Properties

Label 3040.2.a.r.1.4
Level $3040$
Weight $2$
Character 3040.1
Self dual yes
Analytic conductor $24.275$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,2,Mod(1,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2745222145\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.10710\) of defining polynomial
Character \(\chi\) \(=\) 3040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.10710 q^{3} +1.00000 q^{5} -2.43986 q^{7} +1.43986 q^{9} +1.36667 q^{11} -5.47377 q^{13} +2.10710 q^{15} -3.28738 q^{17} -1.00000 q^{19} -5.14101 q^{21} -3.41378 q^{23} +1.00000 q^{25} -3.28738 q^{27} -0.926817 q^{29} -11.0939 q^{31} +2.87971 q^{33} -2.43986 q^{35} -6.90751 q^{37} -11.5338 q^{39} +4.21419 q^{41} -0.486962 q^{43} +1.43986 q^{45} +10.4606 q^{47} -1.04711 q^{49} -6.92682 q^{51} +13.2332 q^{53} +1.36667 q^{55} -2.10710 q^{57} -10.0207 q^{59} -9.48665 q^{61} -3.51304 q^{63} -5.47377 q^{65} +4.01288 q^{67} -7.19316 q^{69} +4.94754 q^{71} +13.3552 q^{73} +2.10710 q^{75} -3.33448 q^{77} -6.97392 q^{79} -11.2464 q^{81} -3.51304 q^{83} -3.28738 q^{85} -1.95289 q^{87} +8.06783 q^{89} +13.3552 q^{91} -23.3759 q^{93} -1.00000 q^{95} -0.546952 q^{97} +1.96781 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 4 q^{5} - 5 q^{7} + q^{9} - 6 q^{11} - q^{13} - q^{15} - q^{17} - 4 q^{19} + 5 q^{21} - 5 q^{23} + 4 q^{25} - q^{27} + 3 q^{29} - 16 q^{31} + 2 q^{33} - 5 q^{35} - 8 q^{37} - 13 q^{39}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.10710 1.21653 0.608266 0.793733i \(-0.291865\pi\)
0.608266 + 0.793733i \(0.291865\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.43986 −0.922179 −0.461089 0.887354i \(-0.652541\pi\)
−0.461089 + 0.887354i \(0.652541\pi\)
\(8\) 0 0
\(9\) 1.43986 0.479952
\(10\) 0 0
\(11\) 1.36667 0.412067 0.206034 0.978545i \(-0.433944\pi\)
0.206034 + 0.978545i \(0.433944\pi\)
\(12\) 0 0
\(13\) −5.47377 −1.51815 −0.759075 0.651003i \(-0.774349\pi\)
−0.759075 + 0.651003i \(0.774349\pi\)
\(14\) 0 0
\(15\) 2.10710 0.544050
\(16\) 0 0
\(17\) −3.28738 −0.797306 −0.398653 0.917102i \(-0.630522\pi\)
−0.398653 + 0.917102i \(0.630522\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −5.14101 −1.12186
\(22\) 0 0
\(23\) −3.41378 −0.711822 −0.355911 0.934520i \(-0.615829\pi\)
−0.355911 + 0.934520i \(0.615829\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −3.28738 −0.632656
\(28\) 0 0
\(29\) −0.926817 −0.172106 −0.0860528 0.996291i \(-0.527425\pi\)
−0.0860528 + 0.996291i \(0.527425\pi\)
\(30\) 0 0
\(31\) −11.0939 −1.99252 −0.996262 0.0863841i \(-0.972469\pi\)
−0.996262 + 0.0863841i \(0.972469\pi\)
\(32\) 0 0
\(33\) 2.87971 0.501293
\(34\) 0 0
\(35\) −2.43986 −0.412411
\(36\) 0 0
\(37\) −6.90751 −1.13559 −0.567794 0.823171i \(-0.692203\pi\)
−0.567794 + 0.823171i \(0.692203\pi\)
\(38\) 0 0
\(39\) −11.5338 −1.84688
\(40\) 0 0
\(41\) 4.21419 0.658146 0.329073 0.944304i \(-0.393264\pi\)
0.329073 + 0.944304i \(0.393264\pi\)
\(42\) 0 0
\(43\) −0.486962 −0.0742610 −0.0371305 0.999310i \(-0.511822\pi\)
−0.0371305 + 0.999310i \(0.511822\pi\)
\(44\) 0 0
\(45\) 1.43986 0.214641
\(46\) 0 0
\(47\) 10.4606 1.52583 0.762916 0.646498i \(-0.223767\pi\)
0.762916 + 0.646498i \(0.223767\pi\)
\(48\) 0 0
\(49\) −1.04711 −0.149587
\(50\) 0 0
\(51\) −6.92682 −0.969948
\(52\) 0 0
\(53\) 13.2332 1.81772 0.908859 0.417103i \(-0.136955\pi\)
0.908859 + 0.417103i \(0.136955\pi\)
\(54\) 0 0
\(55\) 1.36667 0.184282
\(56\) 0 0
\(57\) −2.10710 −0.279092
\(58\) 0 0
\(59\) −10.0207 −1.30459 −0.652293 0.757967i \(-0.726193\pi\)
−0.652293 + 0.757967i \(0.726193\pi\)
\(60\) 0 0
\(61\) −9.48665 −1.21464 −0.607321 0.794457i \(-0.707756\pi\)
−0.607321 + 0.794457i \(0.707756\pi\)
\(62\) 0 0
\(63\) −3.51304 −0.442601
\(64\) 0 0
\(65\) −5.47377 −0.678937
\(66\) 0 0
\(67\) 4.01288 0.490252 0.245126 0.969491i \(-0.421171\pi\)
0.245126 + 0.969491i \(0.421171\pi\)
\(68\) 0 0
\(69\) −7.19316 −0.865955
\(70\) 0 0
\(71\) 4.94754 0.587165 0.293582 0.955934i \(-0.405153\pi\)
0.293582 + 0.955934i \(0.405153\pi\)
\(72\) 0 0
\(73\) 13.3552 1.56311 0.781554 0.623837i \(-0.214427\pi\)
0.781554 + 0.623837i \(0.214427\pi\)
\(74\) 0 0
\(75\) 2.10710 0.243307
