Properties

Label 3040.2.a.p.1.1
Level $3040$
Weight $2$
Character 3040.1
Self dual yes
Analytic conductor $24.275$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,2,Mod(1,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2745222145\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 3040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.481194 q^{3} +1.00000 q^{5} -4.15633 q^{7} -2.76845 q^{9} +3.19394 q^{11} -6.63752 q^{13} -0.481194 q^{15} +2.00000 q^{17} -1.00000 q^{19} +2.00000 q^{21} +4.15633 q^{23} +1.00000 q^{25} +2.77575 q^{27} -7.73813 q^{29} +4.57452 q^{31} -1.53690 q^{33} -4.15633 q^{35} -4.63752 q^{37} +3.19394 q^{39} -1.73813 q^{41} +12.3430 q^{43} -2.76845 q^{45} -4.15633 q^{47} +10.2750 q^{49} -0.962389 q^{51} +0.637519 q^{53} +3.19394 q^{55} +0.481194 q^{57} +3.61213 q^{59} +13.2447 q^{61} +11.5066 q^{63} -6.63752 q^{65} -3.25694 q^{67} -2.00000 q^{69} +4.57452 q^{71} +0.261865 q^{73} -0.481194 q^{75} -13.2750 q^{77} +11.0884 q^{79} +6.96968 q^{81} +13.4314 q^{83} +2.00000 q^{85} +3.72355 q^{87} +3.73813 q^{89} +27.5877 q^{91} -2.20123 q^{93} -1.00000 q^{95} +1.10062 q^{97} -8.84226 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{3} + 3 q^{5} - 2 q^{7} + 3 q^{9} + 10 q^{11} - 4 q^{13} + 4 q^{15} + 6 q^{17} - 3 q^{19} + 6 q^{21} + 2 q^{23} + 3 q^{25} + 10 q^{27} - 14 q^{29} + 2 q^{31} + 18 q^{33} - 2 q^{35} + 2 q^{37}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.481194 −0.277818 −0.138909 0.990305i \(-0.544359\pi\)
−0.138909 + 0.990305i \(0.544359\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −4.15633 −1.57094 −0.785472 0.618898i \(-0.787580\pi\)
−0.785472 + 0.618898i \(0.787580\pi\)
\(8\) 0 0
\(9\) −2.76845 −0.922817
\(10\) 0 0
\(11\) 3.19394 0.963008 0.481504 0.876444i \(-0.340091\pi\)
0.481504 + 0.876444i \(0.340091\pi\)
\(12\) 0 0
\(13\) −6.63752 −1.84092 −0.920458 0.390841i \(-0.872184\pi\)
−0.920458 + 0.390841i \(0.872184\pi\)
\(14\) 0 0
\(15\) −0.481194 −0.124244
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 4.15633 0.866654 0.433327 0.901237i \(-0.357340\pi\)
0.433327 + 0.901237i \(0.357340\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 2.77575 0.534193
\(28\) 0 0
\(29\) −7.73813 −1.43694 −0.718468 0.695560i \(-0.755156\pi\)
−0.718468 + 0.695560i \(0.755156\pi\)
\(30\) 0 0
\(31\) 4.57452 0.821607 0.410804 0.911724i \(-0.365248\pi\)
0.410804 + 0.911724i \(0.365248\pi\)
\(32\) 0 0
\(33\) −1.53690 −0.267541
\(34\) 0 0
\(35\) −4.15633 −0.702547
\(36\) 0 0
\(37\) −4.63752 −0.762404 −0.381202 0.924492i \(-0.624490\pi\)
−0.381202 + 0.924492i \(0.624490\pi\)
\(38\) 0 0
\(39\) 3.19394 0.511439
\(40\) 0 0
\(41\) −1.73813 −0.271451 −0.135726 0.990746i \(-0.543337\pi\)
−0.135726 + 0.990746i \(0.543337\pi\)
\(42\) 0 0
\(43\) 12.3430 1.88228 0.941142 0.338010i \(-0.109754\pi\)
0.941142 + 0.338010i \(0.109754\pi\)
\(44\) 0 0
\(45\) −2.76845 −0.412696
\(46\) 0 0
\(47\) −4.15633 −0.606262 −0.303131 0.952949i \(-0.598032\pi\)
−0.303131 + 0.952949i \(0.598032\pi\)
\(48\) 0 0
\(49\) 10.2750 1.46786
\(50\) 0 0
\(51\) −0.962389 −0.134761
\(52\) 0 0
\(53\) 0.637519 0.0875700 0.0437850 0.999041i \(-0.486058\pi\)
0.0437850 + 0.999041i \(0.486058\pi\)
\(54\) 0 0
\(55\) 3.19394 0.430670
\(56\) 0 0
\(57\) 0.481194 0.0637357
\(58\) 0 0
\(59\) 3.61213 0.470259 0.235129 0.971964i \(-0.424449\pi\)
0.235129 + 0.971964i \(0.424449\pi\)
\(60\) 0 0
\(61\) 13.2447 1.69581 0.847906 0.530146i \(-0.177863\pi\)
0.847906 + 0.530146i \(0.177863\pi\)
\(62\) 0 0
\(63\) 11.5066 1.44969
\(64\) 0 0
\(65\) −6.63752 −0.823283
\(66\) 0 0
