0.116700 + 0.993167i \(0.462768\pi\)
\(270\) 0 0
\(271\) 0.727573 0.0441969 0.0220985 0.999756i \(-0.492965\pi\)
0.0220985 + 0.999756i \(0.492965\pi\)
\(272\) 0 0
\(273\) −3.85109 −0.233078
\(274\) 0 0
\(275\) −4.50981 −0.271952
\(276\) 0 0
\(277\) −20.8347 −1.25184 −0.625918 0.779889i \(-0.715275\pi\)
−0.625918 + 0.779889i \(0.715275\pi\)
\(278\) 0 0
\(279\) 6.77603 0.405671
\(280\) 0 0
\(281\) 27.8475 1.66124 0.830620 0.556840i \(-0.187986\pi\)
0.830620 + 0.556840i \(0.187986\pi\)
\(282\) 0 0
\(283\) −29.1356 −1.73193 −0.865965 0.500104i \(-0.833295\pi\)
−0.865965 + 0.500104i \(0.833295\pi\)
\(284\) 0 0
\(285\) −2.13476 −0.126453
\(286\) 0 0
\(287\) 3.74988 0.221349
\(288\) 0 0
\(289\) 1.63592 0.0962309
\(290\) 0 0
\(291\) 16.1309 0.945611
\(292\) 0 0
\(293\) 10.3105 0.602348 0.301174 0.953569i \(-0.402622\pi\)
0.301174 + 0.953569i \(0.402622\pi\)
\(294\) 0 0
\(295\) 11.5800 0.674212
\(296\) 0 0
\(297\) 13.8902 0.805992
\(298\) 0 0
\(299\) 4.42489 0.255898
\(300\) 0 0
\(301\) −10.8738 −0.626754
\(302\) 0 0
\(303\) −18.1664 −1.04363
\(304\) 0 0
\(305\) 1.51630 0.0868229
\(306\) 0 0
\(307\) 15.6872 0.895317 0.447659 0.894205i \(-0.352258\pi\)
0.447659 + 0.894205i \(0.352258\pi\)
\(308\) 0 0
\(309\) −1.63094 −0.0927812
\(310\) 0 0
\(311\) 34.6721 1.96608 0.983038 0.183404i \(-0.0587116\pi\)
0.983038 + 0.183404i \(0.0587116\pi\)
\(312\) 0 0
\(313\) 21.9918 1.24305 0.621526 0.783393i \(-0.286513\pi\)
0.621526 + 0.783393i \(0.286513\pi\)
\(314\) 0 0
\(315\) −1.36769 −0.0770605
\(316\) 0 0
\(317\) −20.3496 −1.14295 −0.571474 0.820620i \(-0.693628\pi\)
−0.571474 + 0.820620i \(0.693628\pi\)
\(318\) 0 0
\(319\) −40.6581 −2.27642
\(320\) 0 0
\(321\) 35.0297 1.95517
\(322\) 0 0
\(323\) −4.31693 −0.240201
\(324\) 0 0
\(325\) −2.05398 −0.113934
\(326\) 0 0
\(327\) 40.6216 2.24638
\(328\) 0 0
\(329\) 2.42953 0.133944
\(330\) 0 0
\(331\) −9.45748 −0.519830 −0.259915 0.965631i \(-0.583695\pi\)
−0.259915 + 0.965631i \(0.583695\pi\)
\(332\) 0 0
\(333\) −13.5151 −0.740624
\(334\) 0 0
\(335\) 1.10217 0.0602180
\(336\) 0 0
\(337\) 2.96821 0.161689 0.0808443 0.996727i \(-0.474238\pi\)
0.0808443 + 0.996727i \(0.474238\pi\)
\(338\) 0 0
\(339\) 13.6651 0.742185
\(340\) 0 0
\(341\) −19.6239 −1.06269
\(342\) 0 0
\(343\) −11.6186 −0.627343
\(344\) 0 0
\(345\) 4.59893 0.247598
\(346\) 0 0
\(347\) 12.4197 0.666724 0.333362 0.942799i \(-0.391817\pi\)
0.333362 + 0.942799i \(0.391817\pi\)
\(348\) 0 0
\(349\) −26.9381 −1.44196 −0.720981 0.692955i \(-0.756308\pi\)
−0.720981 + 0.692955i \(0.756308\pi\)
\(350\) 0 0
\(351\) 6.32624 0.337670
\(352\) 0 0
\(353\) −12.3858 −0.659230 −0.329615 0.944115i \(-0.606919\pi\)
−0.329615 + 0.944115i \(0.606919\pi\)
\(354\) 0 0
\(355\) 14.4854 0.768807
\(356\) 0 0
\(357\) −8.09400 −0.428380
\(358\) 0 0
\(359\) −1.35216 −0.0713643 −0.0356822 0.999363i \(-0.511360\pi\)