\(76\) 0 0
\(77\) −3.33448 −0.380000
\(78\) 0 0
\(79\) −6.97392 −0.784628 −0.392314 0.919831i \(-0.628325\pi\)
−0.392314 + 0.919831i \(0.628325\pi\)
\(80\) 0 0
\(81\) −11.2464 −1.24960
\(82\) 0 0
\(83\) −3.51304 −0.385606 −0.192803 0.981237i \(-0.561758\pi\)
−0.192803 + 0.981237i \(0.561758\pi\)
\(84\) 0 0
\(85\) −3.28738 −0.356566
\(86\) 0 0
\(87\) −1.95289 −0.209372
\(88\) 0 0
\(89\) 8.06783 0.855188 0.427594 0.903971i \(-0.359361\pi\)
0.427594 + 0.903971i \(0.359361\pi\)
\(90\) 0 0
\(91\) 13.3552 1.40001
\(92\) 0 0
\(93\) −23.3759 −2.42397
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −0.546952 −0.0555345 −0.0277673 0.999614i \(-0.508840\pi\)
−0.0277673 + 0.999614i \(0.508840\pi\)
\(98\) 0 0
\(99\) 1.96781 0.197772
\(100\) 0 0
\(101\) −14.7690 −1.46957 −0.734784 0.678301i \(-0.762717\pi\)
−0.734784 + 0.678301i \(0.762717\pi\)
\(102\) 0 0
\(103\) −5.18028 −0.510428 −0.255214 0.966885i \(-0.582146\pi\)
−0.255214 + 0.966885i \(0.582146\pi\)
\(104\) 0 0
\(105\) −5.14101 −0.501711
\(106\) 0 0
\(107\) 1.74654 0.168844 0.0844221 0.996430i \(-0.473096\pi\)
0.0844221 + 0.996430i \(0.473096\pi\)
\(108\) 0 0
\(109\) 8.83605 0.846340 0.423170 0.906050i \(-0.360917\pi\)
0.423170 + 0.906050i \(0.360917\pi\)
\(110\) 0 0
\(111\) −14.5548 −1.38148
\(112\) 0 0
\(113\) 19.3481 1.82012 0.910059 0.414478i \(-0.136036\pi\)
0.910059 + 0.414478i \(0.136036\pi\)
\(114\) 0 0
\(115\) −3.41378 −0.318337
\(116\) 0 0
\(117\) −7.88143 −0.728639
\(118\) 0 0
\(119\) 8.02072 0.735258
\(120\) 0 0
\(121\) −9.13221 −0.830201
\(122\) 0 0
\(123\) 8.87971 0.800657
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.27418 0.734215 0.367107 0.930179i \(-0.380348\pi\)
0.367107 + 0.930179i \(0.380348\pi\)
\(128\) 0 0
\(129\) −1.02608 −0.0903409
\(130\) 0 0
\(131\) −8.30841 −0.725909 −0.362954 0.931807i \(-0.618232\pi\)
−0.362954 + 0.931807i \(0.618232\pi\)
\(132\) 0 0
\(133\) 2.43986 0.211562
\(134\) 0 0
\(135\) −3.28738 −0.282932
\(136\) 0 0
\(137\) 0.459817 0.0392848 0.0196424 0.999807i \(-0.493747\pi\)
0.0196424 + 0.999807i \(0.493747\pi\)
\(138\) 0 0
\(139\) −3.12609 −0.265152 −0.132576 0.991173i \(-0.542325\pi\)
−0.132576 + 0.991173i \(0.542325\pi\)
\(140\) 0 0
\(141\) 22.0414 1.85622
\(142\) 0 0
\(143\) −7.48085 −0.625580
\(144\) 0 0
\(145\) −0.926817 −0.0769680
\(146\) 0 0
\(147\) −2.20636 −0.181977
\(148\) 0 0
\(149\) 15.1817 1.24373 0.621866 0.783123i \(-0.286375\pi\)
0.621866 + 0.783123i \(0.286375\pi\)
\(150\) 0 0
\(151\) −22.9475 −1.86744 −0.933722 0.357999i \(-0.883459\pi\)
−0.933722 + 0.357999i \(0.883459\pi\)
\(152\) 0 0
\(153\) −4.73334 −0.382668
\(154\) 0 0
\(155\) −11.0939 −0.891084
\(156\) 0 0
\(157\) −2.97392 −0.237345 −0.118672 0.992933i \(-0.537864\pi\)
−0.118672 + 0.992933i \(0.537864\pi\)
\(158\) 0 0
\(159\) 27.8836 2.21131
\(160\) 0 0
\(161\) 8.32913 0.656427
\(162\) 0 0
\(163\) 8.19423 0.641822 0.320911 0.947109i \(-0.396011\pi\)
0.320911 + 0.947109i \(0.396011\pi\)
\(164\) 0 0
\(165\) 2.87971 0.224185
\(166\) 0 0
\(167\) −13.3125 −1.03015 −0.515076 0.857145i \(-0.672236\pi\)
−0.515076 + 0.857145i \(0.672236\pi\)
\(168\) 0 0
\(169\) 16.9621 1.30478
\(170\) 0 0
\(171\) −1.43986 −0.110108
\(172\) 0 0
\(173\) 9.97565 0.758434 0.379217 0.925308i \(-0.376193\pi\)
0.379217 + 0.925308i \(0.376193\pi\)
\(174\) 0 0
\(175\) −2.43986 −0.184436
\(176\) 0 0
\(177\) −21.1146 −1.58707
\(178\) 0 0
\(179\) −10.2698 −0.767600 −0.383800 0.923416i \(-0.625385\pi\)
−0.383800 + 0.923416i \(0.625385\pi\)
\(180\) 0 0
\(181\) 20.1878 1.50055 0.750274 0.661127i \(-0.229922\pi\)
0.750274 + 0.661127i \(0.229922\pi\)
\(182\) 0 0
\(183\) −19.9893 −1.47765
\(184\) 0 0
\(185\) −6.90751 −0.507850
\(186\) 0 0
\(187\) −4.49277 −0.328544
\(188\) 0 0
\(189\) 8.02072 0.583422
\(190\) 0 0
\(191\) −16.3135 −1.18040 −0.590200 0.807257i \(-0.700951\pi\)
−0.590200 + 0.807257i \(0.700951\pi\)
\(192\) 0 0
\(193\) −9.58526 −0.689962 −0.344981 0.938610i \(-0.612115\pi\)
−0.344981 + 0.938610i \(0.612115\pi\)
\(194\) 0 0
\(195\) −11.5338 −0.825950
\(196\) 0 0
\(197\) −20.3078 −1.44687 −0.723435 0.690393i \(-0.757438\pi\)
−0.723435 + 0.690393i \(0.757438\pi\)
\(198\) 0 0