\(67\) −3.25694 −0.397899 −0.198949 0.980010i \(-0.563753\pi\)
−0.198949 + 0.980010i \(0.563753\pi\)
\(68\) 0 0
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) 4.57452 0.542895 0.271448 0.962453i \(-0.412498\pi\)
0.271448 + 0.962453i \(0.412498\pi\)
\(72\) 0 0
\(73\) 0.261865 0.0306490 0.0153245 0.999883i \(-0.495122\pi\)
0.0153245 + 0.999883i \(0.495122\pi\)
\(74\) 0 0
\(75\) −0.481194 −0.0555635
\(76\) 0 0
\(77\) −13.2750 −1.51283
\(78\) 0 0
\(79\) 11.0884 1.24754 0.623771 0.781607i \(-0.285600\pi\)
0.623771 + 0.781607i \(0.285600\pi\)
\(80\) 0 0
\(81\) 6.96968 0.774409
\(82\) 0 0
\(83\) 13.4314 1.47428 0.737142 0.675738i \(-0.236175\pi\)
0.737142 + 0.675738i \(0.236175\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 3.72355 0.399206
\(88\) 0 0
\(89\) 3.73813 0.396242 0.198121 0.980178i \(-0.436516\pi\)
0.198121 + 0.980178i \(0.436516\pi\)
\(90\) 0 0
\(91\) 27.5877 2.89198
\(92\) 0 0
\(93\) −2.20123 −0.228257
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 1.10062 0.111751 0.0558753 0.998438i \(-0.482205\pi\)
0.0558753 + 0.998438i \(0.482205\pi\)
\(98\) 0 0
\(99\) −8.84226 −0.888681
\(100\) 0 0
\(101\) 15.0435 1.49688 0.748442 0.663201i \(-0.230802\pi\)
0.748442 + 0.663201i \(0.230802\pi\)
\(102\) 0 0
\(103\) −19.8822 −1.95906 −0.979528 0.201309i \(-0.935480\pi\)
−0.979528 + 0.201309i \(0.935480\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) −6.14411 −0.593973 −0.296987 0.954882i \(-0.595982\pi\)
−0.296987 + 0.954882i \(0.595982\pi\)
\(108\) 0 0
\(109\) 7.53690 0.721904 0.360952 0.932584i \(-0.382452\pi\)
0.360952 + 0.932584i \(0.382452\pi\)
\(110\) 0 0
\(111\) 2.23155 0.211809
\(112\) 0 0
\(113\) −16.3757 −1.54049 −0.770246 0.637747i \(-0.779867\pi\)
−0.770246 + 0.637747i \(0.779867\pi\)
\(114\) 0 0
\(115\) 4.15633 0.387579
\(116\) 0 0
\(117\) 18.3757 1.69883
\(118\) 0 0
\(119\) −8.31265 −0.762019
\(120\) 0 0
\(121\) −0.798769 −0.0726154
\(122\) 0 0
\(123\) 0.836381 0.0754139
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −1.31757 −0.116916 −0.0584579 0.998290i \(-0.518618\pi\)
−0.0584579 + 0.998290i \(0.518618\pi\)
\(128\) 0 0
\(129\) −5.93937 −0.522932
\(130\) 0 0
\(131\) −19.5125 −1.70481 −0.852406 0.522880i \(-0.824857\pi\)
−0.852406 + 0.522880i \(0.824857\pi\)
\(132\) 0 0
\(133\) 4.15633 0.360399
\(134\) 0 0
\(135\) 2.77575 0.238898
\(136\) 0 0
\(137\) −1.53690 −0.131307 −0.0656533 0.997842i \(-0.520913\pi\)
−0.0656533 + 0.997842i \(0.520913\pi\)
\(138\) 0 0
\(139\) 9.58181 0.812718 0.406359 0.913713i \(-0.366798\pi\)
0.406359 + 0.913713i \(0.366798\pi\)
\(140\) 0 0
\(141\) 2.00000 0.168430
\(142\) 0 0
\(143\) −21.1998 −1.77282
\(144\) 0 0
\(145\) −7.73813 −0.642617
\(146\) 0 0
\(147\) −4.94429 −0.407798
\(148\) 0 0
\(149\) 5.24472 0.429664 0.214832 0.976651i \(-0.431080\pi\)
0.214832 + 0.976651i \(0.431080\pi\)
\(150\) 0 0
\(151\) 7.35026 0.598156 0.299078 0.954229i \(-0.403321\pi\)
0.299078 + 0.954229i \(0.403321\pi\)
\(152\) 0 0
\(153\) −5.53690 −0.447632
\(154\) 0 0
\(155\) 4.57452 0.367434
\(156\) 0 0
\(157\) 17.5369 1.39960 0.699799 0.714340i \(-0.253273\pi\)
0.699799 + 0.714340i \(0.253273\pi\)
\(158\) 0 0
\(159\) −0.306771 −0.0243285
\(160\) 0 0
\(161\) −17.2750 −1.36146
\(162\) 0 0
\(163\) 11.5066 0.901265 0.450633 0.892709i \(-0.351198\pi\)
0.450633 + 0.892709i \(0.351198\pi\)
\(164\) 0 0
\(165\) −1.53690 −0.119648
\(166\) 0 0
\(167\) 14.3453 1.11008 0.555038 0.831825i \(-0.312704\pi\)
0.555038 + 0.831825i \(0.312704\pi\)
\(168\) 0 0
\(169\) 31.0567 2.38897
\(170\) 0 0
\(171\) 2.76845 0.211709
\(172\) 0 0
