Properties

Label 3040.2.a.r.1.3
Level $3040$
Weight $2$
Character 3040.1
Self dual yes
Analytic conductor $24.275$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,2,Mod(1,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2745222145\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.787711\) of defining polynomial
Character \(\chi\) \(=\) 3040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.787711 q^{3} +1.00000 q^{5} +1.37951 q^{7} -2.37951 q^{9} -6.04159 q^{11} +3.25388 q^{13} +0.787711 q^{15} -4.23750 q^{17} -1.00000 q^{19} +1.08666 q^{21} -0.0553572 q^{23} +1.00000 q^{25} -4.23750 q^{27} +2.66208 q^{29} -0.816397 q^{31} -4.75902 q^{33} +1.37951 q^{35} -6.30777 q^{37} +2.56311 q^{39} +1.57542 q^{41} -0.717435 q^{43} -2.37951 q^{45} -7.22519 q^{47} -5.09695 q^{49} -3.33792 q^{51} -10.7719 q^{53} -6.04159 q^{55} -0.787711 q^{57} +3.84568 q^{59} +8.66006 q^{61} -3.28257 q^{63} +3.25388 q^{65} -5.40618 q^{67} -0.0436054 q^{69} -12.5078 q^{71} +4.48876 q^{73} +0.787711 q^{75} -8.33445 q^{77} -7.43487 q^{79} +3.80061 q^{81} -3.28257 q^{83} -4.23750 q^{85} +2.09695 q^{87} -1.74873 q^{89} +4.48876 q^{91} -0.643085 q^{93} -1.00000 q^{95} +4.59180 q^{97} +14.3760 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 4 q^{5} - 5 q^{7} + q^{9} - 6 q^{11} - q^{13} - q^{15} - q^{17} - 4 q^{19} + 5 q^{21} - 5 q^{23} + 4 q^{25} - q^{27} + 3 q^{29} - 16 q^{31} + 2 q^{33} - 5 q^{35} - 8 q^{37} - 13 q^{39}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.787711 0.454785 0.227392 0.973803i \(-0.426980\pi\)
0.227392 + 0.973803i \(0.426980\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.37951 0.521407 0.260703 0.965419i \(-0.416046\pi\)
0.260703 + 0.965419i \(0.416046\pi\)
\(8\) 0 0
\(9\) −2.37951 −0.793171
\(10\) 0 0
\(11\) −6.04159 −1.82161 −0.910804 0.412839i \(-0.864537\pi\)
−0.910804 + 0.412839i \(0.864537\pi\)
\(12\) 0 0
\(13\) 3.25388 0.902464 0.451232 0.892407i \(-0.350985\pi\)
0.451232 + 0.892407i \(0.350985\pi\)
\(14\) 0 0
\(15\) 0.787711 0.203386
\(16\) 0 0
\(17\) −4.23750 −1.02774 −0.513872 0.857867i \(-0.671789\pi\)
−0.513872 + 0.857867i \(0.671789\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 1.08666 0.237128
\(22\) 0 0
\(23\) −0.0553572 −0.0115428 −0.00577138 0.999983i \(-0.501837\pi\)
−0.00577138 + 0.999983i \(0.501837\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.23750 −0.815507
\(28\) 0 0
\(29\) 2.66208 0.494335 0.247168 0.968973i \(-0.420500\pi\)
0.247168 + 0.968973i \(0.420500\pi\)
\(30\) 0 0
\(31\) −0.816397 −0.146629 −0.0733146 0.997309i \(-0.523358\pi\)
−0.0733146 + 0.997309i \(0.523358\pi\)
\(32\) 0 0
\(33\) −4.75902 −0.828440
\(34\) 0 0
\(35\) 1.37951 0.233180
\(36\) 0 0
\(37\) −6.30777 −1.03699 −0.518496 0.855080i \(-0.673508\pi\)
−0.518496 + 0.855080i \(0.673508\pi\)
\(38\) 0 0
\(39\) 2.56311 0.410427
\(40\) 0 0
\(41\) 1.57542 0.246039 0.123020 0.992404i \(-0.460742\pi\)
0.123020 + 0.992404i \(0.460742\pi\)
\(42\) 0 0
\(43\) −0.717435 −0.109408 −0.0547039 0.998503i \(-0.517421\pi\)
−0.0547039 + 0.998503i \(0.517421\pi\)
\(44\) 0 0
\(45\) −2.37951 −0.354717
\(46\) 0 0
\(47\) −7.22519 −1.05390 −0.526951 0.849895i \(-0.676665\pi\)
−0.526951 + 0.849895i \(0.676665\pi\)
\(48\) 0 0
\(49\) −5.09695 −0.728135
\(50\) 0 0
\(51\) −3.33792 −0.467403
\(52\) 0 0
\(53\) −10.7719 −1.47964 −0.739819 0.672806i \(-0.765089\pi\)
−0.739819 + 0.672806i \(0.765089\pi\)
\(54\) 0 0
\(55\) −6.04159 −0.814648
\(56\) 0 0
\(57\) −0.787711 −0.104335
\(58\) 0 0
\(59\) 3.84568 0.500665 0.250332 0.968160i \(-0.419460\pi\)
0.250332 + 0.968160i \(0.419460\pi\)
\(60\) 0 0
\(61\) 8.66006 1.10881 0.554404 0.832248i \(-0.312946\pi\)
0.554404 + 0.832248i \(0.312946\pi\)
\(62\) 0 0
\(63\) −3.28257 −0.413564
\(64\) 0 0
\(65\) 3.25388 0.403594
\(66\) 0 0
\(67\) −5.40618 −0.660470 −0.330235 0.943899i \(-0.607128\pi\)
−0.330235 + 0.943899i \(0.607128\pi\)
\(68\) 0 0
\(69\) −0.0436054 −0.00524948
\(70\) 0 0
\(71\) −12.5078 −1.48440 −0.742199 0.670180i \(-0.766217\pi\)
−0.742199 + 0.670180i \(0.766217\pi\)
\(72\) 0 0
\(73\) 4.48876 0.525370 0.262685 0.964882i \(-0.415392\pi\)
0.262685 + 0.964882i \(0.415392\pi\)
\(74\) 0 0