\(199\) −13.2874 −0.941917 −0.470959 0.882155i \(-0.656092\pi\)
−0.470959 + 0.882155i \(0.656092\pi\)
\(200\) 0 0
\(201\) 8.45553 0.596407
\(202\) 0 0
\(203\) 2.26130 0.158712
\(204\) 0 0
\(205\) 4.21419 0.294332
\(206\) 0 0
\(207\) −4.91535 −0.341640
\(208\) 0 0
\(209\) −1.36667 −0.0945347
\(210\) 0 0
\(211\) −7.80653 −0.537424 −0.268712 0.963221i \(-0.586598\pi\)
−0.268712 + 0.963221i \(0.586598\pi\)
\(212\) 0 0
\(213\) 10.4249 0.714305
\(214\) 0 0
\(215\) −0.486962 −0.0332105
\(216\) 0 0
\(217\) 27.0675 1.83746
\(218\) 0 0
\(219\) 28.1407 1.90157
\(220\) 0 0
\(221\) 17.9943 1.21043
\(222\) 0 0
\(223\) 11.1275 0.745153 0.372576 0.928002i \(-0.378474\pi\)
0.372576 + 0.928002i \(0.378474\pi\)
\(224\) 0 0
\(225\) 1.43986 0.0959903
\(226\) 0 0
\(227\) 15.7758 1.04707 0.523537 0.852003i \(-0.324612\pi\)
0.523537 + 0.852003i \(0.324612\pi\)
\(228\) 0 0
\(229\) 17.3437 1.14611 0.573053 0.819518i \(-0.305759\pi\)
0.573053 + 0.819518i \(0.305759\pi\)
\(230\) 0 0
\(231\) −7.02608 −0.462282
\(232\) 0 0
\(233\) 24.4434 1.60134 0.800671 0.599104i \(-0.204476\pi\)
0.800671 + 0.599104i \(0.204476\pi\)
\(234\) 0 0
\(235\) 10.4606 0.682373
\(236\) 0 0
\(237\) −14.6947 −0.954525
\(238\) 0 0
\(239\) −23.4196 −1.51489 −0.757443 0.652901i \(-0.773552\pi\)
−0.757443 + 0.652901i \(0.773552\pi\)
\(240\) 0 0
\(241\) −19.7629 −1.27304 −0.636519 0.771261i \(-0.719626\pi\)
−0.636519 + 0.771261i \(0.719626\pi\)
\(242\) 0 0
\(243\) −13.8351 −0.887521
\(244\) 0 0
\(245\) −1.04711 −0.0668972
\(246\) 0 0
\(247\) 5.47377 0.348288
\(248\) 0 0
\(249\) −7.40231 −0.469102
\(250\) 0 0
\(251\) 7.45446 0.470521 0.235261 0.971932i \(-0.424406\pi\)
0.235261 + 0.971932i \(0.424406\pi\)
\(252\) 0 0
\(253\) −4.66552 −0.293319
\(254\) 0 0
\(255\) −6.92682 −0.433774
\(256\) 0 0
\(257\) 2.85191 0.177897 0.0889486 0.996036i \(-0.471649\pi\)
0.0889486 + 0.996036i \(0.471649\pi\)
\(258\) 0 0
\(259\) 16.8533 1.04721
\(260\) 0 0
\(261\) −1.33448 −0.0826024
\(262\) 0 0
\(263\) 17.1295 1.05625 0.528126 0.849166i \(-0.322895\pi\)
0.528126 + 0.849166i \(0.322895\pi\)
\(264\) 0 0
\(265\) 13.2332 0.812908
\(266\) 0 0
\(267\) 16.9997 1.04036
\(268\) 0 0
\(269\) 27.4315 1.67253 0.836265 0.548326i \(-0.184735\pi\)
0.836265 + 0.548326i \(0.184735\pi\)
\(270\) 0 0
\(271\) −31.1468 −1.89203 −0.946017 0.324117i \(-0.894933\pi\)
−0.946017 + 0.324117i \(0.894933\pi\)
\(272\) 0 0
\(273\) 28.1407 1.70315
\(274\) 0 0
\(275\) 1.36667 0.0824134
\(276\) 0 0
\(277\) −0.827558 −0.0497232 −0.0248616 0.999691i \(-0.507915\pi\)
−0.0248616 + 0.999691i \(0.507915\pi\)
\(278\) 0 0
\(279\) −15.9736 −0.956315
\(280\) 0 0
\(281\) 15.7330 0.938554 0.469277 0.883051i \(-0.344515\pi\)
0.469277 + 0.883051i \(0.344515\pi\)
\(282\) 0 0
\(283\) 5.03250 0.299151 0.149576 0.988750i \(-0.452209\pi\)
0.149576 + 0.988750i \(0.452209\pi\)
\(284\) 0 0
\(285\) −2.10710 −0.124814
\(286\) 0 0
\(287\) −10.2820 −0.606928
\(288\) 0 0
\(289\) −6.19316 −0.364304
\(290\) 0 0
\(291\) −1.15248 −0.0675595
\(292\) 0 0
\(293\) 2.59406 0.151547 0.0757733 0.997125i \(-0.475857\pi\)
0.0757733 + 0.997125i \(0.475857\pi\)
\(294\) 0 0
\(295\) −10.0207 −0.583429
\(296\) 0 0
\(297\) −4.49277 −0.260697
\(298\) 0 0
\(299\) 18.6862 1.08065
\(300\) 0 0
\(301\) 1.18812 0.0684819
\(302\) 0 0
\(303\) −31.1197 −1.78778
\(304\) 0 0
\(305\) −9.48665 −0.543204
\(306\) 0 0
\(307\) −31.9164 −1.82157 −0.910784 0.412883i \(-0.864522\pi\)
−0.910784 + 0.412883i \(0.864522\pi\)
\(308\) 0 0
\(309\) −10.9153 −0.620952
\(310\) 0 0
\(311\) 19.1239 1.08442 0.542208 0.840244i \(-0.317589\pi\)
0.542208 + 0.840244i \(0.317589\pi\)
\(312\) 0 0
\(313\) −12.1115 −0.684582 −0.342291 0.939594i \(-0.611203\pi\)
−0.342291 + 0.939594i \(0.611203\pi\)
\(314\) 0 0
\(315\) −3.51304 −0.197937
\(316\) 0 0
\(317\) −10.3535 −0.581509 −0.290755 0.956798i \(-0.593906\pi\)
−0.290755 + 0.956798i \(0.593906\pi\)
\(318\) 0 0
\(319\) −1.26666 −0.0709191
\(320\) 0 0
\(321\) 3.68012 0.205404
\(322\) 0 0
\(323\) 3.28738 0.182914
\(324\) 0 0
\(325\) −5.47377 −0.303630
\(326\) 0 0
\(327\) 18.6184 1.02960
\(328\) 0 0
\(329\) −25.5223 −1.40709
\(330\) 0 0
\(331\) −4.55748 −0.250502 −0.125251 0.992125i \(-0.539974\pi\)