\(173\) −12.8994 −0.980722 −0.490361 0.871519i \(-0.663135\pi\)
−0.490361 + 0.871519i \(0.663135\pi\)
\(174\) 0 0
\(175\) −4.15633 −0.314189
\(176\) 0 0
\(177\) −1.73813 −0.130646
\(178\) 0 0
\(179\) 3.61213 0.269983 0.134992 0.990847i \(-0.456899\pi\)
0.134992 + 0.990847i \(0.456899\pi\)
\(180\) 0 0
\(181\) 12.5501 0.932840 0.466420 0.884563i \(-0.345544\pi\)
0.466420 + 0.884563i \(0.345544\pi\)
\(182\) 0 0
\(183\) −6.37328 −0.471127
\(184\) 0 0
\(185\) −4.63752 −0.340957
\(186\) 0 0
\(187\) 6.38787 0.467128
\(188\) 0 0
\(189\) −11.5369 −0.839186
\(190\) 0 0
\(191\) −1.08840 −0.0787536 −0.0393768 0.999224i \(-0.512537\pi\)
−0.0393768 + 0.999224i \(0.512537\pi\)
\(192\) 0 0
\(193\) 15.6507 1.12656 0.563281 0.826266i \(-0.309539\pi\)
0.563281 + 0.826266i \(0.309539\pi\)
\(194\) 0 0
\(195\) 3.19394 0.228723
\(196\) 0 0
\(197\) −7.73813 −0.551319 −0.275660 0.961255i \(-0.588896\pi\)
−0.275660 + 0.961255i \(0.588896\pi\)
\(198\) 0 0
\(199\) −14.7005 −1.04209 −0.521046 0.853528i \(-0.674458\pi\)
−0.521046 + 0.853528i \(0.674458\pi\)
\(200\) 0 0
\(201\) 1.56722 0.110543
\(202\) 0 0
\(203\) 32.1622 2.25734
\(204\) 0 0
\(205\) −1.73813 −0.121397
\(206\) 0 0
\(207\) −11.5066 −0.799763
\(208\) 0 0
\(209\) −3.19394 −0.220929
\(210\) 0 0
\(211\) 27.3503 1.88287 0.941435 0.337195i \(-0.109478\pi\)
0.941435 + 0.337195i \(0.109478\pi\)
\(212\) 0 0
\(213\) −2.20123 −0.150826
\(214\) 0 0
\(215\) 12.3430 0.841783
\(216\) 0 0
\(217\) −19.0132 −1.29070
\(218\) 0 0
\(219\) −0.126008 −0.00851483
\(220\) 0 0
\(221\) −13.2750 −0.892976
\(222\) 0 0
\(223\) −23.3684 −1.56486 −0.782431 0.622738i \(-0.786020\pi\)
−0.782431 + 0.622738i \(0.786020\pi\)
\(224\) 0 0
\(225\) −2.76845 −0.184563
\(226\) 0 0
\(227\) 28.1949 1.87136 0.935680 0.352849i \(-0.114787\pi\)
0.935680 + 0.352849i \(0.114787\pi\)
\(228\) 0 0
\(229\) −23.0435 −1.52276 −0.761378 0.648308i \(-0.775477\pi\)
−0.761378 + 0.648308i \(0.775477\pi\)
\(230\) 0 0
\(231\) 6.38787 0.420291
\(232\) 0 0
\(233\) −3.73813 −0.244893 −0.122447 0.992475i \(-0.539074\pi\)
−0.122447 + 0.992475i \(0.539074\pi\)
\(234\) 0 0
\(235\) −4.15633 −0.271129
\(236\) 0 0
\(237\) −5.33567 −0.346589
\(238\) 0 0
\(239\) 0.126008 0.00815078 0.00407539 0.999992i \(-0.498703\pi\)
0.00407539 + 0.999992i \(0.498703\pi\)
\(240\) 0 0
\(241\) −2.20123 −0.141794 −0.0708969 0.997484i \(-0.522586\pi\)
−0.0708969 + 0.997484i \(0.522586\pi\)
\(242\) 0 0
\(243\) −11.6810 −0.749337
\(244\) 0 0
\(245\) 10.2750 0.656448
\(246\) 0 0
\(247\) 6.63752 0.422335
\(248\) 0 0
\(249\) −6.46310 −0.409582
\(250\) 0 0
\(251\) 22.7612 1.43667 0.718336 0.695697i \(-0.244904\pi\)
0.718336 + 0.695697i \(0.244904\pi\)
\(252\) 0 0
\(253\) 13.2750 0.834595
\(254\) 0 0
\(255\) −0.962389 −0.0602671
\(256\) 0 0
\(257\) 2.43629 0.151972 0.0759858 0.997109i \(-0.475790\pi\)
0.0759858 + 0.997109i \(0.475790\pi\)
\(258\) 0 0
\(259\) 19.2750 1.19769
\(260\) 0 0
\(261\) 21.4227 1.32603
\(262\) 0 0
\(263\) 12.4690 0.768870 0.384435 0.923152i \(-0.374396\pi\)
0.384435 + 0.923152i \(0.374396\pi\)
\(264\) 0 0
\(265\) 0.637519 0.0391625
\(266\) 0 0
\(267\) −1.79877 −0.110083
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) −2.10554 −0.127902 −0.0639512 0.997953i \(-0.520370\pi\)
−0.0639512 + 0.997953i \(0.520370\pi\)
\(272\) 0 0
\(273\) −13.2750 −0.803442
\(274\) 0 0
\(275\) 3.19394 0.192602
\(276\) 0 0
\(277\) −24.0870 −1.44725 −0.723623 0.690195i \(-0.757525\pi\)
−0.723623 + 0.690195i \(0.757525\pi\)
\(278\) 0 0
\(279\) −12.6643 −0.758193
\(280\) 0 0
\(281\) −24.8119 −1.48016 −0.740078 0.672521i \(-0.765212\pi\)
−0.740078 + 0.672521i \(0.765212\pi\)