\(75\) 0.787711 0.0909570
\(76\) 0 0
\(77\) −8.33445 −0.949798
\(78\) 0 0
\(79\) −7.43487 −0.836488 −0.418244 0.908335i \(-0.637354\pi\)
−0.418244 + 0.908335i \(0.637354\pi\)
\(80\) 0 0
\(81\) 3.80061 0.422290
\(82\) 0 0
\(83\) −3.28257 −0.360308 −0.180154 0.983638i \(-0.557660\pi\)
−0.180154 + 0.983638i \(0.557660\pi\)
\(84\) 0 0
\(85\) −4.23750 −0.459621
\(86\) 0 0
\(87\) 2.09695 0.224816
\(88\) 0 0
\(89\) −1.74873 −0.185365 −0.0926827 0.995696i \(-0.529544\pi\)
−0.0926827 + 0.995696i \(0.529544\pi\)
\(90\) 0 0
\(91\) 4.48876 0.470550
\(92\) 0 0
\(93\) −0.643085 −0.0666848
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 4.59180 0.466227 0.233113 0.972450i \(-0.425109\pi\)
0.233113 + 0.972450i \(0.425109\pi\)
\(98\) 0 0
\(99\) 14.3760 1.44485
\(100\) 0 0
\(101\) −2.54412 −0.253150 −0.126575 0.991957i \(-0.540398\pi\)
−0.126575 + 0.991957i \(0.540398\pi\)
\(102\) 0 0
\(103\) −7.44979 −0.734049 −0.367025 0.930211i \(-0.619624\pi\)
−0.367025 + 0.930211i \(0.619624\pi\)
\(104\) 0 0
\(105\) 1.08666 0.106047
\(106\) 0 0
\(107\) −4.11187 −0.397509 −0.198755 0.980049i \(-0.563690\pi\)
−0.198755 + 0.980049i \(0.563690\pi\)
\(108\) 0 0
\(109\) 12.1474 1.16351 0.581753 0.813365i \(-0.302367\pi\)
0.581753 + 0.813365i \(0.302367\pi\)
\(110\) 0 0
\(111\) −4.96870 −0.471608
\(112\) 0 0
\(113\) −10.4237 −0.980581 −0.490290 0.871559i \(-0.663109\pi\)
−0.490290 + 0.871559i \(0.663109\pi\)
\(114\) 0 0
\(115\) −0.0553572 −0.00516208
\(116\) 0 0
\(117\) −7.74264 −0.715808
\(118\) 0 0
\(119\) −5.84568 −0.535873
\(120\) 0 0
\(121\) 25.5008 2.31825
\(122\) 0 0
\(123\) 1.24098 0.111895
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.266185 0.0236201 0.0118101 0.999930i \(-0.496241\pi\)
0.0118101 + 0.999930i \(0.496241\pi\)
\(128\) 0 0
\(129\) −0.565131 −0.0497570
\(130\) 0 0
\(131\) −13.7693 −1.20303 −0.601515 0.798861i \(-0.705436\pi\)
−0.601515 + 0.798861i \(0.705436\pi\)
\(132\) 0 0
\(133\) −1.37951 −0.119619
\(134\) 0 0
\(135\) −4.23750 −0.364706
\(136\) 0 0
\(137\) 8.12678 0.694318 0.347159 0.937806i \(-0.387146\pi\)
0.347159 + 0.937806i \(0.387146\pi\)
\(138\) 0 0
\(139\) 19.5596 1.65903 0.829513 0.558487i \(-0.188618\pi\)
0.829513 + 0.558487i \(0.188618\pi\)
\(140\) 0 0
\(141\) −5.69136 −0.479299
\(142\) 0 0
\(143\) −19.6586 −1.64393
\(144\) 0 0
\(145\) 2.66208 0.221073
\(146\) 0 0
\(147\) −4.01492 −0.331145
\(148\) 0 0
\(149\) 6.57396 0.538560 0.269280 0.963062i \(-0.413214\pi\)
0.269280 + 0.963062i \(0.413214\pi\)
\(150\) 0 0
\(151\) −5.49224 −0.446952 −0.223476 0.974709i \(-0.571740\pi\)
−0.223476 + 0.974709i \(0.571740\pi\)
\(152\) 0 0
\(153\) 10.0832 0.815177
\(154\) 0 0
\(155\) −0.816397 −0.0655746
\(156\) 0 0
\(157\) −3.43487 −0.274132 −0.137066 0.990562i \(-0.543767\pi\)
−0.137066 + 0.990562i \(0.543767\pi\)
\(158\) 0 0
\(159\) −8.48516 −0.672917
\(160\) 0 0
\(161\) −0.0763659 −0.00601847
\(162\) 0 0
\(163\) −5.93088 −0.464542 −0.232271 0.972651i \(-0.574616\pi\)
−0.232271 + 0.972651i \(0.574616\pi\)
\(164\) 0 0
\(165\) −4.75902 −0.370490
\(166\) 0 0
\(167\) 19.0510 1.47421 0.737106 0.675777i \(-0.236192\pi\)
0.737106 + 0.675777i \(0.236192\pi\)
\(168\) 0 0
\(169\) −2.41227 −0.185559
\(170\) 0 0
\(171\) 2.37951 0.181966
\(172\) 0 0
\(173\) 17.9365 1.36369 0.681845 0.731497i \(-0.261178\pi\)
0.681845 + 0.731497i \(0.261178\pi\)
\(174\) 0 0
\(175\) 1.37951 0.104281
\(176\) 0 0
\(177\) 3.02928 0.227695
\(178\) 0 0
\(179\) −21.7090 −1.62261 −0.811304 0.584624i \(-0.801242\pi\)
−0.811304 + 0.584624i \(0.801242\pi\)
\(180\) 0 0
\(181\) −0.367206 −0.0272942 −0.0136471 0.999907i \(-0.504344\pi\)
−0.0136471 + 0.999907i \(0.504344\pi\)
\(182\) 0 0
\(183\) 6.82162 0.504269
\(184\) 0 0
\(185\) −6.30777 −0.463757
\(186\) 0 0
\(187\) 25.6012 1.87215
\(188\) 0 0
\(189\) −5.84568 −0.425211
\(190\) 0 0
\(191\) −16.8026 −1.21580 −0.607898 0.794015i \(-0.707987\pi\)
−0.607898 + 0.794015i \(0.707987\pi\)
\(192\) 0 0
\(193\) 19.9090 1.43308 0.716541 0.697545i \(-0.245724\pi\)
0.716541 + 0.697545i \(0.245724\pi\)
\(194\) 0 0
\(195\) 2.56311 0.183548
\(196\) 0 0
\(197\) 10.9857 0.782697 0.391349 0.920243i \(-0.372009\pi\)
0.391349 + 0.920243i \(0.372009\pi\)
\(198\) 0 0