−0.0356822 + 0.999363i \(0.511360\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 19.9353 1.04633
\(364\) 0 0
\(365\) 6.03444 0.315857
\(366\) 0 0
\(367\) 0.362613 0.0189283 0.00946413 0.999955i \(-0.496987\pi\)
0.00946413 + 0.999955i \(0.496987\pi\)
\(368\) 0 0
\(369\) 6.64859 0.346112
\(370\) 0 0
\(371\) −3.50008 −0.181715
\(372\) 0 0
\(373\) −6.79352 −0.351755 −0.175878 0.984412i \(-0.556276\pi\)
−0.175878 + 0.984412i \(0.556276\pi\)
\(374\) 0 0
\(375\) −2.13476 −0.110239
\(376\) 0 0
\(377\) −18.5176 −0.953704
\(378\) 0 0
\(379\) 3.29889 0.169453 0.0847263 0.996404i \(-0.472998\pi\)
0.0847263 + 0.996404i \(0.472998\pi\)
\(380\) 0 0
\(381\) 30.1289 1.54355
\(382\) 0 0
\(383\) 4.62625 0.236390 0.118195 0.992990i \(-0.462289\pi\)
0.118195 + 0.992990i \(0.462289\pi\)
\(384\) 0 0
\(385\) 3.96092 0.201867
\(386\) 0 0
\(387\) −19.2793 −0.980023
\(388\) 0 0
\(389\) −18.6792 −0.947074 −0.473537 0.880774i \(-0.657023\pi\)
−0.473537 + 0.880774i \(0.657023\pi\)
\(390\) 0 0
\(391\) 9.29999 0.470320
\(392\) 0 0
\(393\) 22.9036 1.15533
\(394\) 0 0
\(395\) −7.34489 −0.369561
\(396\) 0 0
\(397\) 14.1602 0.710678 0.355339 0.934737i \(-0.384365\pi\)
0.355339 + 0.934737i \(0.384365\pi\)
\(398\) 0 0
\(399\) 1.87494 0.0938645
\(400\) 0 0
\(401\) 30.5975 1.52797 0.763984 0.645235i \(-0.223240\pi\)
0.763984 + 0.645235i \(0.223240\pi\)
\(402\) 0 0
\(403\) −8.93761 −0.445214
\(404\) 0 0
\(405\) 11.2467 0.558854
\(406\) 0 0
\(407\) 39.1407 1.94013
\(408\) 0 0
\(409\) −4.69447 −0.232127 −0.116063 0.993242i \(-0.537028\pi\)
−0.116063 + 0.993242i \(0.537028\pi\)
\(410\) 0 0
\(411\) −45.5485 −2.24674
\(412\) 0 0
\(413\) −10.1706 −0.500461
\(414\) 0 0
\(415\) −1.34175 −0.0658639
\(416\) 0 0
\(417\) 13.8692 0.679179
\(418\) 0 0
\(419\) −4.93761 −0.241218 −0.120609 0.992700i \(-0.538485\pi\)
−0.120609 + 0.992700i \(0.538485\pi\)
\(420\) 0 0
\(421\) 24.4531 1.19177 0.595885 0.803070i \(-0.296801\pi\)
0.595885 + 0.803070i \(0.296801\pi\)
\(422\) 0 0
\(423\) 4.30758 0.209442
\(424\) 0 0
\(425\) −4.31693 −0.209402
\(426\) 0 0
\(427\) −1.33175 −0.0644478
\(428\) 0 0
\(429\) 19.7744 0.954718
\(430\) 0 0
\(431\) 25.8908 1.24712 0.623558 0.781777i \(-0.285686\pi\)
0.623558 + 0.781777i \(0.285686\pi\)
\(432\) 0 0
\(433\) −23.5184 −1.13022 −0.565111 0.825015i \(-0.691167\pi\)
−0.565111 + 0.825015i \(0.691167\pi\)
\(434\) 0 0
\(435\) −19.2459 −0.922772
\(436\) 0 0
\(437\) −2.15430 −0.103054
\(438\) 0 0
\(439\) −6.16158 −0.294076 −0.147038 0.989131i \(-0.546974\pi\)
−0.147038 + 0.989131i \(0.546974\pi\)
\(440\) 0 0
\(441\) −9.69930 −0.461871
\(442\) 0 0
\(443\) 28.8889 1.37255 0.686276 0.727341i \(-0.259244\pi\)
0.686276 + 0.727341i \(0.259244\pi\)
\(444\) 0 0
\(445\) 15.5455 0.736929
\(446\) 0 0
\(447\) −28.7987 −1.36213
\(448\) 0 0
\(449\) −23.7011 −1.11853 −0.559263 0.828991i \(-0.688916\pi\)