\(282\) 0 0
\(283\) 1.26916 0.0754437 0.0377218 0.999288i \(-0.487990\pi\)
0.0377218 + 0.999288i \(0.487990\pi\)
\(284\) 0 0
\(285\) 0.481194 0.0285035
\(286\) 0 0
\(287\) 7.22425 0.426434
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −0.529610 −0.0310463
\(292\) 0 0
\(293\) 0.174424 0.0101899 0.00509497 0.999987i \(-0.498378\pi\)
0.00509497 + 0.999987i \(0.498378\pi\)
\(294\) 0 0
\(295\) 3.61213 0.210306
\(296\) 0 0
\(297\) 8.86556 0.514432
\(298\) 0 0
\(299\) −27.5877 −1.59544
\(300\) 0 0
\(301\) −51.3014 −2.95696
\(302\) 0 0
\(303\) −7.23884 −0.415861
\(304\) 0 0
\(305\) 13.2447 0.758391
\(306\) 0 0
\(307\) −16.9951 −0.969960 −0.484980 0.874525i \(-0.661173\pi\)
−0.484980 + 0.874525i \(0.661173\pi\)
\(308\) 0 0
\(309\) 9.56722 0.544260
\(310\) 0 0
\(311\) 27.0435 1.53350 0.766748 0.641948i \(-0.221874\pi\)
0.766748 + 0.641948i \(0.221874\pi\)
\(312\) 0 0
\(313\) 7.73813 0.437385 0.218693 0.975794i \(-0.429821\pi\)
0.218693 + 0.975794i \(0.429821\pi\)
\(314\) 0 0
\(315\) 11.5066 0.648323
\(316\) 0 0
\(317\) −10.1744 −0.571453 −0.285726 0.958311i \(-0.592235\pi\)
−0.285726 + 0.958311i \(0.592235\pi\)
\(318\) 0 0
\(319\) −24.7151 −1.38378
\(320\) 0 0
\(321\) 2.95651 0.165016
\(322\) 0 0
\(323\) −2.00000 −0.111283
\(324\) 0 0
\(325\) −6.63752 −0.368183
\(326\) 0 0
\(327\) −3.62672 −0.200558
\(328\) 0 0
\(329\) 17.2750 0.952404
\(330\) 0 0
\(331\) 19.0376 1.04640 0.523201 0.852209i \(-0.324738\pi\)
0.523201 + 0.852209i \(0.324738\pi\)
\(332\) 0 0
\(333\) 12.8388 0.703559
\(334\) 0 0
\(335\) −3.25694 −0.177946
\(336\) 0 0
\(337\) 21.1876 1.15416 0.577081 0.816687i \(-0.304192\pi\)
0.577081 + 0.816687i \(0.304192\pi\)
\(338\) 0 0
\(339\) 7.87987 0.427976
\(340\) 0 0
\(341\) 14.6107 0.791214
\(342\) 0 0
\(343\) −13.6121 −0.734986
\(344\) 0 0
\(345\) −2.00000 −0.107676
\(346\) 0 0
\(347\) −3.06793 −0.164695 −0.0823475 0.996604i \(-0.526242\pi\)
−0.0823475 + 0.996604i \(0.526242\pi\)
\(348\) 0 0
\(349\) 15.2750 0.817654 0.408827 0.912612i \(-0.365938\pi\)
0.408827 + 0.912612i \(0.365938\pi\)
\(350\) 0 0
\(351\) −18.4241 −0.983404
\(352\) 0 0
\(353\) 28.5501 1.51957 0.759784 0.650176i \(-0.225305\pi\)
0.759784 + 0.650176i \(0.225305\pi\)
\(354\) 0 0
\(355\) 4.57452 0.242790
\(356\) 0 0
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) −30.8930 −1.63047 −0.815236 0.579128i \(-0.803393\pi\)
−0.815236 + 0.579128i \(0.803393\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0.384363 0.0201738
\(364\) 0 0
\(365\) 0.261865 0.0137066
\(366\) 0 0
\(367\) −1.26916 −0.0662496 −0.0331248 0.999451i \(-0.510546\pi\)
−0.0331248 + 0.999451i \(0.510546\pi\)
\(368\) 0 0
\(369\) 4.81194 0.250500
\(370\) 0 0
\(371\) −2.64974 −0.137568
\(372\) 0 0
\(373\) 27.1270 1.40458 0.702290 0.711891i \(-0.252161\pi\)
0.702290 + 0.711891i \(0.252161\pi\)
\(374\) 0 0
\(375\) −0.481194 −0.0248488
\(376\) 0 0
\(377\) 51.3620 2.64528
\(378\) 0 0
\(379\) 16.3733 0.841039 0.420520 0.907283i \(-0.361848\pi\)
0.420520 + 0.907283i \(0.361848\pi\)
\(380\) 0 0
\(381\) 0.634010 0.0324813
\(382\) 0 0
\(383\) 27.1065 1.38508 0.692539 0.721381i \(-0.256492\pi\)
0.692539 + 0.721381i \(0.256492\pi\)
\(384\) 0 0
\(385\) −13.2750 −0.676559
\(386\) 0 0
\(387\) −34.1709 −1.73701
\(388\) 0 0
\(389\) −21.8251 −1.10658 −0.553289 0.832990i \(-0.686627\pi\)
−0.553289 + 0.832990i \(0.686627\pi\)
\(390\) 0 0
\(391\) 8.31265 0.420389
\(392\) 0 0
\(393\) 9.38929 0.473627
\(394\) 0 0
\(395\) 11.0884 0.557918
\(396\) 0 0
\(397\) −3.27504 −0.164369 −0.0821847 0.996617i \(-0.526190\pi\)
−0.0821847 + 0.996617i \(0.526190\pi\)