\(199\) −14.2375 −1.00927 −0.504635 0.863333i \(-0.668373\pi\)
−0.504635 + 0.863333i \(0.668373\pi\)
\(200\) 0 0
\(201\) −4.25851 −0.300372
\(202\) 0 0
\(203\) 3.67237 0.257750
\(204\) 0 0
\(205\) 1.57542 0.110032
\(206\) 0 0
\(207\) 0.131723 0.00915538
\(208\) 0 0
\(209\) 6.04159 0.417905
\(210\) 0 0
\(211\) 3.42110 0.235518 0.117759 0.993042i \(-0.462429\pi\)
0.117759 + 0.993042i \(0.462429\pi\)
\(212\) 0 0
\(213\) −9.85249 −0.675082
\(214\) 0 0
\(215\) −0.717435 −0.0489286
\(216\) 0 0
\(217\) −1.12623 −0.0764535
\(218\) 0 0
\(219\) 3.53585 0.238930
\(220\) 0 0
\(221\) −13.7883 −0.927502
\(222\) 0 0
\(223\) −22.4355 −1.50239 −0.751195 0.660080i \(-0.770522\pi\)
−0.751195 + 0.660080i \(0.770522\pi\)
\(224\) 0 0
\(225\) −2.37951 −0.158634
\(226\) 0 0
\(227\) 6.07911 0.403484 0.201742 0.979439i \(-0.435340\pi\)
0.201742 + 0.979439i \(0.435340\pi\)
\(228\) 0 0
\(229\) 7.01912 0.463836 0.231918 0.972735i \(-0.425500\pi\)
0.231918 + 0.972735i \(0.425500\pi\)
\(230\) 0 0
\(231\) −6.56513 −0.431954
\(232\) 0 0
\(233\) −26.4831 −1.73497 −0.867484 0.497465i \(-0.834264\pi\)
−0.867484 + 0.497465i \(0.834264\pi\)
\(234\) 0 0
\(235\) −7.22519 −0.471320
\(236\) 0 0
\(237\) −5.85653 −0.380422
\(238\) 0 0
\(239\) 10.2633 0.663878 0.331939 0.943301i \(-0.392297\pi\)
0.331939 + 0.943301i \(0.392297\pi\)
\(240\) 0 0
\(241\) −19.4853 −1.25516 −0.627579 0.778553i \(-0.715954\pi\)
−0.627579 + 0.778553i \(0.715954\pi\)
\(242\) 0 0
\(243\) 15.7063 1.00756
\(244\) 0 0
\(245\) −5.09695 −0.325632
\(246\) 0 0
\(247\) −3.25388 −0.207039
\(248\) 0 0
\(249\) −2.58571 −0.163863
\(250\) 0 0
\(251\) 1.71597 0.108311 0.0541556 0.998533i \(-0.482753\pi\)
0.0541556 + 0.998533i \(0.482753\pi\)
\(252\) 0 0
\(253\) 0.334445 0.0210264
\(254\) 0 0
\(255\) −3.33792 −0.209029
\(256\) 0 0
\(257\) −11.8258 −0.737675 −0.368837 0.929494i \(-0.620244\pi\)
−0.368837 + 0.929494i \(0.620244\pi\)
\(258\) 0 0
\(259\) −8.70165 −0.540694
\(260\) 0 0
\(261\) −6.33445 −0.392092
\(262\) 0 0
\(263\) 9.44370 0.582323 0.291162 0.956674i \(-0.405958\pi\)
0.291162 + 0.956674i \(0.405958\pi\)
\(264\) 0 0
\(265\) −10.7719 −0.661714
\(266\) 0 0
\(267\) −1.37750 −0.0843014
\(268\) 0 0
\(269\) 18.7767 1.14483 0.572417 0.819962i \(-0.306006\pi\)
0.572417 + 0.819962i \(0.306006\pi\)
\(270\) 0 0
\(271\) 5.40532 0.328350 0.164175 0.986431i \(-0.447504\pi\)
0.164175 + 0.986431i \(0.447504\pi\)
\(272\) 0 0
\(273\) 3.53585 0.213999
\(274\) 0 0
\(275\) −6.04159 −0.364322
\(276\) 0 0
\(277\) 5.88929 0.353853 0.176926 0.984224i \(-0.443385\pi\)
0.176926 + 0.984224i \(0.443385\pi\)
\(278\) 0 0
\(279\) 1.94263 0.116302
\(280\) 0 0
\(281\) −17.4607 −1.04162 −0.520808 0.853674i \(-0.674369\pi\)
−0.520808 + 0.853674i \(0.674369\pi\)
\(282\) 0 0
\(283\) 11.0015 0.653969 0.326984 0.945030i \(-0.393968\pi\)
0.326984 + 0.945030i \(0.393968\pi\)
\(284\) 0 0
\(285\) −0.787711 −0.0466599
\(286\) 0 0
\(287\) 2.17331 0.128287
\(288\) 0 0
\(289\) 0.956395 0.0562585
\(290\) 0 0
\(291\) 3.61701 0.212033
\(292\) 0 0
\(293\) 1.50515 0.0879315 0.0439658 0.999033i \(-0.486001\pi\)
0.0439658 + 0.999033i \(0.486001\pi\)
\(294\) 0 0
\(295\) 3.84568 0.223904
\(296\) 0 0
\(297\) 25.6012 1.48553
\(298\) 0 0
\(299\) −0.180125 −0.0104169
\(300\) 0 0
\(301\) −0.989710 −0.0570459
\(302\) 0 0
\(303\) −2.00403 −0.115129
\(304\) 0 0
\(305\) 8.66006 0.495874
\(306\) 0 0
\(307\) 2.38505 0.136122 0.0680609 0.997681i \(-0.478319\pi\)
0.0680609 + 0.997681i \(0.478319\pi\)
\(308\) 0 0
\(309\) −5.86828 −0.333835
\(310\) 0 0
\(311\) −20.3446 −1.15364 −0.576818 0.816872i \(-0.695706\pi\)
−0.576818 + 0.816872i \(0.695706\pi\)
\(312\) 0 0
\(313\) 8.65512 0.489216 0.244608 0.969622i \(-0.421341\pi\)
0.244608 + 0.969622i \(0.421341\pi\)
\(314\) 0 0
\(315\) −3.28257 −0.184952
\(316\) 0 0
\(317\) 6.01290 0.337718 0.168859 0.985640i \(-0.445992\pi\)
0.168859 + 0.985640i \(0.445992\pi\)
\(318\) 0 0
\(319\) −16.0832 −0.900485
\(320\) 0 0
\(321\) −3.23896 −0.180781
\(322\) 0 0
\(323\) 4.23750 0.235781
\(324\) 0 0
\(325\) 3.25388 0.180493
\(326\) 0 0
\(327\) 9.56861 0.529145
\(328\) 0 0
\(329\) −9.96724 −0.549512
\(330\) 0 0
\(331\) −35.3240 −1.94158 −0.970792 0.239924i \(-0.922877\pi\)