−0.559263 + 0.828991i \(0.688916\pi\)
\(450\) 0 0
\(451\) −19.2548 −0.906672
\(452\) 0 0
\(453\) 42.2448 1.98483
\(454\) 0 0
\(455\) 1.80399 0.0845722
\(456\) 0 0
\(457\) 12.0585 0.564075 0.282037 0.959403i \(-0.408990\pi\)
0.282037 + 0.959403i \(0.408990\pi\)
\(458\) 0 0
\(459\) 13.2962 0.620611
\(460\) 0 0
\(461\) −18.6778 −0.869912 −0.434956 0.900452i \(-0.643236\pi\)
−0.434956 + 0.900452i \(0.643236\pi\)
\(462\) 0 0
\(463\) −20.3186 −0.944286 −0.472143 0.881522i \(-0.656519\pi\)
−0.472143 + 0.881522i \(0.656519\pi\)
\(464\) 0 0
\(465\) −9.28915 −0.430774
\(466\) 0 0
\(467\) −27.7921 −1.28606 −0.643032 0.765839i \(-0.722324\pi\)
−0.643032 + 0.765839i \(0.722324\pi\)
\(468\) 0 0
\(469\) −0.968026 −0.0446993
\(470\) 0 0
\(471\) 5.07536 0.233860
\(472\) 0 0
\(473\) 55.8342 2.56726
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) −6.20567 −0.284138
\(478\) 0 0
\(479\) −24.4130 −1.11546 −0.557729 0.830023i \(-0.688327\pi\)
−0.557729 + 0.830023i \(0.688327\pi\)
\(480\) 0 0
\(481\) 17.8265 0.812818
\(482\) 0 0
\(483\) −4.03919 −0.183790
\(484\) 0 0
\(485\) −7.55630 −0.343114
\(486\) 0 0
\(487\) 11.1955 0.507317 0.253659 0.967294i \(-0.418366\pi\)
0.253659 + 0.967294i \(0.418366\pi\)
\(488\) 0 0
\(489\) −18.9165 −0.855435
\(490\) 0 0
\(491\) −26.8953 −1.21377 −0.606884 0.794791i \(-0.707581\pi\)
−0.606884 + 0.794791i \(0.707581\pi\)
\(492\) 0 0
\(493\) −38.9193 −1.75284
\(494\) 0 0
\(495\) 7.02276 0.315650
\(496\) 0 0
\(497\) −12.7224 −0.570678
\(498\) 0 0
\(499\) 11.1629 0.499721 0.249861 0.968282i \(-0.419615\pi\)
0.249861 + 0.968282i \(0.419615\pi\)
\(500\) 0 0
\(501\) 13.3677 0.597224
\(502\) 0 0
\(503\) 0.979268 0.0436634 0.0218317 0.999762i \(-0.493050\pi\)
0.0218317 + 0.999762i \(0.493050\pi\)
\(504\) 0 0
\(505\) 8.50981 0.378682
\(506\) 0 0
\(507\) −18.7458 −0.832528
\(508\) 0 0
\(509\) −21.5263 −0.954136 −0.477068 0.878866i \(-0.658301\pi\)
−0.477068 + 0.878866i \(0.658301\pi\)
\(510\) 0 0
\(511\) −5.29999 −0.234458
\(512\) 0 0
\(513\) −3.08000 −0.135985
\(514\) 0 0
\(515\) 0.763993 0.0336655
\(516\) 0 0
\(517\) −12.4750 −0.548652
\(518\) 0 0
\(519\) −38.9964 −1.71175
\(520\) 0 0
\(521\) 29.2184 1.28008 0.640042 0.768340i \(-0.278917\pi\)
0.640042 + 0.768340i \(0.278917\pi\)
\(522\) 0 0
\(523\) −2.90627 −0.127082 −0.0635412 0.997979i \(-0.520239\pi\)
−0.0635412 + 0.997979i \(0.520239\pi\)
\(524\) 0 0
\(525\) 1.87494 0.0818292
\(526\) 0 0
\(527\) −18.7846 −0.818269
\(528\) 0 0
\(529\) −18.3590 −0.798216
\(530\) 0 0
\(531\) −18.0326 −0.782546
\(532\) 0 0
\(533\) −8.76951 −0.379850
\(534\) 0 0
\(535\) −16.4092 −0.709430
\(536\) 0 0
\(537\) −30.1452 −1.30086
\(538\) 0 0
\(539\) 28.0898 1.20992
\(540\) 0 0
\(541\) 31.0618 1.33545 0.667726 0.744407i \(-0.267268\pi\)
0.667726 + 0.744407i \(0.267268\pi\)
\(542\) 0 0
