Properties

Label 3040.2.a.r.1.1
Level $3040$
Weight $2$
Character 3040.1
Self dual yes
Analytic conductor $24.275$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3040,2,Mod(1,3040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3040.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3040.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,4,0,-5,0,1,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2745222145\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.17428.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.36865\) of defining polynomial
Character \(\chi\) \(=\) 3040.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.36865 q^{3} +1.00000 q^{5} -3.61050 q^{7} +2.61050 q^{9} -2.20421 q^{11} +2.57286 q^{13} -2.36865 q^{15} +0.922589 q^{17} -1.00000 q^{19} +8.55201 q^{21} +7.23992 q^{23} +1.00000 q^{25} +0.922589 q^{27} +3.81471 q^{29} -4.48370 q^{31} +5.22100 q^{33} -3.61050 q^{35} -4.13397 q^{37} -6.09420 q^{39} -4.73730 q^{41} +5.42521 q^{43} +2.61050 q^{45} +0.279491 q^{47} +6.03571 q^{49} -2.18529 q^{51} +9.86914 q^{53} -2.20421 q^{55} +2.36865 q^{57} +1.33101 q^{59} -11.1299 q^{61} -9.42521 q^{63} +2.57286 q^{65} +13.7028 q^{67} -17.1488 q^{69} -11.1457 q^{71} -9.28931 q^{73} -2.36865 q^{75} +7.95830 q^{77} +4.85042 q^{79} -10.0168 q^{81} -9.42521 q^{83} +0.922589 q^{85} -9.03571 q^{87} -10.3667 q^{89} -9.28931 q^{91} +10.6203 q^{93} -1.00000 q^{95} +2.75815 q^{97} -5.75409 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 4 q^{5} - 5 q^{7} + q^{9} - 6 q^{11} - q^{13} - q^{15} - q^{17} - 4 q^{19} + 5 q^{21} - 5 q^{23} + 4 q^{25} - q^{27} + 3 q^{29} - 16 q^{31} + 2 q^{33} - 5 q^{35} - 8 q^{37} - 13 q^{39}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.36865 −1.36754 −0.683770 0.729697i \(-0.739661\pi\)
−0.683770 + 0.729697i \(0.739661\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.61050 −1.36464 −0.682320 0.731053i \(-0.739029\pi\)
−0.682320 + 0.731053i \(0.739029\pi\)
\(8\) 0 0
\(9\) 2.61050 0.870167
\(10\) 0 0
\(11\) −2.20421 −0.664594 −0.332297 0.943175i \(-0.607824\pi\)
−0.332297 + 0.943175i \(0.607824\pi\)
\(12\) 0 0
\(13\) 2.57286 0.713583 0.356791 0.934184i \(-0.383871\pi\)
0.356791 + 0.934184i \(0.383871\pi\)
\(14\) 0 0
\(15\) −2.36865 −0.611583
\(16\) 0 0
\(17\) 0.922589 0.223761 0.111880 0.993722i \(-0.464313\pi\)
0.111880 + 0.993722i \(0.464313\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 8.55201 1.86620
\(22\) 0 0
\(23\) 7.23992 1.50963 0.754814 0.655939i \(-0.227727\pi\)
0.754814 + 0.655939i \(0.227727\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0.922589 0.177552
\(28\) 0 0
\(29\) 3.81471 0.708374 0.354187 0.935175i \(-0.384758\pi\)
0.354187 + 0.935175i \(0.384758\pi\)
\(30\) 0 0
\(31\) −4.48370 −0.805296 −0.402648 0.915355i \(-0.631910\pi\)
−0.402648 + 0.915355i \(0.631910\pi\)
\(32\) 0 0
\(33\) 5.22100 0.908859
\(34\) 0 0
\(35\) −3.61050 −0.610286
\(36\) 0 0
\(37\) −4.13397 −0.679621 −0.339810 0.940494i \(-0.610363\pi\)
−0.339810 + 0.940494i \(0.610363\pi\)
\(38\) 0 0
\(39\) −6.09420 −0.975853
\(40\) 0 0
\(41\) −4.73730 −0.739842 −0.369921 0.929063i \(-0.620615\pi\)
−0.369921 + 0.929063i \(0.620615\pi\)
\(42\) 0 0
\(43\) 5.42521 0.827337 0.413668 0.910428i \(-0.364247\pi\)
0.413668 + 0.910428i \(0.364247\pi\)
\(44\) 0 0
\(45\) 2.61050 0.389150
\(46\) 0 0
\(47\) 0.279491 0.0407680 0.0203840 0.999792i \(-0.493511\pi\)
0.0203840 + 0.999792i \(0.493511\pi\)
\(48\) 0 0
\(49\) 6.03571 0.862244
\(50\) 0 0
\(51\) −2.18529 −0.306002
\(52\) 0 0
\(53\) 9.86914 1.35563 0.677815 0.735232i \(-0.262927\pi\)
0.677815 + 0.735232i \(0.262927\pi\)
\(54\) 0 0
\(55\) −2.20421 −0.297216
\(56\) 0 0
\(57\) 2.36865 0.313735
\(58\) 0 0
\(59\) 1.33101 0.173283 0.0866413 0.996240i \(-0.472387\pi\)
0.0866413 + 0.996240i \(0.472387\pi\)
\(60\) 0 0
\(61\) −11.1299 −1.42504 −0.712519 0.701652i \(-0.752446\pi\)
−0.712519 + 0.701652i \(0.752446\pi\)
\(62\) 0 0
\(63\) −9.42521 −1.18746
\(64\) 0 0
\(65\) 2.57286 0.319124
\(66\) 0 0
\(67\) 13.7028 1.67406 0.837030 0.547157i \(-0.184290\pi\)
0.837030 + 0.547157i \(0.184290\pi\)
\(68\) 0 0
\(69\) −17.1488 −2.06448
\(70\) 0 0
\(71\) −11.1457 −1.32275 −0.661377 0.750054i \(-0.730028\pi\)