\(398\) 0 0
\(399\) −2.00000 −0.100125
\(400\) 0 0
\(401\) 5.01317 0.250346 0.125173 0.992135i \(-0.460051\pi\)
0.125173 + 0.992135i \(0.460051\pi\)
\(402\) 0 0
\(403\) −30.3634 −1.51251
\(404\) 0 0
\(405\) 6.96968 0.346326
\(406\) 0 0
\(407\) −14.8119 −0.734201
\(408\) 0 0
\(409\) 3.07381 0.151990 0.0759950 0.997108i \(-0.475787\pi\)
0.0759950 + 0.997108i \(0.475787\pi\)
\(410\) 0 0
\(411\) 0.739549 0.0364793
\(412\) 0 0
\(413\) −15.0132 −0.738750
\(414\) 0 0
\(415\) 13.4314 0.659320
\(416\) 0 0
\(417\) −4.61071 −0.225788
\(418\) 0 0
\(419\) 31.1998 1.52421 0.762105 0.647453i \(-0.224166\pi\)
0.762105 + 0.647453i \(0.224166\pi\)
\(420\) 0 0
\(421\) −32.3488 −1.57659 −0.788293 0.615300i \(-0.789035\pi\)
−0.788293 + 0.615300i \(0.789035\pi\)
\(422\) 0 0
\(423\) 11.5066 0.559469
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) −55.0494 −2.66403
\(428\) 0 0
\(429\) 10.2012 0.492520
\(430\) 0 0
\(431\) 0.962389 0.0463566 0.0231783 0.999731i \(-0.492621\pi\)
0.0231783 + 0.999731i \(0.492621\pi\)
\(432\) 0 0
\(433\) 24.7245 1.18818 0.594092 0.804397i \(-0.297512\pi\)
0.594092 + 0.804397i \(0.297512\pi\)
\(434\) 0 0
\(435\) 3.72355 0.178530
\(436\) 0 0
\(437\) −4.15633 −0.198824
\(438\) 0 0
\(439\) 1.10299 0.0526426 0.0263213 0.999654i \(-0.491621\pi\)
0.0263213 + 0.999654i \(0.491621\pi\)
\(440\) 0 0
\(441\) −28.4460 −1.35457
\(442\) 0 0
\(443\) −21.8700 −1.03908 −0.519538 0.854447i \(-0.673896\pi\)
−0.519538 + 0.854447i \(0.673896\pi\)
\(444\) 0 0
\(445\) 3.73813 0.177205
\(446\) 0 0
\(447\) −2.52373 −0.119368
\(448\) 0 0
\(449\) −19.5369 −0.922004 −0.461002 0.887399i \(-0.652510\pi\)
−0.461002 + 0.887399i \(0.652510\pi\)
\(450\) 0 0
\(451\) −5.55149 −0.261410
\(452\) 0 0
\(453\) −3.53690 −0.166178
\(454\) 0 0
\(455\) 27.5877 1.29333
\(456\) 0 0
\(457\) −28.0263 −1.31102 −0.655509 0.755188i \(-0.727546\pi\)
−0.655509 + 0.755188i \(0.727546\pi\)
\(458\) 0 0
\(459\) 5.55149 0.259121
\(460\) 0 0
\(461\) 26.0000 1.21094 0.605470 0.795868i \(-0.292985\pi\)
0.605470 + 0.795868i \(0.292985\pi\)
\(462\) 0 0
\(463\) −24.9927 −1.16151 −0.580755 0.814079i \(-0.697242\pi\)
−0.580755 + 0.814079i \(0.697242\pi\)
\(464\) 0 0
\(465\) −2.20123 −0.102080
\(466\) 0 0
\(467\) −10.2922 −0.476265 −0.238133 0.971233i \(-0.576535\pi\)
−0.238133 + 0.971233i \(0.576535\pi\)
\(468\) 0 0
\(469\) 13.5369 0.625076
\(470\) 0 0
\(471\) −8.43866 −0.388833
\(472\) 0 0
\(473\) 39.4227 1.81266
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) −1.76494 −0.0808111
\(478\) 0 0
\(479\) 24.7572 1.13118 0.565592 0.824685i \(-0.308648\pi\)
0.565592 + 0.824685i \(0.308648\pi\)
\(480\) 0 0
\(481\) 30.7816 1.40352
\(482\) 0 0
\(483\) 8.31265 0.378239
\(484\) 0 0
\(485\) 1.10062 0.0499764
\(486\) 0 0
\(487\) −14.9443 −0.677190 −0.338595 0.940932i \(-0.609952\pi\)
−0.338595 + 0.940932i \(0.609952\pi\)
\(488\) 0 0
\(489\) −5.53690 −0.250387
\(490\) 0 0
\(491\) −4.93795 −0.222847 −0.111423 0.993773i \(-0.535541\pi\)
−0.111423 + 0.993773i \(0.535541\pi\)
\(492\) 0 0
\(493\) −15.4763 −0.697016
\(494\) 0 0
\(495\) −8.84226 −0.397430
\(496\) 0 0
\(497\) −19.0132 −0.852857
\(498\) 0 0
\(499\) 3.44595 0.154262 0.0771310 0.997021i \(-0.475424\pi\)
0.0771310 + 0.997021i \(0.475424\pi\)
\(500\) 0 0
\(501\) −6.90289 −0.308399
\(502\) 0 0
\(503\) 7.53102 0.335792 0.167896 0.985805i \(-0.446303\pi\)
0.167896 + 0.985805i \(0.446303\pi\)
\(504\) 0 0
\(505\) 15.0435 0.669427
\(506\) 0 0
\(507\) −14.9443 −0.663699
\(508\) 0 0
\(509\) 12.2012 0.540810 0.270405 0.962747i \(-0.412842\pi\)
0.270405 + 0.962747i \(0.412842\pi\)