−0.970792 + 0.239924i \(0.922877\pi\)
\(332\) 0 0
\(333\) 15.0094 0.822511
\(334\) 0 0
\(335\) −5.40618 −0.295371
\(336\) 0 0
\(337\) −24.2681 −1.32197 −0.660983 0.750401i \(-0.729860\pi\)
−0.660983 + 0.750401i \(0.729860\pi\)
\(338\) 0 0
\(339\) −8.21087 −0.445953
\(340\) 0 0
\(341\) 4.93234 0.267101
\(342\) 0 0
\(343\) −16.6879 −0.901061
\(344\) 0 0
\(345\) −0.0436054 −0.00234764
\(346\) 0 0
\(347\) 13.3330 0.715752 0.357876 0.933769i \(-0.383501\pi\)
0.357876 + 0.933769i \(0.383501\pi\)
\(348\) 0 0
\(349\) 19.2844 1.03227 0.516136 0.856507i \(-0.327370\pi\)
0.516136 + 0.856507i \(0.327370\pi\)
\(350\) 0 0
\(351\) −13.7883 −0.735965
\(352\) 0 0
\(353\) 10.6047 0.564431 0.282216 0.959351i \(-0.408931\pi\)
0.282216 + 0.959351i \(0.408931\pi\)
\(354\) 0 0
\(355\) −12.5078 −0.663843
\(356\) 0 0
\(357\) −4.60470 −0.243707
\(358\) 0 0
\(359\) −30.0742 −1.58726 −0.793628 0.608403i \(-0.791810\pi\)
−0.793628 + 0.608403i \(0.791810\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 20.0873 1.05431
\(364\) 0 0
\(365\) 4.48876 0.234953
\(366\) 0 0
\(367\) −0.541199 −0.0282504 −0.0141252 0.999900i \(-0.504496\pi\)
−0.0141252 + 0.999900i \(0.504496\pi\)
\(368\) 0 0
\(369\) −3.74873 −0.195151
\(370\) 0 0
\(371\) −14.8600 −0.771493
\(372\) 0 0
\(373\) −2.49485 −0.129179 −0.0645893 0.997912i \(-0.520574\pi\)
−0.0645893 + 0.997912i \(0.520574\pi\)
\(374\) 0 0
\(375\) 0.787711 0.0406772
\(376\) 0 0
\(377\) 8.66208 0.446120
\(378\) 0 0
\(379\) 35.7555 1.83664 0.918320 0.395840i \(-0.129546\pi\)
0.918320 + 0.395840i \(0.129546\pi\)
\(380\) 0 0
\(381\) 0.209677 0.0107421
\(382\) 0 0
\(383\) −21.5002 −1.09861 −0.549305 0.835622i \(-0.685107\pi\)
−0.549305 + 0.835622i \(0.685107\pi\)
\(384\) 0 0
\(385\) −8.33445 −0.424763
\(386\) 0 0
\(387\) 1.70714 0.0867790
\(388\) 0 0
\(389\) 25.4578 1.29076 0.645380 0.763862i \(-0.276699\pi\)
0.645380 + 0.763862i \(0.276699\pi\)
\(390\) 0 0
\(391\) 0.234576 0.0118630
\(392\) 0 0
\(393\) −10.8462 −0.547120
\(394\) 0 0
\(395\) −7.43487 −0.374089
\(396\) 0 0
\(397\) 0.507758 0.0254836 0.0127418 0.999919i \(-0.495944\pi\)
0.0127418 + 0.999919i \(0.495944\pi\)
\(398\) 0 0
\(399\) −1.08666 −0.0544009
\(400\) 0 0
\(401\) −11.6012 −0.579338 −0.289669 0.957127i \(-0.593545\pi\)
−0.289669 + 0.957127i \(0.593545\pi\)
\(402\) 0 0
\(403\) −2.65646 −0.132328
\(404\) 0 0
\(405\) 3.80061 0.188854
\(406\) 0 0
\(407\) 38.1090 1.88899
\(408\) 0 0
\(409\) 3.52500 0.174300 0.0871501 0.996195i \(-0.472224\pi\)
0.0871501 + 0.996195i \(0.472224\pi\)
\(410\) 0 0
\(411\) 6.40155 0.315765
\(412\) 0 0
\(413\) 5.30516 0.261050
\(414\) 0 0
\(415\) −3.28257 −0.161135
\(416\) 0 0
\(417\) 15.4073 0.754500
\(418\) 0 0
\(419\) 24.8750 1.21522 0.607611 0.794235i \(-0.292128\pi\)
0.607611 + 0.794235i \(0.292128\pi\)
\(420\) 0 0
\(421\) −13.5289 −0.659358 −0.329679 0.944093i \(-0.606941\pi\)
−0.329679 + 0.944093i \(0.606941\pi\)
\(422\) 0 0
\(423\) 17.1924 0.835925
\(424\) 0 0
\(425\) −4.23750 −0.205549
\(426\) 0 0
\(427\) 11.9467 0.578139
\(428\) 0 0
\(429\) −15.4853 −0.747637
\(430\) 0 0
\(431\) −2.23069 −0.107448 −0.0537242 0.998556i \(-0.517109\pi\)
−0.0537242 + 0.998556i \(0.517109\pi\)
\(432\) 0 0
\(433\) 30.2556 1.45399 0.726996 0.686641i \(-0.240916\pi\)
0.726996 + 0.686641i \(0.240916\pi\)
\(434\) 0 0
\(435\) 2.09695 0.100541
\(436\) 0 0
\(437\) 0.0553572 0.00264809
\(438\) 0 0
\(439\) −12.5828 −0.600544 −0.300272 0.953854i \(-0.597077\pi\)
−0.300272 + 0.953854i \(0.597077\pi\)
\(440\) 0 0
\(441\) 12.1282 0.577536
\(442\) 0 0
\(443\) 33.1907 1.57694 0.788469 0.615075i \(-0.210874\pi\)
0.788469 + 0.615075i \(0.210874\pi\)
\(444\) 0 0
\(445\) −1.74873 −0.0828979
\(446\) 0 0
\(447\) 5.17838 0.244929
\(448\) 0 0
\(449\) 35.2720 1.66459 0.832294 0.554334i \(-0.187027\pi\)
0.832294 + 0.554334i \(0.187027\pi\)
\(450\) 0 0
\(451\) −9.51805 −0.448187
\(452\) 0 0
\(453\) −4.32630 −0.203267
\(454\) 0 0
\(455\) 4.48876 0.210437
\(456\) 0 0
\(457\) −16.2100 −0.758270 −0.379135 0.925341i \(-0.623778\pi\)
−0.379135 + 0.925341i \(0.623778\pi\)
\(458\) 0 0
\(459\) 17.9564 0.838133
\(460\) 0 0
\(461\) 5.03610 0.234554 0.117277 0.993099i \(-0.462583\pi\)