−0.125251 + 0.992125i \(0.539974\pi\)
\(332\) 0 0
\(333\) −9.94581 −0.545027
\(334\) 0 0
\(335\) 4.01288 0.219247
\(336\) 0 0
\(337\) −23.2451 −1.26624 −0.633121 0.774052i \(-0.718227\pi\)
−0.633121 + 0.774052i \(0.718227\pi\)
\(338\) 0 0
\(339\) 40.7684 2.21423
\(340\) 0 0
\(341\) −15.1617 −0.821054
\(342\) 0 0
\(343\) 19.6338 1.06012
\(344\) 0 0
\(345\) −7.19316 −0.387267
\(346\) 0 0
\(347\) 14.3020 0.767771 0.383885 0.923381i \(-0.374586\pi\)
0.383885 + 0.923381i \(0.374586\pi\)
\(348\) 0 0
\(349\) 10.4840 0.561195 0.280597 0.959826i \(-0.409467\pi\)
0.280597 + 0.959826i \(0.409467\pi\)
\(350\) 0 0
\(351\) 17.9943 0.960466
\(352\) 0 0
\(353\) −10.9004 −0.580171 −0.290086 0.957001i \(-0.593684\pi\)
−0.290086 + 0.957001i \(0.593684\pi\)
\(354\) 0 0
\(355\) 4.94754 0.262588
\(356\) 0 0
\(357\) 16.9004 0.894466
\(358\) 0 0
\(359\) 16.4778 0.869668 0.434834 0.900511i \(-0.356807\pi\)
0.434834 + 0.900511i \(0.356807\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −19.2424 −1.00997
\(364\) 0 0
\(365\) 13.3552 0.699043
\(366\) 0 0
\(367\) −24.7040 −1.28954 −0.644769 0.764378i \(-0.723046\pi\)
−0.644769 + 0.764378i \(0.723046\pi\)
\(368\) 0 0
\(369\) 6.06783 0.315878
\(370\) 0 0
\(371\) −32.2871 −1.67626
\(372\) 0 0
\(373\) −1.40594 −0.0727969 −0.0363984 0.999337i \(-0.511589\pi\)
−0.0363984 + 0.999337i \(0.511589\pi\)
\(374\) 0 0
\(375\) 2.10710 0.108810
\(376\) 0 0
\(377\) 5.07318 0.261282
\(378\) 0 0
\(379\) 19.5280 1.00308 0.501542 0.865133i \(-0.332766\pi\)
0.501542 + 0.865133i \(0.332766\pi\)
\(380\) 0 0
\(381\) 17.4345 0.893196
\(382\) 0 0
\(383\) −19.9692 −1.02038 −0.510190 0.860062i \(-0.670425\pi\)
−0.510190 + 0.860062i \(0.670425\pi\)
\(384\) 0 0
\(385\) −3.33448 −0.169941
\(386\) 0 0
\(387\) −0.701155 −0.0356417
\(388\) 0 0
\(389\) 4.20196 0.213048 0.106524 0.994310i \(-0.466028\pi\)
0.106524 + 0.994310i \(0.466028\pi\)
\(390\) 0 0
\(391\) 11.2224 0.567540
\(392\) 0 0
\(393\) −17.5066 −0.883092
\(394\) 0 0
\(395\) −6.97392 −0.350896
\(396\) 0 0
\(397\) −16.9475 −0.850573 −0.425286 0.905059i \(-0.639827\pi\)
−0.425286 + 0.905059i \(0.639827\pi\)
\(398\) 0 0
\(399\) 5.14101 0.257372
\(400\) 0 0
\(401\) 18.4928 0.923485 0.461742 0.887014i \(-0.347224\pi\)
0.461742 + 0.887014i \(0.347224\pi\)
\(402\) 0 0
\(403\) 60.7255 3.02495
\(404\) 0 0
\(405\) −11.2464 −0.558837
\(406\) 0 0
\(407\) −9.44030 −0.467938
\(408\) 0 0
\(409\) 5.42525 0.268261 0.134131 0.990964i \(-0.457176\pi\)
0.134131 + 0.990964i \(0.457176\pi\)
\(410\) 0 0
\(411\) 0.968879 0.0477913
\(412\) 0 0
\(413\) 24.4491 1.20306
\(414\) 0 0
\(415\) −3.51304 −0.172448
\(416\) 0 0
\(417\) −6.58698 −0.322566
\(418\) 0 0
\(419\) −13.1353 −0.641704 −0.320852 0.947129i \(-0.603969\pi\)
−0.320852 + 0.947129i \(0.603969\pi\)
\(420\) 0 0
\(421\) −20.9560 −1.02133 −0.510667 0.859778i \(-0.670602\pi\)
−0.510667 + 0.859778i \(0.670602\pi\)
\(422\) 0 0
\(423\) 15.0617 0.732326
\(424\) 0 0
\(425\) −3.28738 −0.159461
\(426\) 0 0
\(427\) 23.1461 1.12012
\(428\) 0 0
\(429\) −15.7629 −0.761038
\(430\) 0 0
\(431\) −7.69159 −0.370491 −0.185246 0.982692i \(-0.559308\pi\)
−0.185246 + 0.982692i \(0.559308\pi\)
\(432\) 0 0
\(433\) −24.1493 −1.16054 −0.580271 0.814424i \(-0.697053\pi\)
−0.580271 + 0.814424i \(0.697053\pi\)
\(434\) 0 0
\(435\) −1.95289 −0.0936341
\(436\) 0 0
\(437\) 3.41378 0.163303
\(438\) 0 0
\(439\) −29.3373 −1.40019 −0.700097 0.714048i \(-0.746860\pi\)
−0.700097 + 0.714048i \(0.746860\pi\)
\(440\) 0 0
\(441\) −1.50768 −0.0717944
\(442\) 0 0
\(443\) −23.2061 −1.10256 −0.551279 0.834321i \(-0.685860\pi\)
−0.551279 + 0.834321i \(0.685860\pi\)
\(444\) 0 0
\(445\) 8.06783 0.382452
\(446\) 0 0
\(447\) 31.9893 1.51304
\(448\) 0 0
\(449\) −26.9104 −1.26998 −0.634991 0.772519i \(-0.718996\pi\)
−0.634991 + 0.772519i \(0.718996\pi\)
\(450\) 0 0
\(451\) 5.75942 0.271201
\(452\) 0 0
\(453\) −48.3527 −2.27181
\(454\) 0 0
\(455\) 13.3552 0.626102
\(456\) 0 0
\(457\) 6.27353 0.293463 0.146732 0.989176i \(-0.453125\pi\)
0.146732 + 0.989176i \(0.453125\pi\)
\(458\) 0 0
\(459\) 10.8068 0.504420
\(460\) 0 0
\(461\) −25.5188 −1.18853 −0.594265 0.804269i \(-0.702557\pi\)