\(543\) −7.14054 −0.306430
\(544\) 0 0
\(545\) −19.0286 −0.815097
\(546\) 0 0
\(547\) 8.26218 0.353265 0.176633 0.984277i \(-0.443480\pi\)
0.176633 + 0.984277i \(0.443480\pi\)
\(548\) 0 0
\(549\) −2.36120 −0.100774
\(550\) 0 0
\(551\) 9.01549 0.384073
\(552\) 0 0
\(553\) 6.45094 0.274322
\(554\) 0 0
\(555\) 18.5276 0.786455
\(556\) 0 0
\(557\) 8.83469 0.374338 0.187169 0.982328i \(-0.440069\pi\)
0.187169 + 0.982328i \(0.440069\pi\)
\(558\) 0 0
\(559\) 25.4295 1.07555
\(560\) 0 0
\(561\) 41.5608 1.75470
\(562\) 0 0
\(563\) −46.0855 −1.94227 −0.971137 0.238524i \(-0.923337\pi\)
−0.971137 + 0.238524i \(0.923337\pi\)
\(564\) 0 0
\(565\) −6.40121 −0.269301
\(566\) 0 0
\(567\) −9.87789 −0.414832
\(568\) 0 0
\(569\) −13.1041 −0.549350 −0.274675 0.961537i \(-0.588570\pi\)
−0.274675 + 0.961537i \(0.588570\pi\)
\(570\) 0 0
\(571\) 27.3020 1.14255 0.571277 0.820757i \(-0.306448\pi\)
0.571277 + 0.820757i \(0.306448\pi\)
\(572\) 0 0
\(573\) 8.03863 0.335819
\(574\) 0 0
\(575\) −2.15430 −0.0898406
\(576\) 0 0
\(577\) 5.56014 0.231472 0.115736 0.993280i \(-0.463077\pi\)
0.115736 + 0.993280i \(0.463077\pi\)
\(578\) 0 0
\(579\) 31.4888 1.30863
\(580\) 0 0
\(581\) 1.17845 0.0488902
\(582\) 0 0
\(583\) 17.9721 0.744327
\(584\) 0 0
\(585\) 3.19849 0.132241
\(586\) 0 0
\(587\) 9.47739 0.391174 0.195587 0.980686i \(-0.437339\pi\)
0.195587 + 0.980686i \(0.437339\pi\)
\(588\) 0 0
\(589\) 4.35137 0.179295
\(590\) 0 0
\(591\) −47.1731 −1.94044
\(592\) 0 0
\(593\) −15.5002 −0.636517 −0.318258 0.948004i \(-0.603098\pi\)
−0.318258 + 0.948004i \(0.603098\pi\)
\(594\) 0 0
\(595\) 3.79152 0.155437
\(596\) 0 0
\(597\) 28.2212 1.15502
\(598\) 0 0
\(599\) 2.67436 0.109271 0.0546356 0.998506i \(-0.482600\pi\)
0.0546356 + 0.998506i \(0.482600\pi\)
\(600\) 0 0
\(601\) 39.0353 1.59229 0.796143 0.605109i \(-0.206871\pi\)
0.796143 + 0.605109i \(0.206871\pi\)
\(602\) 0 0
\(603\) −1.71632 −0.0698940
\(604\) 0 0
\(605\) −9.33840 −0.379660
\(606\) 0 0
\(607\) 5.07601 0.206029 0.103014 0.994680i \(-0.467151\pi\)
0.103014 + 0.994680i \(0.467151\pi\)
\(608\) 0 0
\(609\) 16.9035 0.684965
\(610\) 0 0
\(611\) −5.68171 −0.229857
\(612\) 0 0
\(613\) −29.4734 −1.19042 −0.595210 0.803570i \(-0.702931\pi\)
−0.595210 + 0.803570i \(0.702931\pi\)
\(614\) 0 0
\(615\) −9.11444 −0.367530
\(616\) 0 0
\(617\) −34.5806 −1.39216 −0.696081 0.717963i \(-0.745075\pi\)
−0.696081 + 0.717963i \(0.745075\pi\)
\(618\) 0 0
\(619\) −10.1975 −0.409873 −0.204936 0.978775i \(-0.565699\pi\)
−0.204936 + 0.978775i \(0.565699\pi\)
\(620\) 0 0
\(621\) 6.63525 0.266263
\(622\) 0 0
\(623\) −13.6535 −0.547016
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −9.62738 −0.384481
\(628\) 0 0
\(629\) 37.4667 1.49390
\(630\) 0 0
\(631\) −35.5500 −1.41522 −0.707612 0.706601i \(-0.750228\pi\)
−0.707612 + 0.706601i \(0.750228\pi\)
\(632\) 0 0