0.117277 + 0.993099i \(0.462583\pi\)
\(462\) 0 0
\(463\) 29.6932 1.37996 0.689981 0.723828i \(-0.257619\pi\)
0.689981 + 0.723828i \(0.257619\pi\)
\(464\) 0 0
\(465\) −0.643085 −0.0298223
\(466\) 0 0
\(467\) 2.37603 0.109950 0.0549749 0.998488i \(-0.482492\pi\)
0.0549749 + 0.998488i \(0.482492\pi\)
\(468\) 0 0
\(469\) −7.45789 −0.344374
\(470\) 0 0
\(471\) −2.70568 −0.124671
\(472\) 0 0
\(473\) 4.33445 0.199298
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 25.6319 1.17361
\(478\) 0 0
\(479\) 25.7054 1.17451 0.587255 0.809402i \(-0.300209\pi\)
0.587255 + 0.809402i \(0.300209\pi\)
\(480\) 0 0
\(481\) −20.5247 −0.935847
\(482\) 0 0
\(483\) −0.0601542 −0.00273711
\(484\) 0 0
\(485\) 4.59180 0.208503
\(486\) 0 0
\(487\) 1.62483 0.0736281 0.0368140 0.999322i \(-0.488279\pi\)
0.0368140 + 0.999322i \(0.488279\pi\)
\(488\) 0 0
\(489\) −4.67181 −0.211267
\(490\) 0 0
\(491\) 22.9254 1.03461 0.517304 0.855802i \(-0.326936\pi\)
0.517304 + 0.855802i \(0.326936\pi\)
\(492\) 0 0
\(493\) −11.2805 −0.508050
\(494\) 0 0
\(495\) 14.3760 0.646155
\(496\) 0 0
\(497\) −17.2546 −0.773975
\(498\) 0 0
\(499\) 6.15230 0.275415 0.137707 0.990473i \(-0.456027\pi\)
0.137707 + 0.990473i \(0.456027\pi\)
\(500\) 0 0
\(501\) 15.0067 0.670449
\(502\) 0 0
\(503\) −7.48730 −0.333842 −0.166921 0.985970i \(-0.553383\pi\)
−0.166921 + 0.985970i \(0.553383\pi\)
\(504\) 0 0
\(505\) −2.54412 −0.113212
\(506\) 0 0
\(507\) −1.90017 −0.0843896
\(508\) 0 0
\(509\) −36.3655 −1.61187 −0.805936 0.592003i \(-0.798337\pi\)
−0.805936 + 0.592003i \(0.798337\pi\)
\(510\) 0 0
\(511\) 6.19231 0.273931
\(512\) 0 0
\(513\) 4.23750 0.187090
\(514\) 0 0
\(515\) −7.44979 −0.328277
\(516\) 0 0
\(517\) 43.6516 1.91980
\(518\) 0 0
\(519\) 14.1288 0.620185
\(520\) 0 0
\(521\) 14.6237 0.640676 0.320338 0.947303i \(-0.396204\pi\)
0.320338 + 0.947303i \(0.396204\pi\)
\(522\) 0 0
\(523\) −1.73771 −0.0759845 −0.0379923 0.999278i \(-0.512096\pi\)
−0.0379923 + 0.999278i \(0.512096\pi\)
\(524\) 0 0
\(525\) 1.08666 0.0474256
\(526\) 0 0
\(527\) 3.45948 0.150697
\(528\) 0 0
\(529\) −22.9969 −0.999867
\(530\) 0 0
\(531\) −9.15084 −0.397113
\(532\) 0 0
\(533\) 5.12623 0.222042
\(534\) 0 0
\(535\) −4.11187 −0.177771
\(536\) 0 0
\(537\) −17.1004 −0.737938
\(538\) 0 0
\(539\) 30.7937 1.32638
\(540\) 0 0
\(541\) −39.5281 −1.69944 −0.849722 0.527231i \(-0.823230\pi\)
−0.849722 + 0.527231i \(0.823230\pi\)
\(542\) 0 0
\(543\) −0.289252 −0.0124130
\(544\) 0 0
\(545\) 12.1474 0.520336
\(546\) 0 0
\(547\) 33.7147 1.44154 0.720768 0.693177i \(-0.243789\pi\)
0.720768 + 0.693177i \(0.243789\pi\)
\(548\) 0 0
\(549\) −20.6067 −0.879473
\(550\) 0 0
\(551\) −2.66208 −0.113408
\(552\) 0 0
\(553\) −10.2565 −0.436150
\(554\) 0 0
\(555\) −4.96870 −0.210910
\(556\) 0 0
\(557\) −36.1417 −1.53137 −0.765687 0.643213i \(-0.777601\pi\)
−0.765687 + 0.643213i \(0.777601\pi\)
\(558\) 0 0
\(559\) −2.33445 −0.0987365
\(560\) 0 0
\(561\) 20.1664 0.851424
\(562\) 0 0
\(563\) 14.9403 0.629659 0.314829 0.949148i \(-0.398053\pi\)
0.314829 + 0.949148i \(0.398053\pi\)
\(564\) 0 0
\(565\) −10.4237 −0.438529
\(566\) 0 0
\(567\) 5.24299 0.220185
\(568\) 0 0
\(569\) 25.7992 1.08156 0.540778 0.841165i \(-0.318130\pi\)
0.540778 + 0.841165i \(0.318130\pi\)
\(570\) 0 0
\(571\) −12.8183 −0.536428 −0.268214 0.963359i \(-0.586433\pi\)
−0.268214 + 0.963359i \(0.586433\pi\)
\(572\) 0 0
\(573\) −13.2356 −0.552926
\(574\) 0 0
\(575\) −0.0553572 −0.00230855
\(576\) 0 0
\(577\) −35.6912 −1.48584 −0.742922 0.669378i \(-0.766561\pi\)
−0.742922 + 0.669378i \(0.766561\pi\)
\(578\) 0 0
\(579\) 15.6825 0.651744
\(580\) 0 0
\(581\) −4.52834 −0.187867
\(582\) 0 0
\(583\) 65.0796 2.69532
\(584\) 0 0
\(585\) −7.74264 −0.320119
\(586\) 0 0
\(587\) −30.3363 −1.25211 −0.626057 0.779777i \(-0.715332\pi\)
−0.626057 + 0.779777i \(0.715332\pi\)
\(588\) 0 0
\(589\) 0.816397 0.0336391
\(590\) 0 0
\(591\) 8.65353 0.355959
\(592\) 0 0
\(593\) −12.5828 −0.516713 −0.258357 0.966050i \(-0.583181\pi\)
−0.258357 + 0.966050i \(0.583181\pi\)
\(594\) 0 0
\(595\) −5.84568 −0.239650
\(596\) 0 0
\(597\) −11.2150 −0.459001
\(598\) 0 0
\(599\) 21.4319 0.875686 0.437843 0.899052i \(-0.355743\pi\)