−0.661377 + 0.750054i \(0.730028\pi\)
\(72\) 0 0
\(73\) −9.28931 −1.08723 −0.543616 0.839334i \(-0.682945\pi\)
−0.543616 + 0.839334i \(0.682945\pi\)
\(74\) 0 0
\(75\) −2.36865 −0.273508
\(76\) 0 0
\(77\) 7.95830 0.906932
\(78\) 0 0
\(79\) 4.85042 0.545715 0.272857 0.962054i \(-0.412031\pi\)
0.272857 + 0.962054i \(0.412031\pi\)
\(80\) 0 0
\(81\) −10.0168 −1.11298
\(82\) 0 0
\(83\) −9.42521 −1.03455 −0.517276 0.855819i \(-0.673054\pi\)
−0.517276 + 0.855819i \(0.673054\pi\)
\(84\) 0 0
\(85\) 0.922589 0.100069
\(86\) 0 0
\(87\) −9.03571 −0.968730
\(88\) 0 0
\(89\) −10.3667 −1.09887 −0.549435 0.835537i \(-0.685157\pi\)
−0.549435 + 0.835537i \(0.685157\pi\)
\(90\) 0 0
\(91\) −9.28931 −0.973784
\(92\) 0 0
\(93\) 10.6203 1.10128
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 2.75815 0.280048 0.140024 0.990148i \(-0.455282\pi\)
0.140024 + 0.990148i \(0.455282\pi\)
\(98\) 0 0
\(99\) −5.75409 −0.578308
\(100\) 0 0
\(101\) 18.5292 1.84373 0.921863 0.387515i \(-0.126666\pi\)
0.921863 + 0.387515i \(0.126666\pi\)
\(102\) 0 0
\(103\) −5.44606 −0.536616 −0.268308 0.963333i \(-0.586465\pi\)
−0.268308 + 0.963333i \(0.586465\pi\)
\(104\) 0 0
\(105\) 8.55201 0.834591
\(106\) 0 0
\(107\) −3.26077 −0.315230 −0.157615 0.987501i \(-0.550381\pi\)
−0.157615 + 0.987501i \(0.550381\pi\)
\(108\) 0 0
\(109\) −15.6182 −1.49595 −0.747975 0.663726i \(-0.768974\pi\)
−0.747975 + 0.663726i \(0.768974\pi\)
\(110\) 0 0
\(111\) 9.79193 0.929409
\(112\) 0 0
\(113\) −9.53329 −0.896816 −0.448408 0.893829i \(-0.648009\pi\)
−0.448408 + 0.893829i \(0.648009\pi\)
\(114\) 0 0
\(115\) 7.23992 0.675126
\(116\) 0 0
\(117\) 6.71645 0.620936
\(118\) 0 0
\(119\) −3.33101 −0.305353
\(120\) 0 0
\(121\) −6.14146 −0.558315
\(122\) 0 0
\(123\) 11.2210 1.01176
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 1.92976 0.171239 0.0856193 0.996328i \(-0.472713\pi\)
0.0856193 + 0.996328i \(0.472713\pi\)
\(128\) 0 0
\(129\) −12.8504 −1.13142
\(130\) 0 0
\(131\) 14.8087 1.29384 0.646922 0.762556i \(-0.276056\pi\)
0.646922 + 0.762556i \(0.276056\pi\)
\(132\) 0 0
\(133\) 3.61050 0.313070
\(134\) 0 0
\(135\) 0.922589 0.0794038
\(136\) 0 0
\(137\) 17.5572 1.50002 0.750008 0.661428i \(-0.230049\pi\)
0.750008 + 0.661428i \(0.230049\pi\)
\(138\) 0 0
\(139\) −4.23779 −0.359445 −0.179722 0.983717i \(-0.557520\pi\)
−0.179722 + 0.983717i \(0.557520\pi\)
\(140\) 0 0
\(141\) −0.662017 −0.0557519
\(142\) 0 0
\(143\) −5.67112 −0.474243
\(144\) 0 0
\(145\) 3.81471 0.316794
\(146\) 0 0
\(147\) −14.2965 −1.17915
\(148\) 0 0
\(149\) 6.06373 0.496760 0.248380 0.968663i \(-0.420102\pi\)
0.248380 + 0.968663i \(0.420102\pi\)
\(150\) 0 0
\(151\) −6.85428 −0.557794 −0.278897 0.960321i \(-0.589969\pi\)
−0.278897 + 0.960321i \(0.589969\pi\)
\(152\) 0 0
\(153\) 2.40842 0.194709
\(154\) 0 0
\(155\) −4.48370 −0.360140
\(156\) 0 0
\(157\) 8.85042 0.706340 0.353170 0.935559i \(-0.385104\pi\)
0.353170 + 0.935559i \(0.385104\pi\)
\(158\) 0 0
\(159\) −23.3765 −1.85388
\(160\) 0 0
\(161\) −26.1397 −2.06010
\(162\) 0 0
\(163\) −16.6840 −1.30680 −0.653398 0.757015i \(-0.726657\pi\)
−0.653398 + 0.757015i \(0.726657\pi\)
\(164\) 0 0
\(165\) 5.22100 0.406454
\(166\) 0 0
\(167\) −10.5875 −0.819287 −0.409643 0.912246i \(-0.634347\pi\)
−0.409643 + 0.912246i \(0.634347\pi\)
\(168\) 0 0
\(169\) −6.38040 −0.490800
\(170\) 0 0
\(171\) −2.61050 −0.199630
\(172\) 0 0
\(173\) −18.7879 −1.42842 −0.714208 0.699934i \(-0.753213\pi\)
−0.714208 + 0.699934i \(0.753213\pi\)
\(174\) 0 0
\(175\) −3.61050 −0.272928
\(176\) 0 0
\(177\) −3.15269 −0.236971
\(178\) 0 0
\(179\) 8.91136 0.666066 0.333033 0.942915i \(-0.391928\pi\)
0.333033 + 0.942915i \(0.391928\pi\)
\(180\) 0 0
\(181\) 6.96740 0.517883 0.258941 0.965893i \(-0.416626\pi\)
0.258941 + 0.965893i \(0.416626\pi\)
\(182\) 0 0
\(183\) 26.3629 1.94880
\(184\) 0 0
\(185\) −4.13397 −0.303936
\(186\) 0 0
\(187\) −2.03358 −0.148710
\(188\) 0 0
\(189\) −3.33101 −0.242295
\(190\) 0 0
\(191\) −23.9278 −1.73136 −0.865678 0.500600i \(-0.833113\pi\)
−0.865678 + 0.500600i \(0.833113\pi\)
\(192\) 0 0
\(193\) −9.89961 −0.712589 −0.356295 0.934374i \(-0.615960\pi\)
−0.356295 + 0.934374i \(0.615960\pi\)