−0.594265 + 0.804269i \(0.702557\pi\)
\(462\) 0 0
\(463\) −7.07049 −0.328594 −0.164297 0.986411i \(-0.552535\pi\)
−0.164297 + 0.986411i \(0.552535\pi\)
\(464\) 0 0
\(465\) −23.3759 −1.08403
\(466\) 0 0
\(467\) −10.0322 −0.464234 −0.232117 0.972688i \(-0.574565\pi\)
−0.232117 + 0.972688i \(0.574565\pi\)
\(468\) 0 0
\(469\) −9.79085 −0.452100
\(470\) 0 0
\(471\) −6.26634 −0.288738
\(472\) 0 0
\(473\) −0.665518 −0.0306005
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 19.0539 0.872417
\(478\) 0 0
\(479\) −30.9690 −1.41501 −0.707505 0.706708i \(-0.750179\pi\)
−0.707505 + 0.706708i \(0.750179\pi\)
\(480\) 0 0
\(481\) 37.8101 1.72399
\(482\) 0 0
\(483\) 17.5503 0.798565
\(484\) 0 0
\(485\) −0.546952 −0.0248358
\(486\) 0 0
\(487\) 41.1661 1.86541 0.932707 0.360634i \(-0.117440\pi\)
0.932707 + 0.360634i \(0.117440\pi\)
\(488\) 0 0
\(489\) 17.2660 0.780797
\(490\) 0 0
\(491\) −14.3464 −0.647444 −0.323722 0.946152i \(-0.604934\pi\)
−0.323722 + 0.946152i \(0.604934\pi\)
\(492\) 0 0
\(493\) 3.04680 0.137221
\(494\) 0 0
\(495\) 1.96781 0.0884465
\(496\) 0 0
\(497\) −12.0713 −0.541471
\(498\) 0 0
\(499\) 5.46089 0.244463 0.122231 0.992502i \(-0.460995\pi\)
0.122231 + 0.992502i \(0.460995\pi\)
\(500\) 0 0
\(501\) −28.0507 −1.25321
\(502\) 0 0
\(503\) −22.3227 −0.995320 −0.497660 0.867372i \(-0.665807\pi\)
−0.497660 + 0.867372i \(0.665807\pi\)
\(504\) 0 0
\(505\) −14.7690 −0.657211
\(506\) 0 0
\(507\) 35.7409 1.58731
\(508\) 0 0
\(509\) 38.4557 1.70452 0.852259 0.523120i \(-0.175232\pi\)
0.852259 + 0.523120i \(0.175232\pi\)
\(510\) 0 0
\(511\) −32.5848 −1.44146
\(512\) 0 0
\(513\) 3.28738 0.145141
\(514\) 0 0
\(515\) −5.18028 −0.228270
\(516\) 0 0
\(517\) 14.2962 0.628745
\(518\) 0 0
\(519\) 21.0197 0.922660
\(520\) 0 0
\(521\) −33.2032 −1.45466 −0.727329 0.686289i \(-0.759238\pi\)
−0.727329 + 0.686289i \(0.759238\pi\)
\(522\) 0 0
\(523\) 0.743401 0.0325067 0.0162533 0.999868i \(-0.494826\pi\)
0.0162533 + 0.999868i \(0.494826\pi\)
\(524\) 0 0
\(525\) −5.14101 −0.224372
\(526\) 0 0
\(527\) 36.4698 1.58865
\(528\) 0 0
\(529\) −11.3461 −0.493309
\(530\) 0 0
\(531\) −14.4284 −0.626139
\(532\) 0 0
\(533\) −23.0675 −0.999165
\(534\) 0 0
\(535\) 1.74654 0.0755094
\(536\) 0 0
\(537\) −21.6394 −0.933811
\(538\) 0 0
\(539\) −1.43105 −0.0616398
\(540\) 0 0
\(541\) 33.8067 1.45346 0.726731 0.686922i \(-0.241039\pi\)
0.726731 + 0.686922i \(0.241039\pi\)
\(542\) 0 0
\(543\) 42.5377 1.82547
\(544\) 0 0
\(545\) 8.83605 0.378495
\(546\) 0 0
\(547\) 28.4397 1.21599 0.607996 0.793940i \(-0.291974\pi\)
0.607996 + 0.793940i \(0.291974\pi\)
\(548\) 0 0
\(549\) −13.6594 −0.582969
\(550\) 0 0
\(551\) 0.926817 0.0394837
\(552\) 0 0
\(553\) 17.0154 0.723567
\(554\) 0 0
\(555\) −14.5548 −0.617816
\(556\) 0 0
\(557\) 26.9626 1.14244 0.571221 0.820796i \(-0.306470\pi\)
0.571221 + 0.820796i \(0.306470\pi\)
\(558\) 0 0
\(559\) 2.66552 0.112739
\(560\) 0 0
\(561\) −9.46669 −0.399684
\(562\) 0 0
\(563\) −24.1400 −1.01738 −0.508691 0.860949i \(-0.669870\pi\)
−0.508691 + 0.860949i \(0.669870\pi\)
\(564\) 0 0
\(565\) 19.3481 0.813982
\(566\) 0 0
\(567\) 27.4395 1.15235
\(568\) 0 0
\(569\) 16.7211 0.700986 0.350493 0.936565i \(-0.386014\pi\)
0.350493 + 0.936565i \(0.386014\pi\)
\(570\) 0 0
\(571\) −14.0648 −0.588596 −0.294298 0.955714i \(-0.595086\pi\)
−0.294298 + 0.955714i \(0.595086\pi\)
\(572\) 0 0
\(573\) −34.3740 −1.43600
\(574\) 0 0
\(575\) −3.41378 −0.142364
\(576\) 0 0
\(577\) 15.6303 0.650699 0.325350 0.945594i \(-0.394518\pi\)
0.325350 + 0.945594i \(0.394518\pi\)
\(578\) 0 0
\(579\) −20.1971 −0.839361
\(580\) 0 0
\(581\) 8.57130 0.355598
\(582\) 0 0
\(583\) 18.0854 0.749022
\(584\) 0 0
\(585\) −7.88143 −0.325857
\(586\) 0 0
\(587\) −16.3054 −0.672997 −0.336499 0.941684i \(-0.609243\pi\)
−0.336499 + 0.941684i \(0.609243\pi\)
\(588\) 0 0
\(589\) 11.0939 0.457116
\(590\) 0 0
\(591\) −42.7905 −1.76016
\(592\) 0 0
\(593\) −29.3373 −1.20474 −0.602369 0.798217i \(-0.705777\pi\)
−0.602369 + 0.798217i \(0.705777\pi\)
\(594\) 0 0
\(595\) 8.02072 0.328817
\(596\) 0 0
\(597\) −27.9978 −1.14587
\(598\) 0 0
\(599\) 32.9089 1.34462 0.672311 0.740269i \(-0.265302\pi\)