0.437843 + 0.899052i \(0.355743\pi\)
\(600\) 0 0
\(601\) 14.2267 0.580317 0.290159 0.956979i \(-0.406292\pi\)
0.290159 + 0.956979i \(0.406292\pi\)
\(602\) 0 0
\(603\) 12.8641 0.523866
\(604\) 0 0
\(605\) 25.5008 1.03676
\(606\) 0 0
\(607\) 24.1761 0.981276 0.490638 0.871364i \(-0.336764\pi\)
0.490638 + 0.871364i \(0.336764\pi\)
\(608\) 0 0
\(609\) 2.89276 0.117221
\(610\) 0 0
\(611\) −23.5099 −0.951109
\(612\) 0 0
\(613\) −39.5204 −1.59621 −0.798106 0.602517i \(-0.794165\pi\)
−0.798106 + 0.602517i \(0.794165\pi\)
\(614\) 0 0
\(615\) 1.24098 0.0500410
\(616\) 0 0
\(617\) −31.5479 −1.27007 −0.635035 0.772483i \(-0.719014\pi\)
−0.635035 + 0.772483i \(0.719014\pi\)
\(618\) 0 0
\(619\) 45.6399 1.83442 0.917211 0.398402i \(-0.130435\pi\)
0.917211 + 0.398402i \(0.130435\pi\)
\(620\) 0 0
\(621\) 0.234576 0.00941321
\(622\) 0 0
\(623\) −2.41240 −0.0966507
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 4.75902 0.190057
\(628\) 0 0
\(629\) 26.7292 1.06576
\(630\) 0 0
\(631\) −32.3537 −1.28798 −0.643991 0.765033i \(-0.722722\pi\)
−0.643991 + 0.765033i \(0.722722\pi\)
\(632\) 0 0
\(633\) 2.69484 0.107110
\(634\) 0 0
\(635\) 0.266185 0.0105632
\(636\) 0 0
\(637\) −16.5848 −0.657116
\(638\) 0 0
\(639\) 29.7624 1.17738
\(640\) 0 0
\(641\) 22.4802 0.887915 0.443958 0.896048i \(-0.353574\pi\)
0.443958 + 0.896048i \(0.353574\pi\)
\(642\) 0 0
\(643\) 40.7884 1.60854 0.804269 0.594265i \(-0.202557\pi\)
0.804269 + 0.594265i \(0.202557\pi\)
\(644\) 0 0
\(645\) −0.565131 −0.0222520
\(646\) 0 0
\(647\) 13.6963 0.538457 0.269229 0.963076i \(-0.413231\pi\)
0.269229 + 0.963076i \(0.413231\pi\)
\(648\) 0 0
\(649\) −23.2340 −0.912015
\(650\) 0 0
\(651\) −0.887143 −0.0347699
\(652\) 0 0
\(653\) −27.2392 −1.06595 −0.532977 0.846130i \(-0.678927\pi\)
−0.532977 + 0.846130i \(0.678927\pi\)
\(654\) 0 0
\(655\) −13.7693 −0.538012
\(656\) 0 0
\(657\) −10.6811 −0.416708
\(658\) 0 0
\(659\) −42.1578 −1.64224 −0.821118 0.570759i \(-0.806649\pi\)
−0.821118 + 0.570759i \(0.806649\pi\)
\(660\) 0 0
\(661\) 29.9822 1.16617 0.583086 0.812410i \(-0.301845\pi\)
0.583086 + 0.812410i \(0.301845\pi\)
\(662\) 0 0
\(663\) −10.8612 −0.421814
\(664\) 0 0
\(665\) −1.37951 −0.0534952
\(666\) 0 0
\(667\) −0.147365 −0.00570600
\(668\) 0 0
\(669\) −17.6727 −0.683264
\(670\) 0 0
\(671\) −52.3205 −2.01981
\(672\) 0 0
\(673\) 1.32502 0.0510758 0.0255379 0.999674i \(-0.491870\pi\)
0.0255379 + 0.999674i \(0.491870\pi\)
\(674\) 0 0
\(675\) −4.23750 −0.163101
\(676\) 0 0
\(677\) 22.7362 0.873825 0.436912 0.899504i \(-0.356072\pi\)
0.436912 + 0.899504i \(0.356072\pi\)
\(678\) 0 0
\(679\) 6.33445 0.243094
\(680\) 0 0
\(681\) 4.78858 0.183499
\(682\) 0 0
\(683\) −42.5743 −1.62906 −0.814530 0.580122i \(-0.803005\pi\)
−0.814530 + 0.580122i \(0.803005\pi\)
\(684\) 0 0
\(685\) 8.12678 0.310508
\(686\) 0 0
\(687\) 5.52903 0.210946
\(688\) 0 0
\(689\) −35.0505 −1.33532
\(690\) 0 0
\(691\) 34.7661 1.32257 0.661283 0.750137i \(-0.270012\pi\)
0.661283 + 0.750137i \(0.270012\pi\)
\(692\) 0 0
\(693\) 19.8319 0.753352
\(694\) 0 0
\(695\) 19.5596 0.741939
\(696\) 0 0
\(697\) −6.67585 −0.252866
\(698\) 0 0
\(699\) −20.8611 −0.789038
\(700\) 0 0
\(701\) −24.0920 −0.909943 −0.454971 0.890506i \(-0.650350\pi\)
−0.454971 + 0.890506i \(0.650350\pi\)
\(702\) 0 0
\(703\) 6.30777 0.237902
\(704\) 0 0
\(705\) −5.69136 −0.214349
\(706\) 0 0
\(707\) −3.50965 −0.131994
\(708\) 0 0
\(709\) −28.0328 −1.05279 −0.526396 0.850239i \(-0.676457\pi\)
−0.526396 + 0.850239i \(0.676457\pi\)
\(710\) 0 0
\(711\) 17.6914 0.663478
\(712\) 0 0
\(713\) 0.0451934 0.00169251
\(714\) 0 0
\(715\) −19.6586 −0.735190
\(716\) 0 0
\(717\) 8.08451 0.301922
\(718\) 0 0
\(719\) −45.5102 −1.69724 −0.848622 0.529000i \(-0.822567\pi\)
−0.848622 + 0.529000i \(0.822567\pi\)
\(720\) 0 0
\(721\) −10.2771 −0.382738
\(722\) 0 0
\(723\) −15.3488 −0.570827
\(724\) 0 0
\(725\) 2.66208 0.0988671
\(726\) 0 0
\(727\) 33.1694 1.23019 0.615093 0.788455i \(-0.289119\pi\)
0.615093 + 0.788455i \(0.289119\pi\)
\(728\) 0 0
\(729\) 0.970162 0.0359319
\(730\) 0 0
\(731\) 3.04013 0.112443
\(732\) 0 0
\(733\) 39.4783 1.45817 0.729083 0.684426i \(-0.239947\pi\)