\(194\) 0 0
\(195\) −6.09420 −0.436415
\(196\) 0 0
\(197\) −12.3015 −0.876447 −0.438224 0.898866i \(-0.644392\pi\)
−0.438224 + 0.898866i \(0.644392\pi\)
\(198\) 0 0
\(199\) −9.07741 −0.643481 −0.321740 0.946828i \(-0.604268\pi\)
−0.321740 + 0.946828i \(0.604268\pi\)
\(200\) 0 0
\(201\) −32.4571 −2.28934
\(202\) 0 0
\(203\) −13.7730 −0.966676
\(204\) 0 0
\(205\) −4.73730 −0.330867
\(206\) 0 0
\(207\) 18.8998 1.31363
\(208\) 0 0
\(209\) 2.20421 0.152468
\(210\) 0 0
\(211\) −5.40629 −0.372184 −0.186092 0.982532i \(-0.559582\pi\)
−0.186092 + 0.982532i \(0.559582\pi\)
\(212\) 0 0
\(213\) 26.4003 1.80892
\(214\) 0 0
\(215\) 5.42521 0.369996
\(216\) 0 0
\(217\) 16.1884 1.09894
\(218\) 0 0
\(219\) 22.0031 1.48683
\(220\) 0 0
\(221\) 2.37369 0.159672
\(222\) 0 0
\(223\) 2.85546 0.191216 0.0956079 0.995419i \(-0.469520\pi\)
0.0956079 + 0.995419i \(0.469520\pi\)
\(224\) 0 0
\(225\) 2.61050 0.174033
\(226\) 0 0
\(227\) −3.73013 −0.247577 −0.123789 0.992309i \(-0.539504\pi\)
−0.123789 + 0.992309i \(0.539504\pi\)
\(228\) 0 0
\(229\) −24.3744 −1.61071 −0.805353 0.592796i \(-0.798024\pi\)
−0.805353 + 0.592796i \(0.798024\pi\)
\(230\) 0 0
\(231\) −18.8504 −1.24027
\(232\) 0 0
\(233\) −20.4319 −1.33854 −0.669270 0.743020i \(-0.733393\pi\)
−0.669270 + 0.743020i \(0.733393\pi\)
\(234\) 0 0
\(235\) 0.279491 0.0182320
\(236\) 0 0
\(237\) −11.4889 −0.746287
\(238\) 0 0
\(239\) −16.2189 −1.04911 −0.524556 0.851376i \(-0.675769\pi\)
−0.524556 + 0.851376i \(0.675769\pi\)
\(240\) 0 0
\(241\) 9.43290 0.607626 0.303813 0.952732i \(-0.401740\pi\)
0.303813 + 0.952732i \(0.401740\pi\)
\(242\) 0 0
\(243\) 20.9585 1.34449
\(244\) 0 0
\(245\) 6.03571 0.385607
\(246\) 0 0
\(247\) −2.57286 −0.163707
\(248\) 0 0
\(249\) 22.3250 1.41479
\(250\) 0 0
\(251\) 1.37582 0.0868411 0.0434205 0.999057i \(-0.486174\pi\)
0.0434205 + 0.999057i \(0.486174\pi\)
\(252\) 0 0
\(253\) −15.9583 −1.00329
\(254\) 0 0
\(255\) −2.18529 −0.136848
\(256\) 0 0
\(257\) 10.3080 0.642997 0.321499 0.946910i \(-0.395813\pi\)
0.321499 + 0.946910i \(0.395813\pi\)
\(258\) 0 0
\(259\) 14.9257 0.927438
\(260\) 0 0
\(261\) 9.95830 0.616403
\(262\) 0 0
\(263\) −15.6371 −0.964225 −0.482113 0.876109i \(-0.660130\pi\)
−0.482113 + 0.876109i \(0.660130\pi\)
\(264\) 0 0
\(265\) 9.86914 0.606256
\(266\) 0 0
\(267\) 24.5551 1.50275
\(268\) 0 0
\(269\) −16.7944 −1.02397 −0.511986 0.858994i \(-0.671090\pi\)
−0.511986 + 0.858994i \(0.671090\pi\)
\(270\) 0 0
\(271\) −20.9068 −1.27000 −0.634998 0.772514i \(-0.718999\pi\)
−0.634998 + 0.772514i \(0.718999\pi\)
\(272\) 0 0
\(273\) 22.0031 1.33169
\(274\) 0 0
\(275\) −2.20421 −0.132919
\(276\) 0 0
\(277\) 20.4798 1.23051 0.615257 0.788327i \(-0.289052\pi\)
0.615257 + 0.788327i \(0.289052\pi\)
\(278\) 0 0
\(279\) −11.7047 −0.700742
\(280\) 0 0
\(281\) 16.1467 0.963231 0.481616 0.876383i \(-0.340050\pi\)
0.481616 + 0.876383i \(0.340050\pi\)
\(282\) 0 0
\(283\) 5.19897 0.309047 0.154523 0.987989i \(-0.450616\pi\)
0.154523 + 0.987989i \(0.450616\pi\)
\(284\) 0 0
\(285\) 2.36865 0.140307
\(286\) 0 0
\(287\) 17.1040 1.00962
\(288\) 0 0
\(289\) −16.1488 −0.949931
\(290\) 0 0
\(291\) −6.53309 −0.382976
\(292\) 0 0
\(293\) −7.79386 −0.455322 −0.227661 0.973740i \(-0.573108\pi\)
−0.227661 + 0.973740i \(0.573108\pi\)
\(294\) 0 0
\(295\) 1.33101 0.0774943
\(296\) 0 0
\(297\) −2.03358 −0.118000
\(298\) 0 0
\(299\) 18.6273 1.07724
\(300\) 0 0
\(301\) −19.5877 −1.12902
\(302\) 0 0
\(303\) −43.8892 −2.52137
\(304\) 0 0
\(305\) −11.1299 −0.637297
\(306\) 0 0
\(307\) −6.27298 −0.358018 −0.179009 0.983847i \(-0.557289\pi\)
−0.179009 + 0.983847i \(0.557289\pi\)
\(308\) 0 0
\(309\) 12.8998 0.733844
\(310\) 0 0
\(311\) −29.2634 −1.65938 −0.829688 0.558227i \(-0.811482\pi\)
−0.829688 + 0.558227i \(0.811482\pi\)
\(312\) 0 0
\(313\) −20.4725 −1.15717 −0.578586 0.815621i \(-0.696395\pi\)
−0.578586 + 0.815621i \(0.696395\pi\)
\(314\) 0 0
\(315\) −9.42521 −0.531050
\(316\) 0 0
\(317\) −4.64814 −0.261066 −0.130533 0.991444i \(-0.541669\pi\)
−0.130533 + 0.991444i \(0.541669\pi\)
\(318\) 0 0
\(319\) −8.40842 −0.470781
\(320\) 0 0
\(321\) 7.72362 0.431090
\(322\) 0 0
\(323\) −0.922589 −0.0513342
\(324\) 0 0
\(325\) 2.57286 0.142717