\(633\) 9.41840 0.374348
\(634\) 0 0
\(635\) −14.1135 −0.560076
\(636\) 0 0
\(637\) 12.7934 0.506893
\(638\) 0 0
\(639\) −22.5570 −0.892340
\(640\) 0 0
\(641\) 22.9448 0.906263 0.453132 0.891444i \(-0.350307\pi\)
0.453132 + 0.891444i \(0.350307\pi\)
\(642\) 0 0
\(643\) 21.5175 0.848566 0.424283 0.905530i \(-0.360526\pi\)
0.424283 + 0.905530i \(0.360526\pi\)
\(644\) 0 0
\(645\) 26.4297 1.04067
\(646\) 0 0
\(647\) −2.75737 −0.108403 −0.0542017 0.998530i \(-0.517261\pi\)
−0.0542017 + 0.998530i \(0.517261\pi\)
\(648\) 0 0
\(649\) 52.2235 2.04995
\(650\) 0 0
\(651\) 8.15857 0.319760
\(652\) 0 0
\(653\) 3.04942 0.119333 0.0596665 0.998218i \(-0.480996\pi\)
0.0596665 + 0.998218i \(0.480996\pi\)
\(654\) 0 0
\(655\) −10.7289 −0.419211
\(656\) 0 0
\(657\) −9.39693 −0.366609
\(658\) 0 0
\(659\) −35.9817 −1.40165 −0.700825 0.713334i \(-0.747184\pi\)
−0.700825 + 0.713334i \(0.747184\pi\)
\(660\) 0 0
\(661\) 14.3411 0.557805 0.278903 0.960319i \(-0.410029\pi\)
0.278903 + 0.960319i \(0.410029\pi\)
\(662\) 0 0
\(663\) 18.9287 0.735130
\(664\) 0 0
\(665\) −0.878290 −0.0340586
\(666\) 0 0
\(667\) −19.4221 −0.752026
\(668\) 0 0
\(669\) 55.5720 2.14854
\(670\) 0 0
\(671\) 6.83821 0.263986
\(672\) 0 0
\(673\) 41.5033 1.59984 0.799918 0.600110i \(-0.204876\pi\)
0.799918 + 0.600110i \(0.204876\pi\)
\(674\) 0 0
\(675\) −3.08000 −0.118549
\(676\) 0 0
\(677\) −32.4315 −1.24644 −0.623221 0.782046i \(-0.714176\pi\)
−0.623221 + 0.782046i \(0.714176\pi\)
\(678\) 0 0
\(679\) 6.63662 0.254690
\(680\) 0 0
\(681\) −7.35911 −0.282002
\(682\) 0 0
\(683\) 21.8723 0.836921 0.418461 0.908235i \(-0.362570\pi\)
0.418461 + 0.908235i \(0.362570\pi\)
\(684\) 0 0
\(685\) 21.3366 0.815228
\(686\) 0 0
\(687\) 36.5423 1.39418
\(688\) 0 0
\(689\) 8.18530 0.311835
\(690\) 0 0
\(691\) −40.6915 −1.54798 −0.773989 0.633199i \(-0.781741\pi\)
−0.773989 + 0.633199i \(0.781741\pi\)
\(692\) 0 0
\(693\) −6.16802 −0.234304
\(694\) 0 0
\(695\) −6.49684 −0.246439
\(696\) 0 0
\(697\) −18.4313 −0.698134
\(698\) 0 0
\(699\) 1.78938 0.0676807
\(700\) 0 0
\(701\) −33.7482 −1.27465 −0.637326 0.770594i \(-0.719960\pi\)
−0.637326 + 0.770594i \(0.719960\pi\)
\(702\) 0 0
\(703\) −8.67901 −0.327335
\(704\) 0 0
\(705\) −5.90519 −0.222402
\(706\) 0 0
\(707\) −7.47408 −0.281092
\(708\) 0 0
\(709\) −4.17013 −0.156612 −0.0783062 0.996929i \(-0.524951\pi\)
−0.0783062 + 0.996929i \(0.524951\pi\)
\(710\) 0 0
\(711\) 11.4376 0.428943
\(712\) 0 0
\(713\) −9.37417 −0.351066
\(714\) 0 0
\(715\) −9.26304 −0.346418
\(716\) 0 0
\(717\) −19.4383 −0.725937
\(718\) 0 0
\(719\) 6.29675 0.234829 0.117414 0.993083i \(-0.462539\pi\)
0.117414 + 0.993083i \(0.462539\pi\)
\(720\) 0 0
\(721\) −0.671007 −0.0249896
\(722\) 0 0
\(723\) −22.2226 −0.826467
\(724\) 0 0
\(725\) 9.01549 0.334827
\(726\) 0 0
\(727\) 32.6776 1.21195 0.605973 0.795485i \(-0.292784\pi\)