0.672311 + 0.740269i \(0.265302\pi\)
\(600\) 0 0
\(601\) −9.42807 −0.384579 −0.192290 0.981338i \(-0.561591\pi\)
−0.192290 + 0.981338i \(0.561591\pi\)
\(602\) 0 0
\(603\) 5.77797 0.235297
\(604\) 0 0
\(605\) −9.13221 −0.371277
\(606\) 0 0
\(607\) 29.8229 1.21047 0.605236 0.796046i \(-0.293079\pi\)
0.605236 + 0.796046i \(0.293079\pi\)
\(608\) 0 0
\(609\) 4.76478 0.193078
\(610\) 0 0
\(611\) −57.2588 −2.31644
\(612\) 0 0
\(613\) 0.907613 0.0366582 0.0183291 0.999832i \(-0.494165\pi\)
0.0183291 + 0.999832i \(0.494165\pi\)
\(614\) 0 0
\(615\) 8.87971 0.358064
\(616\) 0 0
\(617\) −12.6533 −0.509402 −0.254701 0.967020i \(-0.581977\pi\)
−0.254701 + 0.967020i \(0.581977\pi\)
\(618\) 0 0
\(619\) 20.0756 0.806905 0.403452 0.915001i \(-0.367810\pi\)
0.403452 + 0.915001i \(0.367810\pi\)
\(620\) 0 0
\(621\) 11.2224 0.450338
\(622\) 0 0
\(623\) −19.6843 −0.788636
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −2.87971 −0.115005
\(628\) 0 0
\(629\) 22.7076 0.905410
\(630\) 0 0
\(631\) 38.6763 1.53968 0.769839 0.638238i \(-0.220336\pi\)
0.769839 + 0.638238i \(0.220336\pi\)
\(632\) 0 0
\(633\) −16.4491 −0.653793
\(634\) 0 0
\(635\) 8.27418 0.328351
\(636\) 0 0
\(637\) 5.73162 0.227095
\(638\) 0 0
\(639\) 7.12374 0.281811
\(640\) 0 0
\(641\) −16.5084 −0.652044 −0.326022 0.945362i \(-0.605708\pi\)
−0.326022 + 0.945362i \(0.605708\pi\)
\(642\) 0 0
\(643\) 45.6521 1.80034 0.900172 0.435534i \(-0.143440\pi\)
0.900172 + 0.435534i \(0.143440\pi\)
\(644\) 0 0
\(645\) −1.02608 −0.0404017
\(646\) 0 0
\(647\) −11.4166 −0.448833 −0.224417 0.974493i \(-0.572048\pi\)
−0.224417 + 0.974493i \(0.572048\pi\)
\(648\) 0 0
\(649\) −13.6950 −0.537577
\(650\) 0 0
\(651\) 57.0339 2.23533
\(652\) 0 0
\(653\) 19.3882 0.758717 0.379358 0.925250i \(-0.376145\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(654\) 0 0
\(655\) −8.30841 −0.324636
\(656\) 0 0
\(657\) 19.2296 0.750216
\(658\) 0 0
\(659\) 35.3303 1.37627 0.688137 0.725581i \(-0.258429\pi\)
0.688137 + 0.725581i \(0.258429\pi\)
\(660\) 0 0
\(661\) −9.90012 −0.385070 −0.192535 0.981290i \(-0.561671\pi\)
−0.192535 + 0.981290i \(0.561671\pi\)
\(662\) 0 0
\(663\) 37.9158 1.47253
\(664\) 0 0
\(665\) 2.43986 0.0946135
\(666\) 0 0
\(667\) 3.16395 0.122509
\(668\) 0 0
\(669\) 23.4467 0.906503
\(670\) 0 0
\(671\) −12.9651 −0.500514
\(672\) 0 0
\(673\) 21.2803 0.820295 0.410148 0.912019i \(-0.365477\pi\)
0.410148 + 0.912019i \(0.365477\pi\)
\(674\) 0 0
\(675\) −3.28738 −0.126531
\(676\) 0 0
\(677\) 26.2241 1.00787 0.503937 0.863740i \(-0.331884\pi\)
0.503937 + 0.863740i \(0.331884\pi\)
\(678\) 0 0
\(679\) 1.33448 0.0512127
\(680\) 0 0
\(681\) 33.2410 1.27380
\(682\) 0 0
\(683\) 42.1551 1.61302 0.806510 0.591220i \(-0.201354\pi\)
0.806510 + 0.591220i \(0.201354\pi\)
\(684\) 0 0
\(685\) 0.459817 0.0175687
\(686\) 0 0
\(687\) 36.5449 1.39428
\(688\) 0 0
\(689\) −72.4354 −2.75957
\(690\) 0 0
\(691\) −18.9920 −0.722488 −0.361244 0.932471i \(-0.617648\pi\)
−0.361244 + 0.932471i \(0.617648\pi\)
\(692\) 0 0
\(693\) −4.80117 −0.182381
\(694\) 0 0
\(695\) −3.12609 −0.118579
\(696\) 0 0
\(697\) −13.8536 −0.524744
\(698\) 0 0
\(699\) 51.5047 1.94809
\(700\) 0 0
\(701\) −17.4223 −0.658030 −0.329015 0.944325i \(-0.606717\pi\)
−0.329015 + 0.944325i \(0.606717\pi\)
\(702\) 0 0
\(703\) 6.90751 0.260522
\(704\) 0 0
\(705\) 22.0414 0.830129
\(706\) 0 0
\(707\) 36.0342 1.35520
\(708\) 0 0
\(709\) −12.4777 −0.468610 −0.234305 0.972163i \(-0.575281\pi\)
−0.234305 + 0.972163i \(0.575281\pi\)
\(710\) 0 0
\(711\) −10.0414 −0.376583
\(712\) 0 0
\(713\) 37.8721 1.41832
\(714\) 0 0
\(715\) −7.48085 −0.279768
\(716\) 0 0
\(717\) −49.3473 −1.84291
\(718\) 0 0
\(719\) −39.5507 −1.47499 −0.737497 0.675351i \(-0.763992\pi\)
−0.737497 + 0.675351i \(0.763992\pi\)
\(720\) 0 0
\(721\) 12.6391 0.470706
\(722\) 0 0
\(723\) −41.6423 −1.54869
\(724\) 0 0
\(725\) −0.926817 −0.0344211
\(726\) 0 0
\(727\) 28.2448 1.04754 0.523771 0.851859i \(-0.324525\pi\)
0.523771 + 0.851859i \(0.324525\pi\)
\(728\) 0 0
\(729\) 4.58729 0.169900
\(730\) 0 0
\(731\) 1.60083 0.0592087
\(732\) 0 0
\(733\) 22.5782 0.833945 0.416972 0.908919i \(-0.363091\pi\)