\(326\) 0 0
\(327\) 36.9940 2.04577
\(328\) 0 0
\(329\) −1.00910 −0.0556337
\(330\) 0 0
\(331\) 26.3891 1.45047 0.725237 0.688499i \(-0.241730\pi\)
0.725237 + 0.688499i \(0.241730\pi\)
\(332\) 0 0
\(333\) −10.7917 −0.591383
\(334\) 0 0
\(335\) 13.7028 0.748662
\(336\) 0 0
\(337\) 17.1441 0.933899 0.466949 0.884284i \(-0.345353\pi\)
0.466949 + 0.884284i \(0.345353\pi\)
\(338\) 0 0
\(339\) 22.5810 1.22643
\(340\) 0 0
\(341\) 9.88302 0.535195
\(342\) 0 0
\(343\) 3.48157 0.187987
\(344\) 0 0
\(345\) −17.1488 −0.923262
\(346\) 0 0
\(347\) 2.84273 0.152606 0.0763029 0.997085i \(-0.475688\pi\)
0.0763029 + 0.997085i \(0.475688\pi\)
\(348\) 0 0
\(349\) −17.6487 −0.944711 −0.472355 0.881408i \(-0.656596\pi\)
−0.472355 + 0.881408i \(0.656596\pi\)
\(350\) 0 0
\(351\) 2.37369 0.126698
\(352\) 0 0
\(353\) −1.88999 −0.100594 −0.0502970 0.998734i \(-0.516017\pi\)
−0.0502970 + 0.998734i \(0.516017\pi\)
\(354\) 0 0
\(355\) −11.1457 −0.591553
\(356\) 0 0
\(357\) 7.88999 0.417583
\(358\) 0 0
\(359\) 28.8234 1.52124 0.760620 0.649198i \(-0.224895\pi\)
0.760620 + 0.649198i \(0.224895\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 14.5470 0.763518
\(364\) 0 0
\(365\) −9.28931 −0.486225
\(366\) 0 0
\(367\) 8.92716 0.465994 0.232997 0.972477i \(-0.425147\pi\)
0.232997 + 0.972477i \(0.425147\pi\)
\(368\) 0 0
\(369\) −12.3667 −0.643786
\(370\) 0 0
\(371\) −35.6325 −1.84995
\(372\) 0 0
\(373\) −11.7939 −0.610663 −0.305331 0.952246i \(-0.598767\pi\)
−0.305331 + 0.952246i \(0.598767\pi\)
\(374\) 0 0
\(375\) −2.36865 −0.122317
\(376\) 0 0
\(377\) 9.81471 0.505483
\(378\) 0 0
\(379\) 10.6354 0.546304 0.273152 0.961971i \(-0.411934\pi\)
0.273152 + 0.961971i \(0.411934\pi\)
\(380\) 0 0
\(381\) −4.57093 −0.234176
\(382\) 0 0
\(383\) −2.86358 −0.146322 −0.0731611 0.997320i \(-0.523309\pi\)
−0.0731611 + 0.997320i \(0.523309\pi\)
\(384\) 0 0
\(385\) 7.95830 0.405592
\(386\) 0 0
\(387\) 14.1625 0.719921
\(388\) 0 0
\(389\) 3.45536 0.175194 0.0875969 0.996156i \(-0.472081\pi\)
0.0875969 + 0.996156i \(0.472081\pi\)
\(390\) 0 0
\(391\) 6.67947 0.337795
\(392\) 0 0
\(393\) −35.0767 −1.76938
\(394\) 0 0
\(395\) 4.85042 0.244051
\(396\) 0 0
\(397\) −0.854282 −0.0428752 −0.0214376 0.999770i \(-0.506824\pi\)
−0.0214376 + 0.999770i \(0.506824\pi\)
\(398\) 0 0
\(399\) −8.55201 −0.428136
\(400\) 0 0
\(401\) 16.0336 0.800679 0.400339 0.916367i \(-0.368892\pi\)
0.400339 + 0.916367i \(0.368892\pi\)
\(402\) 0 0
\(403\) −11.5359 −0.574646
\(404\) 0 0
\(405\) −10.0168 −0.497738
\(406\) 0 0
\(407\) 9.11214 0.451672
\(408\) 0 0
\(409\) 13.8452 0.684600 0.342300 0.939591i \(-0.388794\pi\)
0.342300 + 0.939591i \(0.388794\pi\)
\(410\) 0 0
\(411\) −41.5870 −2.05133
\(412\) 0 0
\(413\) −4.80561 −0.236468
\(414\) 0 0
\(415\) −9.42521 −0.462665
\(416\) 0 0
\(417\) 10.0378 0.491555
\(418\) 0 0
\(419\) 16.1783 0.790362 0.395181 0.918603i \(-0.370682\pi\)
0.395181 + 0.918603i \(0.370682\pi\)
\(420\) 0 0
\(421\) −1.71593 −0.0836295 −0.0418147 0.999125i \(-0.513314\pi\)
−0.0418147 + 0.999125i \(0.513314\pi\)
\(422\) 0 0
\(423\) 0.729612 0.0354750
\(424\) 0 0
\(425\) 0.922589 0.0447522
\(426\) 0 0
\(427\) 40.1845 1.94467
\(428\) 0 0
\(429\) 13.4329 0.648546
\(430\) 0 0
\(431\) −30.8087 −1.48400 −0.742002 0.670398i \(-0.766123\pi\)
−0.742002 + 0.670398i \(0.766123\pi\)
\(432\) 0 0
\(433\) 30.3084 1.45653 0.728265 0.685296i \(-0.240327\pi\)
0.728265 + 0.685296i \(0.240327\pi\)
\(434\) 0 0
\(435\) −9.03571 −0.433229
\(436\) 0 0
\(437\) −7.23992 −0.346332
\(438\) 0 0
\(439\) 0.722955 0.0345048 0.0172524 0.999851i \(-0.494508\pi\)
0.0172524 + 0.999851i \(0.494508\pi\)
\(440\) 0 0
\(441\) 15.7562 0.750296
\(442\) 0 0
\(443\) 2.32159 0.110302 0.0551510 0.998478i \(-0.482436\pi\)
0.0551510 + 0.998478i \(0.482436\pi\)
\(444\) 0 0
\(445\) −10.3667 −0.491430
\(446\) 0 0
\(447\) −14.3629 −0.679340
\(448\) 0 0
\(449\) 39.8039 1.87846 0.939230 0.343287i \(-0.111540\pi\)
0.939230 + 0.343287i \(0.111540\pi\)
\(450\) 0 0
\(451\) 10.4420 0.491695
\(452\) 0 0
\(453\) 16.2354 0.762805
\(454\) 0 0
\(455\) −9.28931 −0.435489
\(456\) 0 0
\(457\) −17.9657 −0.840398 −0.420199 0.907432i \(-0.638040\pi\)
−0.420199 + 0.907432i \(0.638040\pi\)