0.605973 + 0.795485i \(0.292784\pi\)
\(728\) 0 0
\(729\) 2.21161 0.0819115
\(730\) 0 0
\(731\) 53.4463 1.97678
\(732\) 0 0
\(733\) −48.1735 −1.77933 −0.889664 0.456616i \(-0.849061\pi\)
−0.889664 + 0.456616i \(0.849061\pi\)
\(734\) 0 0
\(735\) 13.2966 0.490453
\(736\) 0 0
\(737\) 4.97058 0.183094
\(738\) 0 0
\(739\) −2.86274 −0.105308 −0.0526538 0.998613i \(-0.516768\pi\)
−0.0526538 + 0.998613i \(0.516768\pi\)
\(740\) 0 0
\(741\) −4.38475 −0.161078
\(742\) 0 0
\(743\) −28.1718 −1.03352 −0.516761 0.856130i \(-0.672863\pi\)
−0.516761 + 0.856130i \(0.672863\pi\)
\(744\) 0 0
\(745\) 13.4904 0.494248
\(746\) 0 0
\(747\) 2.08940 0.0764471
\(748\) 0 0
\(749\) 14.4120 0.526603
\(750\) 0 0
\(751\) 33.1632 1.21014 0.605072 0.796171i \(-0.293144\pi\)
0.605072 + 0.796171i \(0.293144\pi\)
\(752\) 0 0
\(753\) 38.6898 1.40993
\(754\) 0 0
\(755\) −19.7890 −0.720194
\(756\) 0 0
\(757\) −10.0716 −0.366060 −0.183030 0.983107i \(-0.558590\pi\)
−0.183030 + 0.983107i \(0.558590\pi\)
\(758\) 0 0
\(759\) 20.7403 0.752825
\(760\) 0 0
\(761\) −51.0524 −1.85065 −0.925324 0.379178i \(-0.876207\pi\)
−0.925324 + 0.379178i \(0.876207\pi\)
\(762\) 0 0
\(763\) 16.7127 0.605039
\(764\) 0 0
\(765\) 6.72241 0.243049
\(766\) 0 0
\(767\) 23.7850 0.858826
\(768\) 0 0
\(769\) 31.1271 1.12247 0.561236 0.827656i \(-0.310326\pi\)
0.561236 + 0.827656i \(0.310326\pi\)
\(770\) 0 0
\(771\) 7.14562 0.257343
\(772\) 0 0
\(773\) 16.2291 0.583721 0.291860 0.956461i \(-0.405726\pi\)
0.291860 + 0.956461i \(0.405726\pi\)
\(774\) 0 0
\(775\) 4.35137 0.156306
\(776\) 0 0
\(777\) −16.2726 −0.583778
\(778\) 0 0
\(779\) 4.26953 0.152972
\(780\) 0 0
\(781\) 65.3266 2.33757
\(782\) 0 0
\(783\) −27.7677 −0.992336
\(784\) 0 0
\(785\) −2.37748 −0.0848559
\(786\) 0 0
\(787\) −36.1329 −1.28800 −0.644000 0.765026i \(-0.722726\pi\)
−0.644000 + 0.765026i \(0.722726\pi\)
\(788\) 0 0
\(789\) −22.0689 −0.785673
\(790\) 0 0
\(791\) 5.62212 0.199900
\(792\) 0 0
\(793\) 3.11444 0.110597
\(794\) 0 0
\(795\) 8.50725 0.301721
\(796\) 0 0
\(797\) 13.3349 0.472345 0.236172 0.971711i \(-0.424107\pi\)
0.236172 + 0.971711i \(0.424107\pi\)
\(798\) 0 0
\(799\) −11.9415 −0.422460
\(800\) 0 0
\(801\) −24.2078 −0.855340
\(802\) 0 0
\(803\) 27.2142 0.960367
\(804\) 0 0
\(805\) 1.89210 0.0666879
\(806\) 0 0
\(807\) 8.17196 0.287667
\(808\) 0 0
\(809\) −18.5912 −0.653630 −0.326815 0.945088i \(-0.605975\pi\)
−0.326815 + 0.945088i \(0.605975\pi\)
\(810\) 0 0
\(811\) −4.56880 −0.160432 −0.0802161 0.996777i \(-0.525561\pi\)
−0.0802161 + 0.996777i \(0.525561\pi\)
\(812\) 0 0
\(813\) 1.55320 0.0544730
\(814\) 0 0
\(815\) 8.86118 0.310394
\(816\) 0 0
\(817\) −12.3806 −0.433143
\(818\) 0 0
\(819\) −2.80920 −0.0981614
\(820\) 0 0
\(821\) 2.15671 0.0752698 0.0376349 0.999292i \(-0.488018\pi\)
0.0376349 + 0.999292i \(0.488018\pi\)
\(822\) 0 0