0.729083 + 0.684426i \(0.239947\pi\)
\(734\) 0 0
\(735\) −4.01492 −0.148093
\(736\) 0 0
\(737\) 32.6619 1.20312
\(738\) 0 0
\(739\) 28.8216 1.06022 0.530110 0.847929i \(-0.322151\pi\)
0.530110 + 0.847929i \(0.322151\pi\)
\(740\) 0 0
\(741\) −2.56311 −0.0941584
\(742\) 0 0
\(743\) −11.7691 −0.431768 −0.215884 0.976419i \(-0.569263\pi\)
−0.215884 + 0.976419i \(0.569263\pi\)
\(744\) 0 0
\(745\) 6.57396 0.240851
\(746\) 0 0
\(747\) 7.81090 0.285786
\(748\) 0 0
\(749\) −5.67237 −0.207264
\(750\) 0 0
\(751\) −7.72704 −0.281964 −0.140982 0.990012i \(-0.545026\pi\)
−0.140982 + 0.990012i \(0.545026\pi\)
\(752\) 0 0
\(753\) 1.35169 0.0492583
\(754\) 0 0
\(755\) −5.49224 −0.199883
\(756\) 0 0
\(757\) −22.8709 −0.831258 −0.415629 0.909534i \(-0.636439\pi\)
−0.415629 + 0.909534i \(0.636439\pi\)
\(758\) 0 0
\(759\) 0.263446 0.00956249
\(760\) 0 0
\(761\) 18.1890 0.659349 0.329675 0.944095i \(-0.393061\pi\)
0.329675 + 0.944095i \(0.393061\pi\)
\(762\) 0 0
\(763\) 16.7574 0.606660
\(764\) 0 0
\(765\) 10.0832 0.364558
\(766\) 0 0
\(767\) 12.5134 0.451832
\(768\) 0 0
\(769\) −7.91884 −0.285561 −0.142780 0.989754i \(-0.545604\pi\)
−0.142780 + 0.989754i \(0.545604\pi\)
\(770\) 0 0
\(771\) −9.31533 −0.335483
\(772\) 0 0
\(773\) 2.92174 0.105088 0.0525438 0.998619i \(-0.483267\pi\)
0.0525438 + 0.998619i \(0.483267\pi\)
\(774\) 0 0
\(775\) −0.816397 −0.0293259
\(776\) 0 0
\(777\) −6.85438 −0.245900
\(778\) 0 0
\(779\) −1.57542 −0.0564453
\(780\) 0 0
\(781\) 75.5667 2.70399
\(782\) 0 0
\(783\) −11.2805 −0.403134
\(784\) 0 0
\(785\) −3.43487 −0.122596
\(786\) 0 0
\(787\) −26.1829 −0.933318 −0.466659 0.884437i \(-0.654543\pi\)
−0.466659 + 0.884437i \(0.654543\pi\)
\(788\) 0 0
\(789\) 7.43890 0.264832
\(790\) 0 0
\(791\) −14.3796 −0.511281
\(792\) 0 0
\(793\) 28.1788 1.00066
\(794\) 0 0
\(795\) −8.48516 −0.300938
\(796\) 0 0
\(797\) 45.2658 1.60340 0.801698 0.597729i \(-0.203930\pi\)
0.801698 + 0.597729i \(0.203930\pi\)
\(798\) 0 0
\(799\) 30.6167 1.08314
\(800\) 0 0
\(801\) 4.16113 0.147026
\(802\) 0 0
\(803\) −27.1193 −0.957018
\(804\) 0 0
\(805\) −0.0763659 −0.00269154
\(806\) 0 0
\(807\) 14.7906 0.520653
\(808\) 0 0
\(809\) 25.7814 0.906424 0.453212 0.891403i \(-0.350278\pi\)
0.453212 + 0.891403i \(0.350278\pi\)
\(810\) 0 0
\(811\) 51.6677 1.81430 0.907149 0.420809i \(-0.138254\pi\)
0.907149 + 0.420809i \(0.138254\pi\)
\(812\) 0 0
\(813\) 4.25783 0.149328
\(814\) 0 0
\(815\) −5.93088 −0.207749
\(816\) 0 0
\(817\) 0.717435 0.0250999
\(818\) 0 0
\(819\) −10.6811 −0.373227
\(820\) 0 0
\(821\) 1.47166 0.0513613 0.0256807 0.999670i \(-0.491825\pi\)
0.0256807 + 0.999670i \(0.491825\pi\)
\(822\) 0 0
\(823\) −45.5021 −1.58610 −0.793052 0.609154i \(-0.791509\pi\)
−0.793052 + 0.609154i \(0.791509\pi\)
\(824\) 0 0
\(825\) −4.75902 −0.165688
\(826\) 0 0
\(827\) 22.4423 0.780394 0.390197 0.920731i \(-0.372407\pi\)
0.390197 + 0.920731i \(0.372407\pi\)
\(828\) 0 0
\(829\) −35.6585 −1.23847 −0.619235 0.785206i \(-0.712557\pi\)
−0.619235 + 0.785206i \(0.712557\pi\)
\(830\) 0 0
\(831\) 4.63905 0.160927
\(832\) 0 0
\(833\) 21.5983 0.748337
\(834\) 0 0
\(835\) 19.0510 0.659288
\(836\) 0 0
\(837\) 3.45948 0.119577
\(838\) 0 0
\(839\) 39.8783 1.37675 0.688376 0.725354i \(-0.258324\pi\)
0.688376 + 0.725354i \(0.258324\pi\)
\(840\) 0 0
\(841\) −21.9133 −0.755633
\(842\) 0 0
\(843\) −13.7540 −0.473711
\(844\) 0 0
\(845\) −2.41227 −0.0829847
\(846\) 0 0
\(847\) 35.1787 1.20875
\(848\) 0 0
\(849\) 8.66597 0.297415
\(850\) 0 0
\(851\) 0.349180 0.0119698
\(852\) 0 0
\(853\) −29.6873 −1.01647 −0.508237 0.861217i \(-0.669703\pi\)
−0.508237 + 0.861217i \(0.669703\pi\)
\(854\) 0 0
\(855\) 2.37951 0.0813776
\(856\) 0 0
\(857\) 24.3542 0.831922 0.415961 0.909382i \(-0.363445\pi\)
0.415961 + 0.909382i \(0.363445\pi\)
\(858\) 0 0
\(859\) 45.6722 1.55832 0.779158 0.626827i \(-0.215647\pi\)
0.779158 + 0.626827i \(0.215647\pi\)
\(860\) 0 0
\(861\) 1.71194 0.0583428
\(862\) 0 0
\(863\) 6.40793 0.218128 0.109064 0.994035i \(-0.465215\pi\)
0.109064 + 0.994035i \(0.465215\pi\)
\(864\) 0 0
\(865\) 17.9365 0.609861
\(866\) 0 0
\(867\) 0.753362 0.0255855
\(868\) 0 0
\(869\) 44.9184 1.52375
\(870\) 0 0