\(458\) 0 0
\(459\) 0.851171 0.0397293
\(460\) 0 0
\(461\) −34.8840 −1.62471 −0.812355 0.583163i \(-0.801815\pi\)
−0.812355 + 0.583163i \(0.801815\pi\)
\(462\) 0 0
\(463\) −18.4118 −0.855671 −0.427836 0.903857i \(-0.640724\pi\)
−0.427836 + 0.903857i \(0.640724\pi\)
\(464\) 0 0
\(465\) 10.6203 0.492505
\(466\) 0 0
\(467\) −17.7541 −0.821561 −0.410781 0.911734i \(-0.634744\pi\)
−0.410781 + 0.911734i \(0.634744\pi\)
\(468\) 0 0
\(469\) −49.4738 −2.28449
\(470\) 0 0
\(471\) −20.9635 −0.965949
\(472\) 0 0
\(473\) −11.9583 −0.549843
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 25.7634 1.17962
\(478\) 0 0
\(479\) 23.7545 1.08537 0.542685 0.839936i \(-0.317408\pi\)
0.542685 + 0.839936i \(0.317408\pi\)
\(480\) 0 0
\(481\) −10.6361 −0.484965
\(482\) 0 0
\(483\) 61.9158 2.81727
\(484\) 0 0
\(485\) 2.75815 0.125241
\(486\) 0 0
\(487\) 28.9581 1.31222 0.656108 0.754667i \(-0.272201\pi\)
0.656108 + 0.754667i \(0.272201\pi\)
\(488\) 0 0
\(489\) 39.5187 1.78710
\(490\) 0 0
\(491\) −2.40416 −0.108498 −0.0542491 0.998527i \(-0.517277\pi\)
−0.0542491 + 0.998527i \(0.517277\pi\)
\(492\) 0 0
\(493\) 3.51941 0.158506
\(494\) 0 0
\(495\) −5.75409 −0.258627
\(496\) 0 0
\(497\) 40.2416 1.80508
\(498\) 0 0
\(499\) −12.2756 −0.549533 −0.274766 0.961511i \(-0.588600\pi\)
−0.274766 + 0.961511i \(0.588600\pi\)
\(500\) 0 0
\(501\) 25.0781 1.12041
\(502\) 0 0
\(503\) 0.488277 0.0217712 0.0108856 0.999941i \(-0.496535\pi\)
0.0108856 + 0.999941i \(0.496535\pi\)
\(504\) 0 0
\(505\) 18.5292 0.824540
\(506\) 0 0
\(507\) 15.1129 0.671188
\(508\) 0 0
\(509\) −14.6246 −0.648223 −0.324111 0.946019i \(-0.605065\pi\)
−0.324111 + 0.946019i \(0.605065\pi\)
\(510\) 0 0
\(511\) 33.5390 1.48368
\(512\) 0 0
\(513\) −0.922589 −0.0407333
\(514\) 0 0
\(515\) −5.44606 −0.239982
\(516\) 0 0
\(517\) −0.616058 −0.0270942
\(518\) 0 0
\(519\) 44.5019 1.95342
\(520\) 0 0
\(521\) 14.5450 0.637229 0.318615 0.947884i \(-0.396782\pi\)
0.318615 + 0.947884i \(0.396782\pi\)
\(522\) 0 0
\(523\) 22.0590 0.964573 0.482287 0.876014i \(-0.339806\pi\)
0.482287 + 0.876014i \(0.339806\pi\)
\(524\) 0 0
\(525\) 8.55201 0.373240
\(526\) 0 0
\(527\) −4.13661 −0.180194
\(528\) 0 0
\(529\) 29.4164 1.27897
\(530\) 0 0
\(531\) 3.47460 0.150785
\(532\) 0 0
\(533\) −12.1884 −0.527938
\(534\) 0 0
\(535\) −3.26077 −0.140975
\(536\) 0 0
\(537\) −21.1079 −0.910872
\(538\) 0 0
\(539\) −13.3040 −0.573042
\(540\) 0 0
\(541\) 19.2388 0.827139 0.413570 0.910472i \(-0.364282\pi\)
0.413570 + 0.910472i \(0.364282\pi\)
\(542\) 0 0
\(543\) −16.5033 −0.708226
\(544\) 0 0
\(545\) −15.6182 −0.669010
\(546\) 0 0
\(547\) −44.3833 −1.89769 −0.948846 0.315740i \(-0.897747\pi\)
−0.948846 + 0.315740i \(0.897747\pi\)
\(548\) 0 0
\(549\) −29.0546 −1.24002
\(550\) 0 0
\(551\) −3.81471 −0.162512
\(552\) 0 0
\(553\) −17.5124 −0.744705
\(554\) 0 0
\(555\) 9.79193 0.415644
\(556\) 0 0
\(557\) −16.1030 −0.682307 −0.341154 0.940008i \(-0.610818\pi\)
−0.341154 + 0.940008i \(0.610818\pi\)
\(558\) 0 0
\(559\) 13.9583 0.590373
\(560\) 0 0
\(561\) 4.81684 0.203367
\(562\) 0 0
\(563\) −0.107683 −0.00453828 −0.00226914 0.999997i \(-0.500722\pi\)
−0.00226914 + 0.999997i \(0.500722\pi\)
\(564\) 0 0
\(565\) −9.53329 −0.401068
\(566\) 0 0
\(567\) 36.1656 1.51881
\(568\) 0 0
\(569\) 17.7842 0.745554 0.372777 0.927921i \(-0.378406\pi\)
0.372777 + 0.927921i \(0.378406\pi\)
\(570\) 0 0
\(571\) 26.5902 1.11276 0.556382 0.830927i \(-0.312189\pi\)
0.556382 + 0.830927i \(0.312189\pi\)
\(572\) 0 0
\(573\) 56.6766 2.36770
\(574\) 0 0
\(575\) 7.23992 0.301925
\(576\) 0 0
\(577\) 33.3565 1.38865 0.694324 0.719663i \(-0.255704\pi\)
0.694324 + 0.719663i \(0.255704\pi\)
\(578\) 0 0
\(579\) 23.4487 0.974495
\(580\) 0 0
\(581\) 34.0297 1.41179
\(582\) 0 0
\(583\) −21.7537 −0.900944
\(584\) 0 0
\(585\) 6.71645 0.277691
\(586\) 0 0
\(587\) 29.0322 1.19829 0.599143 0.800642i \(-0.295508\pi\)
0.599143 + 0.800642i \(0.295508\pi\)
\(588\) 0 0
\(589\) 4.48370 0.184748
\(590\) 0 0
\(591\) 29.1380 1.19858
\(592\) 0 0
\(593\) 0.722955 0.0296882 0.0148441 0.999890i \(-0.495275\pi\)
0.0148441 + 0.999890i \(0.495275\pi\)
\(594\) 0 0
\(595\) −3.33101 −0.136558
\(596\) 0 0
\(597\) 21.5012 0.879986
\(598\) 0 0