\(823\) 8.69218 0.302990 0.151495 0.988458i \(-0.451591\pi\)
0.151495 + 0.988458i \(0.451591\pi\)
\(824\) 0 0
\(825\) −9.62738 −0.335183
\(826\) 0 0
\(827\) −14.6572 −0.509680 −0.254840 0.966983i \(-0.582023\pi\)
−0.254840 + 0.966983i \(0.582023\pi\)
\(828\) 0 0
\(829\) 37.7966 1.31273 0.656364 0.754444i \(-0.272093\pi\)
0.656364 + 0.754444i \(0.272093\pi\)
\(830\) 0 0
\(831\) −44.4772 −1.54290
\(832\) 0 0
\(833\) 26.8885 0.931631
\(834\) 0 0
\(835\) −6.26190 −0.216702
\(836\) 0 0
\(837\) −13.4022 −0.463249
\(838\) 0 0
\(839\) 46.1806 1.59433 0.797165 0.603761i \(-0.206332\pi\)
0.797165 + 0.603761i \(0.206332\pi\)
\(840\) 0 0
\(841\) 52.2790 1.80272
\(842\) 0 0
\(843\) 59.4477 2.04749
\(844\) 0 0
\(845\) 8.78118 0.302082
\(846\) 0 0
\(847\) 8.20182 0.281818
\(848\) 0 0
\(849\) −62.1976 −2.13462
\(850\) 0 0
\(851\) 18.6972 0.640933
\(852\) 0 0
\(853\) 8.42055 0.288314 0.144157 0.989555i \(-0.453953\pi\)
0.144157 + 0.989555i \(0.453953\pi\)
\(854\) 0 0
\(855\) −1.55722 −0.0532557
\(856\) 0 0
\(857\) 36.8489 1.25873 0.629367 0.777108i \(-0.283314\pi\)
0.629367 + 0.777108i \(0.283314\pi\)
\(858\) 0 0
\(859\) 7.62728 0.260239 0.130120 0.991498i \(-0.458464\pi\)
0.130120 + 0.991498i \(0.458464\pi\)
\(860\) 0 0
\(861\) 8.00512 0.272814
\(862\) 0 0
\(863\) 56.8931 1.93666 0.968332 0.249665i \(-0.0803205\pi\)
0.968332 + 0.249665i \(0.0803205\pi\)
\(864\) 0 0
\(865\) 18.2673 0.621107
\(866\) 0 0
\(867\) 3.49231 0.118605
\(868\) 0 0
\(869\) −33.1241 −1.12366
\(870\) 0 0
\(871\) 2.26383 0.0767070
\(872\) 0 0
\(873\) 11.7668 0.398246
\(874\) 0 0
\(875\) −0.878290 −0.0296916
\(876\) 0 0
\(877\) 47.2084 1.59411 0.797057 0.603904i \(-0.206389\pi\)
0.797057 + 0.603904i \(0.206389\pi\)
\(878\) 0 0
\(879\) 22.0106 0.742398
\(880\) 0 0
\(881\) −45.2188 −1.52346 −0.761729 0.647895i \(-0.775649\pi\)
−0.761729 + 0.647895i \(0.775649\pi\)
\(882\) 0 0
\(883\) −12.9525 −0.435886 −0.217943 0.975962i \(-0.569935\pi\)
−0.217943 + 0.975962i \(0.569935\pi\)
\(884\) 0 0
\(885\) 24.7205 0.830971
\(886\) 0 0
\(887\) −5.58397 −0.187491 −0.0937457 0.995596i \(-0.529884\pi\)
−0.0937457 + 0.995596i \(0.529884\pi\)
\(888\) 0 0
\(889\) 12.3957 0.415739
\(890\) 0 0
\(891\) 50.7206 1.69920
\(892\) 0 0
\(893\) 2.76620 0.0925674
\(894\) 0 0
\(895\) 14.1211 0.472016
\(896\) 0 0
\(897\) 9.44609 0.315396
\(898\) 0 0
\(899\) 39.2297 1.30838
\(900\) 0 0
\(901\) 17.2034 0.573129
\(902\) 0 0
\(903\) −23.2129 −0.772478
\(904\) 0 0
\(905\) 3.34489 0.111188
\(906\) 0 0
\(907\) −53.7305 −1.78409 −0.892046 0.451944i \(-0.850731\pi\)
−0.892046 + 0.451944i \(0.850731\pi\)
\(908\) 0 0
\(909\) −13.2516 −0.439529
\(910\) 0 0
\(911\) −23.6398 −0.783222 −0.391611 0.920131i \(-0.628082\pi\)
−0.391611 + 0.920131i \(0.628082\pi\)
\(912\) 0 0
\(913\) −6.05104 −0.200260
\(914\) 0 0
\(915\) 3.23694 0.107010
\(916\) 0 0