\(510\) 0 0
\(511\) −1.08840 −0.0481478
\(512\) 0 0
\(513\) −2.77575 −0.122552
\(514\) 0 0
\(515\) −19.8822 −0.876116
\(516\) 0 0
\(517\) −13.2750 −0.583836
\(518\) 0 0
\(519\) 6.20711 0.272462
\(520\) 0 0
\(521\) −16.6107 −0.727729 −0.363864 0.931452i \(-0.618543\pi\)
−0.363864 + 0.931452i \(0.618543\pi\)
\(522\) 0 0
\(523\) −34.4422 −1.50605 −0.753025 0.657991i \(-0.771406\pi\)
−0.753025 + 0.657991i \(0.771406\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) 9.14903 0.398538
\(528\) 0 0
\(529\) −5.72496 −0.248911
\(530\) 0 0
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) 11.5369 0.499719
\(534\) 0 0
\(535\) −6.14411 −0.265633
\(536\) 0 0
\(537\) −1.73813 −0.0750061
\(538\) 0 0
\(539\) 32.8178 1.41356
\(540\) 0 0
\(541\) 12.9565 0.557044 0.278522 0.960430i \(-0.410156\pi\)
0.278522 + 0.960430i \(0.410156\pi\)
\(542\) 0 0
\(543\) −6.03903 −0.259159
\(544\) 0 0
\(545\) 7.53690 0.322845
\(546\) 0 0
\(547\) 14.6942 0.628278 0.314139 0.949377i \(-0.398284\pi\)
0.314139 + 0.949377i \(0.398284\pi\)
\(548\) 0 0
\(549\) −36.6674 −1.56493
\(550\) 0 0
\(551\) 7.73813 0.329656
\(552\) 0 0
\(553\) −46.0870 −1.95982
\(554\) 0 0
\(555\) 2.23155 0.0947239
\(556\) 0 0
\(557\) 37.0132 1.56830 0.784149 0.620572i \(-0.213100\pi\)
0.784149 + 0.620572i \(0.213100\pi\)
\(558\) 0 0
\(559\) −81.9267 −3.46513
\(560\) 0 0
\(561\) −3.07381 −0.129776
\(562\) 0 0
\(563\) −19.9937 −0.842632 −0.421316 0.906914i \(-0.638432\pi\)
−0.421316 + 0.906914i \(0.638432\pi\)
\(564\) 0 0
\(565\) −16.3757 −0.688929
\(566\) 0 0
\(567\) −28.9683 −1.21655
\(568\) 0 0
\(569\) 11.4763 0.481110 0.240555 0.970635i \(-0.422671\pi\)
0.240555 + 0.970635i \(0.422671\pi\)
\(570\) 0 0
\(571\) 27.0435 1.13173 0.565867 0.824496i \(-0.308541\pi\)
0.565867 + 0.824496i \(0.308541\pi\)
\(572\) 0 0
\(573\) 0.523730 0.0218791
\(574\) 0 0
\(575\) 4.15633 0.173331
\(576\) 0 0
\(577\) 7.21440 0.300340 0.150170 0.988660i \(-0.452018\pi\)
0.150170 + 0.988660i \(0.452018\pi\)
\(578\) 0 0
\(579\) −7.53102 −0.312979
\(580\) 0 0
\(581\) −55.8251 −2.31602
\(582\) 0 0
\(583\) 2.03620 0.0843307
\(584\) 0 0
\(585\) 18.3757 0.759740
\(586\) 0 0
\(587\) −28.1319 −1.16113 −0.580564 0.814215i \(-0.697168\pi\)
−0.580564 + 0.814215i \(0.697168\pi\)
\(588\) 0 0
\(589\) −4.57452 −0.188490
\(590\) 0 0
\(591\) 3.72355 0.153166
\(592\) 0 0
\(593\) −25.5975 −1.05116 −0.525582 0.850743i \(-0.676153\pi\)
−0.525582 + 0.850743i \(0.676153\pi\)
\(594\) 0 0
\(595\) −8.31265 −0.340785
\(596\) 0 0
\(597\) 7.07381 0.289512
\(598\) 0 0
\(599\) −11.9248 −0.487233 −0.243617 0.969872i \(-0.578334\pi\)
−0.243617 + 0.969872i \(0.578334\pi\)
\(600\) 0 0
\(601\) −13.6775 −0.557917 −0.278958 0.960303i \(-0.589989\pi\)
−0.278958 + 0.960303i \(0.589989\pi\)
\(602\) 0 0
\(603\) 9.01668 0.367188
\(604\) 0 0
\(605\) −0.798769 −0.0324746
\(606\) 0 0
\(607\) −37.9283 −1.53946 −0.769731 0.638369i \(-0.779610\pi\)
−0.769731 + 0.638369i \(0.779610\pi\)
\(608\) 0 0
\(609\) −15.4763 −0.627130
\(610\) 0 0
\(611\) 27.5877 1.11608
\(612\) 0 0
\(613\) 38.8119 1.56760 0.783800 0.621014i \(-0.213279\pi\)
0.783800 + 0.621014i \(0.213279\pi\)
\(614\) 0 0
\(615\) 0.836381 0.0337261
\(616\) 0 0
\(617\) −14.8119 −0.596306 −0.298153 0.954518i \(-0.596371\pi\)
−0.298153 + 0.954518i \(0.596371\pi\)
\(618\) 0 0
\(619\) 20.6556 0.830219 0.415110 0.909771i \(-0.363743\pi\)
0.415110 + 0.909771i \(0.363743\pi\)
\(620\) 0 0
\(621\) 11.5369 0.462960
\(622\) 0 0
\(623\) −15.5369 −0.622473
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.53690 0.0613780
\(628\) 0 0
\(629\) −9.27504 −0.369820