\(871\) −17.5911 −0.596050
\(872\) 0 0
\(873\) −10.9262 −0.369797
\(874\) 0 0
\(875\) 1.37951 0.0466360
\(876\) 0 0
\(877\) −30.4398 −1.02788 −0.513939 0.857827i \(-0.671814\pi\)
−0.513939 + 0.857827i \(0.671814\pi\)
\(878\) 0 0
\(879\) 1.18562 0.0399899
\(880\) 0 0
\(881\) 18.7914 0.633097 0.316548 0.948576i \(-0.397476\pi\)
0.316548 + 0.948576i \(0.397476\pi\)
\(882\) 0 0
\(883\) 19.8805 0.669031 0.334515 0.942390i \(-0.391427\pi\)
0.334515 + 0.942390i \(0.391427\pi\)
\(884\) 0 0
\(885\) 3.02928 0.101828
\(886\) 0 0
\(887\) 48.7641 1.63734 0.818669 0.574266i \(-0.194713\pi\)
0.818669 + 0.574266i \(0.194713\pi\)
\(888\) 0 0
\(889\) 0.367206 0.0123157
\(890\) 0 0
\(891\) −22.9617 −0.769247
\(892\) 0 0
\(893\) 7.22519 0.241782
\(894\) 0 0
\(895\) −21.7090 −0.725652
\(896\) 0 0
\(897\) −0.141887 −0.00473746
\(898\) 0 0
\(899\) −2.17331 −0.0724840
\(900\) 0 0
\(901\) 45.6460 1.52069
\(902\) 0 0
\(903\) −0.779605 −0.0259436
\(904\) 0 0
\(905\) −0.367206 −0.0122063
\(906\) 0 0
\(907\) 42.0855 1.39743 0.698713 0.715402i \(-0.253756\pi\)
0.698713 + 0.715402i \(0.253756\pi\)
\(908\) 0 0
\(909\) 6.05377 0.200791
\(910\) 0 0
\(911\) −9.44705 −0.312995 −0.156497 0.987678i \(-0.550020\pi\)
−0.156497 + 0.987678i \(0.550020\pi\)
\(912\) 0 0
\(913\) 19.8319 0.656341
\(914\) 0 0
\(915\) 6.82162 0.225516
\(916\) 0 0
\(917\) −18.9949 −0.627268
\(918\) 0 0
\(919\) 0.485842 0.0160265 0.00801323 0.999968i \(-0.497449\pi\)
0.00801323 + 0.999968i \(0.497449\pi\)
\(920\) 0 0
\(921\) 1.87873 0.0619062
\(922\) 0 0
\(923\) −40.6987 −1.33961
\(924\) 0 0
\(925\) −6.30777 −0.207398
\(926\) 0 0
\(927\) 17.7269 0.582226
\(928\) 0 0
\(929\) 17.9494 0.588902 0.294451 0.955667i \(-0.404863\pi\)
0.294451 + 0.955667i \(0.404863\pi\)
\(930\) 0 0
\(931\) 5.09695 0.167046
\(932\) 0 0
\(933\) −16.0257 −0.524657
\(934\) 0 0
\(935\) 25.6012 0.837250
\(936\) 0 0
\(937\) 45.4249 1.48397 0.741983 0.670419i \(-0.233886\pi\)
0.741983 + 0.670419i \(0.233886\pi\)
\(938\) 0 0
\(939\) 6.81773 0.222488
\(940\) 0 0
\(941\) −28.9484 −0.943691 −0.471846 0.881681i \(-0.656412\pi\)
−0.471846 + 0.881681i \(0.656412\pi\)
\(942\) 0 0
\(943\) −0.0872108 −0.00283998
\(944\) 0 0
\(945\) −5.84568 −0.190160
\(946\) 0 0
\(947\) −55.2664 −1.79592 −0.897958 0.440082i \(-0.854949\pi\)
−0.897958 + 0.440082i \(0.854949\pi\)
\(948\) 0 0
\(949\) 14.6059 0.474127
\(950\) 0 0
\(951\) 4.73643 0.153589
\(952\) 0 0
\(953\) −52.1029 −1.68778 −0.843889 0.536518i \(-0.819740\pi\)
−0.843889 + 0.536518i \(0.819740\pi\)
\(954\) 0 0
\(955\) −16.8026 −0.543720
\(956\) 0 0
\(957\) −12.6689 −0.409527
\(958\) 0 0
\(959\) 11.2110 0.362022
\(960\) 0 0
\(961\) −30.3335 −0.978500
\(962\) 0 0
\(963\) 9.78423 0.315293
\(964\) 0 0
\(965\) 19.9090 0.640893
\(966\) 0 0
\(967\) 45.5075 1.46342 0.731711 0.681615i \(-0.238722\pi\)
0.731711 + 0.681615i \(0.238722\pi\)
\(968\) 0 0
\(969\) 3.33792 0.107230
\(970\) 0 0
\(971\) −34.9581 −1.12186 −0.560930 0.827863i \(-0.689556\pi\)
−0.560930 + 0.827863i \(0.689556\pi\)
\(972\) 0 0
\(973\) 26.9828 0.865027
\(974\) 0 0
\(975\) 2.56311 0.0820854
\(976\) 0 0
\(977\) −8.89752 −0.284657 −0.142328 0.989819i \(-0.545459\pi\)
−0.142328 + 0.989819i \(0.545459\pi\)
\(978\) 0 0
\(979\) 10.5651 0.337663
\(980\) 0 0
\(981\) −28.9048 −0.922859
\(982\) 0 0
\(983\) 58.6974 1.87216 0.936079 0.351791i \(-0.114427\pi\)
0.936079 + 0.351791i \(0.114427\pi\)
\(984\) 0 0
\(985\) 10.9857 0.350033
\(986\) 0 0
\(987\) −7.85130 −0.249910
\(988\) 0 0
\(989\) 0.0397151 0.00126287
\(990\) 0 0
\(991\) 15.0103 0.476818 0.238409 0.971165i \(-0.423374\pi\)
0.238409 + 0.971165i \(0.423374\pi\)
\(992\) 0 0
\(993\) −27.8251 −0.883003
\(994\) 0 0
\(995\) −14.2375 −0.451359
\(996\) 0 0
\(997\) 29.4836 0.933754 0.466877 0.884322i \(-0.345379\pi\)
0.466877 + 0.884322i \(0.345379\pi\)
\(998\) 0 0
\(999\) 26.7292 0.845674
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.2.a.r.1.3 4
4.3 odd 2 3040.2.a.t.1.2 yes 4
8.3 odd 2 6080.2.a.cd.1.3 4
8.5 even 2 6080.2.a.cf.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.r.1.3 4 1.1 even 1 trivial
3040.2.a.t.1.2 yes 4 4.3 odd 2
6080.2.a.cd.1.3 4 8.3 odd 2
6080.2.a.cf.1.2 4 8.5 even 2