\(599\) 20.7516 0.847889 0.423945 0.905688i \(-0.360645\pi\)
0.423945 + 0.905688i \(0.360645\pi\)
\(600\) 0 0
\(601\) 0.919478 0.0375063 0.0187532 0.999824i \(-0.494030\pi\)
0.0187532 + 0.999824i \(0.494030\pi\)
\(602\) 0 0
\(603\) 35.7711 1.45671
\(604\) 0 0
\(605\) −6.14146 −0.249686
\(606\) 0 0
\(607\) 3.23416 0.131271 0.0656353 0.997844i \(-0.479093\pi\)
0.0656353 + 0.997844i \(0.479093\pi\)
\(608\) 0 0
\(609\) 32.6234 1.32197
\(610\) 0 0
\(611\) 0.719092 0.0290913
\(612\) 0 0
\(613\) −47.0392 −1.89990 −0.949948 0.312408i \(-0.898864\pi\)
−0.949948 + 0.312408i \(0.898864\pi\)
\(614\) 0 0
\(615\) 11.2210 0.452474
\(616\) 0 0
\(617\) −32.1510 −1.29435 −0.647174 0.762342i \(-0.724049\pi\)
−0.647174 + 0.762342i \(0.724049\pi\)
\(618\) 0 0
\(619\) 25.7727 1.03589 0.517946 0.855413i \(-0.326697\pi\)
0.517946 + 0.855413i \(0.326697\pi\)
\(620\) 0 0
\(621\) 6.67947 0.268038
\(622\) 0 0
\(623\) 37.4290 1.49956
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −5.22100 −0.208507
\(628\) 0 0
\(629\) −3.81396 −0.152072
\(630\) 0 0
\(631\) −35.0133 −1.39386 −0.696929 0.717140i \(-0.745451\pi\)
−0.696929 + 0.717140i \(0.745451\pi\)
\(632\) 0 0
\(633\) 12.8056 0.508977
\(634\) 0 0
\(635\) 1.92976 0.0765802
\(636\) 0 0
\(637\) 15.5290 0.615283
\(638\) 0 0
\(639\) −29.0959 −1.15102
\(640\) 0 0
\(641\) 28.0340 1.10728 0.553638 0.832758i \(-0.313239\pi\)
0.553638 + 0.832758i \(0.313239\pi\)
\(642\) 0 0
\(643\) −19.1831 −0.756508 −0.378254 0.925702i \(-0.623475\pi\)
−0.378254 + 0.925702i \(0.623475\pi\)
\(644\) 0 0
\(645\) −12.8504 −0.505985
\(646\) 0 0
\(647\) 18.0046 0.707833 0.353916 0.935277i \(-0.384850\pi\)
0.353916 + 0.935277i \(0.384850\pi\)
\(648\) 0 0
\(649\) −2.93382 −0.115163
\(650\) 0 0
\(651\) −38.3446 −1.50285
\(652\) 0 0
\(653\) −22.8130 −0.892741 −0.446370 0.894848i \(-0.647284\pi\)
−0.446370 + 0.894848i \(0.647284\pi\)
\(654\) 0 0
\(655\) 14.8087 0.578624
\(656\) 0 0
\(657\) −24.2497 −0.946072
\(658\) 0 0
\(659\) −46.1401 −1.79736 −0.898682 0.438601i \(-0.855474\pi\)
−0.898682 + 0.438601i \(0.855474\pi\)
\(660\) 0 0
\(661\) −8.44511 −0.328477 −0.164238 0.986421i \(-0.552517\pi\)
−0.164238 + 0.986421i \(0.552517\pi\)
\(662\) 0 0
\(663\) −5.62244 −0.218358
\(664\) 0 0
\(665\) 3.61050 0.140009
\(666\) 0 0
\(667\) 27.6182 1.06938
\(668\) 0 0
\(669\) −6.76359 −0.261495
\(670\) 0 0
\(671\) 24.5327 0.947073
\(672\) 0 0
\(673\) 10.8334 0.417598 0.208799 0.977959i \(-0.433045\pi\)
0.208799 + 0.977959i \(0.433045\pi\)
\(674\) 0 0
\(675\) 0.922589 0.0355105
\(676\) 0 0
\(677\) 4.74202 0.182251 0.0911254 0.995839i \(-0.470954\pi\)
0.0911254 + 0.995839i \(0.470954\pi\)
\(678\) 0 0
\(679\) −9.95830 −0.382164
\(680\) 0 0
\(681\) 8.83536 0.338572
\(682\) 0 0
\(683\) −8.84963 −0.338622 −0.169311 0.985563i \(-0.554154\pi\)
−0.169311 + 0.985563i \(0.554154\pi\)
\(684\) 0 0
\(685\) 17.5572 0.670828
\(686\) 0 0
\(687\) 57.7344 2.20271
\(688\) 0 0
\(689\) 25.3919 0.967355
\(690\) 0 0
\(691\) −2.41571 −0.0918980 −0.0459490 0.998944i \(-0.514631\pi\)
−0.0459490 + 0.998944i \(0.514631\pi\)
\(692\) 0 0
\(693\) 20.7751 0.789182
\(694\) 0 0
\(695\) −4.23779 −0.160749
\(696\) 0 0
\(697\) −4.37058 −0.165548
\(698\) 0 0
\(699\) 48.3960 1.83051
\(700\) 0 0
\(701\) −3.62173 −0.136791 −0.0683955 0.997658i \(-0.521788\pi\)
−0.0683955 + 0.997658i \(0.521788\pi\)
\(702\) 0 0
\(703\) 4.13397 0.155916
\(704\) 0 0
\(705\) −0.662017 −0.0249330
\(706\) 0 0
\(707\) −66.8998 −2.51602
\(708\) 0 0
\(709\) −36.9909 −1.38922 −0.694611 0.719385i \(-0.744424\pi\)
−0.694611 + 0.719385i \(0.744424\pi\)
\(710\) 0 0
\(711\) 12.6620 0.474863
\(712\) 0 0
\(713\) −32.4616 −1.21570
\(714\) 0 0
\(715\) −5.67112 −0.212088
\(716\) 0 0
\(717\) 38.4168 1.43470
\(718\) 0 0
\(719\) −27.8175 −1.03742 −0.518709 0.854951i \(-0.673587\pi\)
−0.518709 + 0.854951i \(0.673587\pi\)
\(720\) 0 0
\(721\) 19.6630 0.732288
\(722\) 0 0
\(723\) −22.3432 −0.830953
\(724\) 0 0
\(725\) 3.81471 0.141675
\(726\) 0 0
\(727\) −37.5947 −1.39431 −0.697154 0.716921i \(-0.745551\pi\)
−0.697154 + 0.716921i \(0.745551\pi\)
\(728\) 0 0
\(729\) −19.5930 −0.725665
\(730\) 0 0
\(731\) 5.00524 0.185125
\(732\) 0 0