\(630\) 0 0
\(631\) −25.9551 −1.03326 −0.516628 0.856210i \(-0.672813\pi\)
−0.516628 + 0.856210i \(0.672813\pi\)
\(632\) 0 0
\(633\) −13.1608 −0.523094
\(634\) 0 0
\(635\) −1.31757 −0.0522864
\(636\) 0 0
\(637\) −68.2008 −2.70221
\(638\) 0 0
\(639\) −12.6643 −0.500993
\(640\) 0 0
\(641\) −16.7513 −0.661637 −0.330818 0.943694i \(-0.607325\pi\)
−0.330818 + 0.943694i \(0.607325\pi\)
\(642\) 0 0
\(643\) 10.7962 0.425761 0.212881 0.977078i \(-0.431715\pi\)
0.212881 + 0.977078i \(0.431715\pi\)
\(644\) 0 0
\(645\) −5.93937 −0.233862
\(646\) 0 0
\(647\) −25.5936 −1.00619 −0.503094 0.864232i \(-0.667805\pi\)
−0.503094 + 0.864232i \(0.667805\pi\)
\(648\) 0 0
\(649\) 11.5369 0.452863
\(650\) 0 0
\(651\) 9.14903 0.358579
\(652\) 0 0
\(653\) −39.7381 −1.55507 −0.777537 0.628838i \(-0.783531\pi\)
−0.777537 + 0.628838i \(0.783531\pi\)
\(654\) 0 0
\(655\) −19.5125 −0.762415
\(656\) 0 0
\(657\) −0.724961 −0.0282834
\(658\) 0 0
\(659\) 7.71370 0.300483 0.150241 0.988649i \(-0.451995\pi\)
0.150241 + 0.988649i \(0.451995\pi\)
\(660\) 0 0
\(661\) −6.20123 −0.241200 −0.120600 0.992701i \(-0.538482\pi\)
−0.120600 + 0.992701i \(0.538482\pi\)
\(662\) 0 0
\(663\) 6.38787 0.248084
\(664\) 0 0
\(665\) 4.15633 0.161175
\(666\) 0 0
\(667\) −32.1622 −1.24533
\(668\) 0 0
\(669\) 11.2447 0.434746
\(670\) 0 0
\(671\) 42.3028 1.63308
\(672\) 0 0
\(673\) −10.1138 −0.389858 −0.194929 0.980817i \(-0.562448\pi\)
−0.194929 + 0.980817i \(0.562448\pi\)
\(674\) 0 0
\(675\) 2.77575 0.106839
\(676\) 0 0
\(677\) −30.3757 −1.16743 −0.583716 0.811958i \(-0.698402\pi\)
−0.583716 + 0.811958i \(0.698402\pi\)
\(678\) 0 0
\(679\) −4.57452 −0.175554
\(680\) 0 0
\(681\) −13.5672 −0.519897
\(682\) 0 0
\(683\) 28.4323 1.08793 0.543966 0.839107i \(-0.316922\pi\)
0.543966 + 0.839107i \(0.316922\pi\)
\(684\) 0 0
\(685\) −1.53690 −0.0587221
\(686\) 0 0
\(687\) 11.0884 0.423049
\(688\) 0 0
\(689\) −4.23155 −0.161209
\(690\) 0 0
\(691\) −12.9565 −0.492889 −0.246444 0.969157i \(-0.579262\pi\)
−0.246444 + 0.969157i \(0.579262\pi\)
\(692\) 0 0
\(693\) 36.7513 1.39607
\(694\) 0 0
\(695\) 9.58181 0.363459
\(696\) 0 0
\(697\) −3.47627 −0.131673
\(698\) 0 0
\(699\) 1.79877 0.0680357
\(700\) 0 0
\(701\) 28.7816 1.08707 0.543534 0.839387i \(-0.317086\pi\)
0.543534 + 0.839387i \(0.317086\pi\)
\(702\) 0 0
\(703\) 4.63752 0.174907
\(704\) 0 0
\(705\) 2.00000 0.0753244
\(706\) 0 0
\(707\) −62.5256 −2.35152
\(708\) 0 0
\(709\) −30.2276 −1.13522 −0.567610 0.823297i \(-0.692132\pi\)
−0.567610 + 0.823297i \(0.692132\pi\)
\(710\) 0 0
\(711\) −30.6977 −1.15125
\(712\) 0 0
\(713\) 19.0132 0.712049
\(714\) 0 0
\(715\) −21.1998 −0.792828
\(716\) 0 0
\(717\) −0.0606343 −0.00226443
\(718\) 0 0
\(719\) −40.6556 −1.51620 −0.758099 0.652139i \(-0.773872\pi\)
−0.758099 + 0.652139i \(0.773872\pi\)
\(720\) 0 0
\(721\) 82.6371 3.07756
\(722\) 0 0
\(723\) 1.05922 0.0393928
\(724\) 0 0
\(725\) −7.73813 −0.287387
\(726\) 0 0
\(727\) 24.5052 0.908847 0.454423 0.890786i \(-0.349845\pi\)
0.454423 + 0.890786i \(0.349845\pi\)
\(728\) 0 0
\(729\) −15.2882 −0.566230
\(730\) 0 0
\(731\) 24.6859 0.913042
\(732\) 0 0
\(733\) 33.8251 1.24936 0.624680 0.780881i \(-0.285230\pi\)
0.624680 + 0.780881i \(0.285230\pi\)
\(734\) 0 0
\(735\) −4.94429 −0.182373
\(736\) 0 0
\(737\) −10.4025 −0.383180
\(738\) 0 0
\(739\) −42.6516 −1.56897 −0.784483 0.620150i \(-0.787072\pi\)
−0.784483 + 0.620150i \(0.787072\pi\)
\(740\) 0 0
\(741\) −3.19394 −0.117332
\(742\) 0 0
\(743\) 33.1309 1.21546 0.607728 0.794145i \(-0.292081\pi\)
0.607728 + 0.794145i \(0.292081\pi\)
\(744\) 0 0
\(745\) 5.24472 0.192152