0.416972 + 0.908919i \(0.363091\pi\)
\(734\) 0 0
\(735\) −2.20636 −0.0813826
\(736\) 0 0
\(737\) 5.48430 0.202017
\(738\) 0 0
\(739\) 2.01071 0.0739652 0.0369826 0.999316i \(-0.488225\pi\)
0.0369826 + 0.999316i \(0.488225\pi\)
\(740\) 0 0
\(741\) 11.5338 0.423703
\(742\) 0 0
\(743\) −36.3483 −1.33349 −0.666745 0.745286i \(-0.732313\pi\)
−0.666745 + 0.745286i \(0.732313\pi\)
\(744\) 0 0
\(745\) 15.1817 0.556214
\(746\) 0 0
\(747\) −5.05827 −0.185072
\(748\) 0 0
\(749\) −4.26130 −0.155705
\(750\) 0 0
\(751\) 47.4987 1.73325 0.866627 0.498957i \(-0.166284\pi\)
0.866627 + 0.498957i \(0.166284\pi\)
\(752\) 0 0
\(753\) 15.7073 0.572405
\(754\) 0 0
\(755\) −22.9475 −0.835146
\(756\) 0 0
\(757\) 44.2550 1.60848 0.804238 0.594308i \(-0.202574\pi\)
0.804238 + 0.594308i \(0.202574\pi\)
\(758\) 0 0
\(759\) −9.83070 −0.356832
\(760\) 0 0
\(761\) 7.46938 0.270765 0.135382 0.990793i \(-0.456774\pi\)
0.135382 + 0.990793i \(0.456774\pi\)
\(762\) 0 0
\(763\) −21.5587 −0.780477
\(764\) 0 0
\(765\) −4.73334 −0.171134
\(766\) 0 0
\(767\) 54.8511 1.98056
\(768\) 0 0
\(769\) −37.2932 −1.34483 −0.672413 0.740176i \(-0.734742\pi\)
−0.672413 + 0.740176i \(0.734742\pi\)
\(770\) 0 0
\(771\) 6.00925 0.216418
\(772\) 0 0
\(773\) −25.9564 −0.933588 −0.466794 0.884366i \(-0.654591\pi\)
−0.466794 + 0.884366i \(0.654591\pi\)
\(774\) 0 0
\(775\) −11.0939 −0.398505
\(776\) 0 0
\(777\) 35.5116 1.27397
\(778\) 0 0
\(779\) −4.21419 −0.150989
\(780\) 0 0
\(781\) 6.76166 0.241951
\(782\) 0 0
\(783\) 3.04680 0.108884
\(784\) 0 0
\(785\) −2.97392 −0.106144
\(786\) 0 0
\(787\) −25.4186 −0.906077 −0.453038 0.891491i \(-0.649660\pi\)
−0.453038 + 0.891491i \(0.649660\pi\)
\(788\) 0 0
\(789\) 36.0936 1.28497
\(790\) 0 0
\(791\) −47.2066 −1.67847
\(792\) 0 0
\(793\) 51.9277 1.84401
\(794\) 0 0
\(795\) 27.8836 0.988930
\(796\) 0 0
\(797\) −30.5501 −1.08214 −0.541069 0.840978i \(-0.681980\pi\)
−0.541069 + 0.840978i \(0.681980\pi\)
\(798\) 0 0
\(799\) −34.3878 −1.21655
\(800\) 0 0
\(801\) 11.6165 0.410449
\(802\) 0 0
\(803\) 18.2522 0.644106
\(804\) 0 0
\(805\) 8.32913 0.293563
\(806\) 0 0
\(807\) 57.8009 2.03469
\(808\) 0 0
\(809\) −23.1790 −0.814930 −0.407465 0.913221i \(-0.633587\pi\)
−0.407465 + 0.913221i \(0.633587\pi\)
\(810\) 0 0
\(811\) 7.92844 0.278405 0.139203 0.990264i \(-0.455546\pi\)
0.139203 + 0.990264i \(0.455546\pi\)
\(812\) 0 0
\(813\) −65.6293 −2.30172
\(814\) 0 0
\(815\) 8.19423 0.287031
\(816\) 0 0
\(817\) 0.486962 0.0170366
\(818\) 0 0
\(819\) 19.2296 0.671935
\(820\) 0 0
\(821\) 14.5713 0.508542 0.254271 0.967133i \(-0.418164\pi\)
0.254271 + 0.967133i \(0.418164\pi\)
\(822\) 0 0
\(823\) 18.6886 0.651443 0.325722 0.945466i \(-0.394393\pi\)
0.325722 + 0.945466i \(0.394393\pi\)
\(824\) 0 0
\(825\) 2.87971 0.100259
\(826\) 0 0
\(827\) −17.5317 −0.609638 −0.304819 0.952410i \(-0.598596\pi\)
−0.304819 + 0.952410i \(0.598596\pi\)
\(828\) 0 0
\(829\) 0.108039 0.00375236 0.00187618 0.999998i \(-0.499403\pi\)
0.00187618 + 0.999998i \(0.499403\pi\)
\(830\) 0 0
\(831\) −1.74375 −0.0604899
\(832\) 0 0
\(833\) 3.44223 0.119266
\(834\) 0 0
\(835\) −13.3125 −0.460698
\(836\) 0 0
\(837\) 36.4698 1.26058
\(838\) 0 0
\(839\) −13.1319 −0.453363 −0.226682 0.973969i \(-0.572788\pi\)
−0.226682 + 0.973969i \(0.572788\pi\)
\(840\) 0 0
\(841\) −28.1410 −0.970380
\(842\) 0 0
\(843\) 33.1510 1.14178
\(844\) 0 0
\(845\) 16.9621 0.583515
\(846\) 0 0
\(847\) 22.2813 0.765593
\(848\) 0 0
\(849\) 10.6040 0.363927
\(850\) 0 0
\(851\) 23.5807 0.808336
\(852\) 0 0
\(853\) 27.1611 0.929979 0.464989 0.885316i \(-0.346058\pi\)
0.464989 + 0.885316i \(0.346058\pi\)
\(854\) 0 0
\(855\) −1.43986 −0.0492420
\(856\) 0 0
\(857\) −3.42321 −0.116935 −0.0584674 0.998289i \(-0.518621\pi\)
−0.0584674 + 0.998289i \(0.518621\pi\)
\(858\) 0 0
\(859\) 20.6724 0.705334 0.352667 0.935749i \(-0.385275\pi\)
0.352667 + 0.935749i \(0.385275\pi\)
\(860\) 0 0
\(861\) −21.6652 −0.738348
\(862\) 0 0
\(863\) −48.6884 −1.65737 −0.828686 0.559713i \(-0.810911\pi\)
−0.828686 + 0.559713i \(0.810911\pi\)
\(864\) 0 0
\(865\) 9.97565 0.339182
\(866\) 0 0
\(867\) −13.0496 −0.443187
\(868\) 0 0
\(869\) −9.53107 −0.323319
\(870\) 0 0