\(917\) 9.42304 0.311176
\(918\) 0 0
\(919\) −5.86850 −0.193584 −0.0967920 0.995305i \(-0.530858\pi\)
−0.0967920 + 0.995305i \(0.530858\pi\)
\(920\) 0 0
\(921\) 33.4885 1.10348
\(922\) 0 0
\(923\) 29.7527 0.979323
\(924\) 0 0
\(925\) −8.67901 −0.285364
\(926\) 0 0
\(927\) −1.18970 −0.0390750
\(928\) 0 0
\(929\) 42.1417 1.38263 0.691313 0.722556i \(-0.257033\pi\)
0.691313 + 0.722556i \(0.257033\pi\)
\(930\) 0 0
\(931\) −6.22861 −0.204134
\(932\) 0 0
\(933\) 74.0168 2.42320
\(934\) 0 0
\(935\) −19.4686 −0.636690
\(936\) 0 0
\(937\) 13.0515 0.426373 0.213187 0.977012i \(-0.431616\pi\)
0.213187 + 0.977012i \(0.431616\pi\)
\(938\) 0 0
\(939\) 46.9474 1.53207
\(940\) 0 0
\(941\) 3.91219 0.127534 0.0637668 0.997965i \(-0.479689\pi\)
0.0637668 + 0.997965i \(0.479689\pi\)
\(942\) 0 0
\(943\) −9.19786 −0.299523
\(944\) 0 0
\(945\) 2.70513 0.0879980
\(946\) 0 0
\(947\) 46.8887 1.52368 0.761840 0.647766i \(-0.224296\pi\)
0.761840 + 0.647766i \(0.224296\pi\)
\(948\) 0 0
\(949\) 12.3946 0.402345
\(950\) 0 0
\(951\) −43.4416 −1.40869
\(952\) 0 0
\(953\) −36.0745 −1.16857 −0.584284 0.811549i \(-0.698625\pi\)
−0.584284 + 0.811549i \(0.698625\pi\)
\(954\) 0 0
\(955\) −3.76558 −0.121851
\(956\) 0 0
\(957\) −86.7956 −2.80570
\(958\) 0 0
\(959\) −18.7397 −0.605136
\(960\) 0 0
\(961\) −12.0656 −0.389212
\(962\) 0 0
\(963\) 25.5526 0.823422
\(964\) 0 0
\(965\) −14.7505 −0.474834
\(966\) 0 0
\(967\) −5.14385 −0.165415 −0.0827075 0.996574i \(-0.526357\pi\)
−0.0827075 + 0.996574i \(0.526357\pi\)
\(968\) 0 0
\(969\) −9.21564 −0.296049
\(970\) 0 0
\(971\) −1.55134 −0.0497848 −0.0248924 0.999690i \(-0.507924\pi\)
−0.0248924 + 0.999690i \(0.507924\pi\)
\(972\) 0 0
\(973\) 5.70611 0.182930
\(974\) 0 0
\(975\) −4.38475 −0.140425
\(976\) 0 0
\(977\) −33.4684 −1.07075 −0.535374 0.844615i \(-0.679829\pi\)
−0.535374 + 0.844615i \(0.679829\pi\)
\(978\) 0 0
\(979\) 70.1075 2.24064
\(980\) 0 0
\(981\) 29.6317 0.946068
\(982\) 0 0
\(983\) −11.5436 −0.368184 −0.184092 0.982909i \(-0.558934\pi\)
−0.184092 + 0.982909i \(0.558934\pi\)
\(984\) 0 0
\(985\) 22.0976 0.704087
\(986\) 0 0
\(987\) 5.18647 0.165087
\(988\) 0 0
\(989\) 26.6716 0.848108
\(990\) 0 0
\(991\) 0.624895 0.0198504 0.00992522 0.999951i \(-0.496841\pi\)
0.00992522 + 0.999951i \(0.496841\pi\)
\(992\) 0 0
\(993\) −20.1895 −0.640694
\(994\) 0 0
\(995\) −13.2198 −0.419097
\(996\) 0 0
\(997\) −19.6074 −0.620974 −0.310487 0.950578i \(-0.600492\pi\)
−0.310487 + 0.950578i \(0.600492\pi\)
\(998\) 0 0
\(999\) 26.7314 0.845743
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.2.a.u.1.5 5
4.3 odd 2 3040.2.a.x.1.1 yes 5
8.3 odd 2 6080.2.a.ci.1.5 5
8.5 even 2 6080.2.a.cl.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.u.1.5 5 1.1 even 1 trivial
3040.2.a.x.1.1 yes 5 4.3 odd 2
6080.2.a.ci.1.5 5 8.3 odd 2
6080.2.a.cl.1.1 5 8.5 even 2