\(733\) −19.7201 −0.728378 −0.364189 0.931325i \(-0.618654\pi\)
−0.364189 + 0.931325i \(0.618654\pi\)
\(734\) 0 0
\(735\) −14.2965 −0.527334
\(736\) 0 0
\(737\) −30.2038 −1.11257
\(738\) 0 0
\(739\) 48.3629 1.77906 0.889528 0.456880i \(-0.151033\pi\)
0.889528 + 0.456880i \(0.151033\pi\)
\(740\) 0 0
\(741\) 6.09420 0.223876
\(742\) 0 0
\(743\) 41.0765 1.50695 0.753475 0.657476i \(-0.228376\pi\)
0.753475 + 0.657476i \(0.228376\pi\)
\(744\) 0 0
\(745\) 6.06373 0.222158
\(746\) 0 0
\(747\) −24.6045 −0.900232
\(748\) 0 0
\(749\) 11.7730 0.430176
\(750\) 0 0
\(751\) −0.0508527 −0.00185564 −0.000927821 1.00000i \(-0.500295\pi\)
−0.000927821 1.00000i \(0.500295\pi\)
\(752\) 0 0
\(753\) −3.25884 −0.118759
\(754\) 0 0
\(755\) −6.85428 −0.249453
\(756\) 0 0
\(757\) 27.7109 1.00717 0.503585 0.863946i \(-0.332014\pi\)
0.503585 + 0.863946i \(0.332014\pi\)
\(758\) 0 0
\(759\) 37.7996 1.37204
\(760\) 0 0
\(761\) −13.4140 −0.486256 −0.243128 0.969994i \(-0.578174\pi\)
−0.243128 + 0.969994i \(0.578174\pi\)
\(762\) 0 0
\(763\) 56.3895 2.04144
\(764\) 0 0
\(765\) 2.40842 0.0870766
\(766\) 0 0
\(767\) 3.42450 0.123651
\(768\) 0 0
\(769\) −36.5362 −1.31753 −0.658765 0.752349i \(-0.728921\pi\)
−0.658765 + 0.752349i \(0.728921\pi\)
\(770\) 0 0
\(771\) −24.4161 −0.879325
\(772\) 0 0
\(773\) 46.0124 1.65495 0.827475 0.561503i \(-0.189777\pi\)
0.827475 + 0.561503i \(0.189777\pi\)
\(774\) 0 0
\(775\) −4.48370 −0.161059
\(776\) 0 0
\(777\) −35.3538 −1.26831
\(778\) 0 0
\(779\) 4.73730 0.169731
\(780\) 0 0
\(781\) 24.5675 0.879094
\(782\) 0 0
\(783\) 3.51941 0.125773
\(784\) 0 0
\(785\) 8.85042 0.315885
\(786\) 0 0
\(787\) 28.4971 1.01581 0.507907 0.861412i \(-0.330419\pi\)
0.507907 + 0.861412i \(0.330419\pi\)
\(788\) 0 0
\(789\) 37.0388 1.31862
\(790\) 0 0
\(791\) 34.4199 1.22383
\(792\) 0 0
\(793\) −28.6357 −1.01688
\(794\) 0 0
\(795\) −23.3765 −0.829080
\(796\) 0 0
\(797\) −37.2978 −1.32116 −0.660578 0.750758i \(-0.729689\pi\)
−0.660578 + 0.750758i \(0.729689\pi\)
\(798\) 0 0
\(799\) 0.257856 0.00912228
\(800\) 0 0
\(801\) −27.0623 −0.956200
\(802\) 0 0
\(803\) 20.4756 0.722568
\(804\) 0 0
\(805\) −26.1397 −0.921304
\(806\) 0 0
\(807\) 39.7800 1.40032
\(808\) 0 0
\(809\) −20.6609 −0.726398 −0.363199 0.931712i \(-0.618315\pi\)
−0.363199 + 0.931712i \(0.618315\pi\)
\(810\) 0 0
\(811\) 31.4210 1.10334 0.551671 0.834062i \(-0.313990\pi\)
0.551671 + 0.834062i \(0.313990\pi\)
\(812\) 0 0
\(813\) 49.5208 1.73677
\(814\) 0 0
\(815\) −16.6840 −0.584417
\(816\) 0 0
\(817\) −5.42521 −0.189804
\(818\) 0 0
\(819\) −24.2497 −0.847354
\(820\) 0 0
\(821\) 40.0297 1.39705 0.698523 0.715587i \(-0.253841\pi\)
0.698523 + 0.715587i \(0.253841\pi\)
\(822\) 0 0
\(823\) 55.9610 1.95068 0.975338 0.220714i \(-0.0708389\pi\)
0.975338 + 0.220714i \(0.0708389\pi\)
\(824\) 0 0
\(825\) 5.22100 0.181772
\(826\) 0 0
\(827\) −36.5868 −1.27225 −0.636123 0.771587i \(-0.719463\pi\)
−0.636123 + 0.771587i \(0.719463\pi\)
\(828\) 0 0
\(829\) 42.3474 1.47078 0.735392 0.677642i \(-0.236998\pi\)
0.735392 + 0.677642i \(0.236998\pi\)
\(830\) 0 0
\(831\) −48.5096 −1.68278
\(832\) 0 0
\(833\) 5.56848 0.192936
\(834\) 0 0
\(835\) −10.5875 −0.366396
\(836\) 0 0
\(837\) −4.13661 −0.142982
\(838\) 0 0
\(839\) −17.6966 −0.610954 −0.305477 0.952199i \(-0.598816\pi\)
−0.305477 + 0.952199i \(0.598816\pi\)
\(840\) 0 0
\(841\) −14.4480 −0.498207
\(842\) 0 0
\(843\) −38.2459 −1.31726
\(844\) 0 0
\(845\) −6.38040 −0.219492
\(846\) 0 0
\(847\) 22.1737 0.761899
\(848\) 0 0
\(849\) −12.3145 −0.422634
\(850\) 0 0
\(851\) −29.9296 −1.02597
\(852\) 0 0
\(853\) 17.2272 0.589849 0.294924 0.955521i \(-0.404706\pi\)
0.294924 + 0.955521i \(0.404706\pi\)
\(854\) 0 0
\(855\) −2.61050 −0.0892772
\(856\) 0 0
\(857\) −36.3377 −1.24127 −0.620637 0.784098i \(-0.713126\pi\)
−0.620637 + 0.784098i \(0.713126\pi\)
\(858\) 0 0
\(859\) −35.7915 −1.22119 −0.610595 0.791943i \(-0.709070\pi\)
−0.610595 + 0.791943i \(0.709070\pi\)
\(860\) 0 0
\(861\) −40.5134 −1.38069
\(862\) 0 0
\(863\) −11.9672 −0.407368 −0.203684 0.979037i \(-0.565292\pi\)
−0.203684 + 0.979037i \(0.565292\pi\)
\(864\) 0 0
\(865\) −18.7879 −0.638807
\(866\) 0 0
\(867\) 38.2509 1.29907
\(868\) 0 0
\(869\) −10.6913 −0.362679
\(870\) 0 0