\(871\) −21.9656 −0.744276
\(872\) 0 0
\(873\) −0.787531 −0.0266539
\(874\) 0 0
\(875\) −2.43986 −0.0824822
\(876\) 0 0
\(877\) 13.7159 0.463152 0.231576 0.972817i \(-0.425612\pi\)
0.231576 + 0.972817i \(0.425612\pi\)
\(878\) 0 0
\(879\) 5.46593 0.184361
\(880\) 0 0
\(881\) 11.7171 0.394761 0.197380 0.980327i \(-0.436757\pi\)
0.197380 + 0.980327i \(0.436757\pi\)
\(882\) 0 0
\(883\) 5.01683 0.168830 0.0844148 0.996431i \(-0.473098\pi\)
0.0844148 + 0.996431i \(0.473098\pi\)
\(884\) 0 0
\(885\) −21.1146 −0.709760
\(886\) 0 0
\(887\) 34.0770 1.14419 0.572096 0.820186i \(-0.306130\pi\)
0.572096 + 0.820186i \(0.306130\pi\)
\(888\) 0 0
\(889\) −20.1878 −0.677077
\(890\) 0 0
\(891\) −15.3701 −0.514918
\(892\) 0 0
\(893\) −10.4606 −0.350050
\(894\) 0 0
\(895\) −10.2698 −0.343281
\(896\) 0 0
\(897\) 39.3737 1.31465
\(898\) 0 0
\(899\) 10.2820 0.342925
\(900\) 0 0
\(901\) −43.5025 −1.44928
\(902\) 0 0
\(903\) 2.50348 0.0833105
\(904\) 0 0
\(905\) 20.1878 0.671065
\(906\) 0 0
\(907\) −51.5103 −1.71037 −0.855186 0.518322i \(-0.826557\pi\)
−0.855186 + 0.518322i \(0.826557\pi\)
\(908\) 0 0
\(909\) −21.2652 −0.705322
\(910\) 0 0
\(911\) 10.9246 0.361948 0.180974 0.983488i \(-0.442075\pi\)
0.180974 + 0.983488i \(0.442075\pi\)
\(912\) 0 0
\(913\) −4.80117 −0.158896
\(914\) 0 0
\(915\) −19.9893 −0.660825
\(916\) 0 0
\(917\) 20.2713 0.669418
\(918\) 0 0
\(919\) 21.2902 0.702299 0.351149 0.936319i \(-0.385791\pi\)
0.351149 + 0.936319i \(0.385791\pi\)
\(920\) 0 0
\(921\) −67.2510 −2.21600
\(922\) 0 0
\(923\) −27.0817 −0.891404
\(924\) 0 0
\(925\) −6.90751 −0.227118
\(926\) 0 0
\(927\) −7.45885 −0.244981
\(928\) 0 0
\(929\) −6.37783 −0.209250 −0.104625 0.994512i \(-0.533364\pi\)
−0.104625 + 0.994512i \(0.533364\pi\)
\(930\) 0 0
\(931\) 1.04711 0.0343175
\(932\) 0 0
\(933\) 40.2958 1.31923
\(934\) 0 0
\(935\) −4.49277 −0.146929
\(936\) 0 0
\(937\) 16.1354 0.527119 0.263560 0.964643i \(-0.415103\pi\)
0.263560 + 0.964643i \(0.415103\pi\)
\(938\) 0 0
\(939\) −25.5201 −0.832816
\(940\) 0 0
\(941\) 5.52947 0.180256 0.0901278 0.995930i \(-0.471272\pi\)
0.0901278 + 0.995930i \(0.471272\pi\)
\(942\) 0 0
\(943\) −14.3863 −0.468483
\(944\) 0 0
\(945\) 8.02072 0.260914
\(946\) 0 0
\(947\) −46.2919 −1.50428 −0.752142 0.659001i \(-0.770979\pi\)
−0.752142 + 0.659001i \(0.770979\pi\)
\(948\) 0 0
\(949\) −73.1033 −2.37303
\(950\) 0 0
\(951\) −21.8158 −0.707425
\(952\) 0 0
\(953\) −14.5090 −0.469991 −0.234996 0.971996i \(-0.575508\pi\)
−0.234996 + 0.971996i \(0.575508\pi\)
\(954\) 0 0
\(955\) −16.3135 −0.527891
\(956\) 0 0
\(957\) −2.66896 −0.0862754
\(958\) 0 0
\(959\) −1.12189 −0.0362276
\(960\) 0 0
\(961\) 92.0747 2.97015
\(962\) 0 0
\(963\) 2.51476 0.0810371
\(964\) 0 0
\(965\) −9.58526 −0.308560
\(966\) 0 0
\(967\) −32.1829 −1.03493 −0.517466 0.855704i \(-0.673125\pi\)
−0.517466 + 0.855704i \(0.673125\pi\)
\(968\) 0 0
\(969\) 6.92682 0.222521
\(970\) 0 0
\(971\) 17.8687 0.573433 0.286717 0.958015i \(-0.407436\pi\)
0.286717 + 0.958015i \(0.407436\pi\)
\(972\) 0 0
\(973\) 7.62721 0.244517
\(974\) 0 0
\(975\) −11.5338 −0.369376
\(976\) 0 0
\(977\) −43.4295 −1.38943 −0.694716 0.719284i \(-0.744470\pi\)
−0.694716 + 0.719284i \(0.744470\pi\)
\(978\) 0 0
\(979\) 11.0261 0.352395
\(980\) 0 0
\(981\) 12.7226 0.406202
\(982\) 0 0
\(983\) 34.0669 1.08656 0.543282 0.839550i \(-0.317181\pi\)
0.543282 + 0.839550i \(0.317181\pi\)
\(984\) 0 0
\(985\) −20.3078 −0.647060
\(986\) 0 0
\(987\) −53.7779 −1.71177
\(988\) 0 0
\(989\) 1.66238 0.0528606
\(990\) 0 0
\(991\) 17.1881 0.545999 0.272999 0.962014i \(-0.411984\pi\)
0.272999 + 0.962014i \(0.411984\pi\)
\(992\) 0 0
\(993\) −9.60305 −0.304743
\(994\) 0 0
\(995\) −13.2874 −0.421238
\(996\) 0 0
\(997\) −24.5050 −0.776081 −0.388040 0.921642i \(-0.626848\pi\)
−0.388040 + 0.921642i \(0.626848\pi\)
\(998\) 0 0
\(999\) 22.7076 0.718436
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.2.a.r.1.4 4
4.3 odd 2 3040.2.a.t.1.1 yes 4
8.3 odd 2 6080.2.a.cd.1.4 4
8.5 even 2 6080.2.a.cf.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.r.1.4 4 1.1 even 1 trivial
3040.2.a.t.1.1 yes 4 4.3 odd 2
6080.2.a.cd.1.4 4 8.3 odd 2
6080.2.a.cf.1.1 4 8.5 even 2