\(871\) 35.2553 1.19458
\(872\) 0 0
\(873\) 7.20015 0.243688
\(874\) 0 0
\(875\) −3.61050 −0.122057
\(876\) 0 0
\(877\) −53.5704 −1.80894 −0.904471 0.426534i \(-0.859734\pi\)
−0.904471 + 0.426534i \(0.859734\pi\)
\(878\) 0 0
\(879\) 18.4609 0.622671
\(880\) 0 0
\(881\) −52.7852 −1.77838 −0.889189 0.457540i \(-0.848731\pi\)
−0.889189 + 0.457540i \(0.848731\pi\)
\(882\) 0 0
\(883\) 47.2665 1.59065 0.795323 0.606186i \(-0.207301\pi\)
0.795323 + 0.606186i \(0.207301\pi\)
\(884\) 0 0
\(885\) −3.15269 −0.105977
\(886\) 0 0
\(887\) 30.3904 1.02041 0.510204 0.860053i \(-0.329570\pi\)
0.510204 + 0.860053i \(0.329570\pi\)
\(888\) 0 0
\(889\) −6.96740 −0.233679
\(890\) 0 0
\(891\) 22.0791 0.739678
\(892\) 0 0
\(893\) −0.279491 −0.00935282
\(894\) 0 0
\(895\) 8.91136 0.297874
\(896\) 0 0
\(897\) −44.1215 −1.47317
\(898\) 0 0
\(899\) −17.1040 −0.570451
\(900\) 0 0
\(901\) 9.10516 0.303337
\(902\) 0 0
\(903\) 46.3964 1.54398
\(904\) 0 0
\(905\) 6.96740 0.231604
\(906\) 0 0
\(907\) 22.1389 0.735111 0.367556 0.930001i \(-0.380195\pi\)
0.367556 + 0.930001i \(0.380195\pi\)
\(908\) 0 0
\(909\) 48.3705 1.60435
\(910\) 0 0
\(911\) −43.3159 −1.43512 −0.717560 0.696497i \(-0.754741\pi\)
−0.717560 + 0.696497i \(0.754741\pi\)
\(912\) 0 0
\(913\) 20.7751 0.687557
\(914\) 0 0
\(915\) 26.3629 0.871529
\(916\) 0 0
\(917\) −53.4669 −1.76563
\(918\) 0 0
\(919\) −1.68725 −0.0556571 −0.0278286 0.999613i \(-0.508859\pi\)
−0.0278286 + 0.999613i \(0.508859\pi\)
\(920\) 0 0
\(921\) 14.8585 0.489604
\(922\) 0 0
\(923\) −28.6764 −0.943894
\(924\) 0 0
\(925\) −4.13397 −0.135924
\(926\) 0 0
\(927\) −14.2169 −0.466946
\(928\) 0 0
\(929\) −29.4360 −0.965764 −0.482882 0.875685i \(-0.660410\pi\)
−0.482882 + 0.875685i \(0.660410\pi\)
\(930\) 0 0
\(931\) −6.03571 −0.197812
\(932\) 0 0
\(933\) 69.3148 2.26926
\(934\) 0 0
\(935\) −2.03358 −0.0665052
\(936\) 0 0
\(937\) −49.5540 −1.61886 −0.809430 0.587217i \(-0.800224\pi\)
−0.809430 + 0.587217i \(0.800224\pi\)
\(938\) 0 0
\(939\) 48.4921 1.58248
\(940\) 0 0
\(941\) −57.9201 −1.88814 −0.944071 0.329743i \(-0.893038\pi\)
−0.944071 + 0.329743i \(0.893038\pi\)
\(942\) 0 0
\(943\) −34.2977 −1.11689
\(944\) 0 0
\(945\) −3.33101 −0.108358
\(946\) 0 0
\(947\) 26.6304 0.865370 0.432685 0.901545i \(-0.357566\pi\)
0.432685 + 0.901545i \(0.357566\pi\)
\(948\) 0 0
\(949\) −23.9001 −0.775829
\(950\) 0 0
\(951\) 11.0098 0.357018
\(952\) 0 0
\(953\) −0.0289722 −0.000938500 0 −0.000469250 1.00000i \(-0.500149\pi\)
−0.000469250 1.00000i \(0.500149\pi\)
\(954\) 0 0
\(955\) −23.9278 −0.774286
\(956\) 0 0
\(957\) 19.9166 0.643812
\(958\) 0 0
\(959\) −63.3904 −2.04698
\(960\) 0 0
\(961\) −10.8964 −0.351498
\(962\) 0 0
\(963\) −8.51224 −0.274303
\(964\) 0 0
\(965\) −9.89961 −0.318680
\(966\) 0 0
\(967\) 23.9367 0.769751 0.384876 0.922968i \(-0.374244\pi\)
0.384876 + 0.922968i \(0.374244\pi\)
\(968\) 0 0
\(969\) 2.18529 0.0702016
\(970\) 0 0
\(971\) −18.5867 −0.596477 −0.298238 0.954491i \(-0.596399\pi\)
−0.298238 + 0.954491i \(0.596399\pi\)
\(972\) 0 0
\(973\) 15.3005 0.490513
\(974\) 0 0
\(975\) −6.09420 −0.195171
\(976\) 0 0
\(977\) −23.6982 −0.758172 −0.379086 0.925361i \(-0.623762\pi\)
−0.379086 + 0.925361i \(0.623762\pi\)
\(978\) 0 0
\(979\) 22.8504 0.730303
\(980\) 0 0
\(981\) −40.7713 −1.30173
\(982\) 0 0
\(983\) −31.0827 −0.991385 −0.495693 0.868498i \(-0.665086\pi\)
−0.495693 + 0.868498i \(0.665086\pi\)
\(984\) 0 0
\(985\) −12.3015 −0.391959
\(986\) 0 0
\(987\) 2.39021 0.0760813
\(988\) 0 0
\(989\) 39.2781 1.24897
\(990\) 0 0
\(991\) −3.58772 −0.113968 −0.0569838 0.998375i \(-0.518148\pi\)
−0.0569838 + 0.998375i \(0.518148\pi\)
\(992\) 0 0
\(993\) −62.5064 −1.98358
\(994\) 0 0
\(995\) −9.07741 −0.287773
\(996\) 0 0
\(997\) −13.8409 −0.438346 −0.219173 0.975686i \(-0.570336\pi\)
−0.219173 + 0.975686i \(0.570336\pi\)
\(998\) 0 0
\(999\) −3.81396 −0.120668
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.2.a.r.1.1 4
4.3 odd 2 3040.2.a.t.1.4 yes 4
8.3 odd 2 6080.2.a.cd.1.1 4
8.5 even 2 6080.2.a.cf.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.r.1.1 4 1.1 even 1 trivial
3040.2.a.t.1.4 yes 4 4.3 odd 2
6080.2.a.cd.1.1 4 8.3 odd 2
6080.2.a.cf.1.4 4 8.5 even 2