\(746\) 0 0
\(747\) −37.1841 −1.36049
\(748\) 0 0
\(749\) 25.5369 0.933098
\(750\) 0 0
\(751\) −12.0654 −0.440272 −0.220136 0.975469i \(-0.570650\pi\)
−0.220136 + 0.975469i \(0.570650\pi\)
\(752\) 0 0
\(753\) −10.9525 −0.399133
\(754\) 0 0
\(755\) 7.35026 0.267503
\(756\) 0 0
\(757\) −23.7381 −0.862777 −0.431389 0.902166i \(-0.641976\pi\)
−0.431389 + 0.902166i \(0.641976\pi\)
\(758\) 0 0
\(759\) −6.38787 −0.231865
\(760\) 0 0
\(761\) 3.04349 0.110326 0.0551632 0.998477i \(-0.482432\pi\)
0.0551632 + 0.998477i \(0.482432\pi\)
\(762\) 0 0
\(763\) −31.3258 −1.13407
\(764\) 0 0
\(765\) −5.53690 −0.200187
\(766\) 0 0
\(767\) −23.9756 −0.865707
\(768\) 0 0
\(769\) 53.5936 1.93263 0.966317 0.257356i \(-0.0828512\pi\)
0.966317 + 0.257356i \(0.0828512\pi\)
\(770\) 0 0
\(771\) −1.17233 −0.0422204
\(772\) 0 0
\(773\) 42.9257 1.54393 0.771966 0.635664i \(-0.219274\pi\)
0.771966 + 0.635664i \(0.219274\pi\)
\(774\) 0 0
\(775\) 4.57452 0.164321
\(776\) 0 0
\(777\) −9.27504 −0.332740
\(778\) 0 0
\(779\) 1.73813 0.0622751
\(780\) 0 0
\(781\) 14.6107 0.522812
\(782\) 0 0
\(783\) −21.4791 −0.767600
\(784\) 0 0
\(785\) 17.5369 0.625919
\(786\) 0 0
\(787\) 10.8446 0.386569 0.193285 0.981143i \(-0.438086\pi\)
0.193285 + 0.981143i \(0.438086\pi\)
\(788\) 0 0
\(789\) −6.00000 −0.213606
\(790\) 0 0
\(791\) 68.0625 2.42003
\(792\) 0 0
\(793\) −87.9121 −3.12185
\(794\) 0 0
\(795\) −0.306771 −0.0108800
\(796\) 0 0
\(797\) 38.1401 1.35099 0.675496 0.737363i \(-0.263929\pi\)
0.675496 + 0.737363i \(0.263929\pi\)
\(798\) 0 0
\(799\) −8.31265 −0.294080
\(800\) 0 0
\(801\) −10.3488 −0.365659
\(802\) 0 0
\(803\) 0.836381 0.0295152
\(804\) 0 0
\(805\) −17.2750 −0.608865
\(806\) 0 0
\(807\) −5.77433 −0.203266
\(808\) 0 0
\(809\) −42.2276 −1.48464 −0.742321 0.670044i \(-0.766275\pi\)
−0.742321 + 0.670044i \(0.766275\pi\)
\(810\) 0 0
\(811\) 52.5256 1.84442 0.922212 0.386684i \(-0.126380\pi\)
0.922212 + 0.386684i \(0.126380\pi\)
\(812\) 0 0
\(813\) 1.01317 0.0355336
\(814\) 0 0
\(815\) 11.5066 0.403058
\(816\) 0 0
\(817\) −12.3430 −0.431826
\(818\) 0 0
\(819\) −76.3752 −2.66877
\(820\) 0 0
\(821\) 19.2750 0.672703 0.336352 0.941736i \(-0.390807\pi\)
0.336352 + 0.941736i \(0.390807\pi\)
\(822\) 0 0
\(823\) −7.40502 −0.258123 −0.129061 0.991637i \(-0.541196\pi\)
−0.129061 + 0.991637i \(0.541196\pi\)
\(824\) 0 0
\(825\) −1.53690 −0.0535081
\(826\) 0 0
\(827\) 22.8808 0.795644 0.397822 0.917463i \(-0.369766\pi\)
0.397822 + 0.917463i \(0.369766\pi\)
\(828\) 0 0
\(829\) 7.41564 0.257556 0.128778 0.991673i \(-0.458895\pi\)
0.128778 + 0.991673i \(0.458895\pi\)
\(830\) 0 0
\(831\) 11.5905 0.402071
\(832\) 0 0
\(833\) 20.5501 0.712018
\(834\) 0 0
\(835\) 14.3453 0.496441
\(836\) 0 0
\(837\) 12.6977 0.438897
\(838\) 0 0
\(839\) −10.4749 −0.361632 −0.180816 0.983517i \(-0.557874\pi\)
−0.180816 + 0.983517i \(0.557874\pi\)
\(840\) 0 0
\(841\) 30.8787 1.06478
\(842\) 0 0
\(843\) 11.9394 0.411214
\(844\) 0 0
\(845\) 31.0567 1.06838
\(846\) 0 0
\(847\) 3.31994 0.114075
\(848\) 0 0
\(849\) −0.610712 −0.0209596
\(850\) 0 0
\(851\) −19.2750 −0.660740
\(852\) 0 0
\(853\) −17.1344 −0.586672 −0.293336 0.956009i \(-0.594765\pi\)
−0.293336 + 0.956009i \(0.594765\pi\)
\(854\) 0 0
\(855\) 2.76845 0.0946791
\(856\) 0 0
\(857\) −43.3089 −1.47940 −0.739701 0.672935i \(-0.765033\pi\)
−0.739701 + 0.672935i \(0.765033\pi\)
\(858\) 0 0
\(859\) 22.0508 0.752363 0.376182 0.926546i \(-0.377237\pi\)
0.376182 + 0.926546i \(0.377237\pi\)
\(860\) 0 0
\(861\) −3.47627 −0.118471
\(862\) 0 0
\(863\) 43.6204 1.48485 0.742427 0.669926i \(-0.233674\pi\)
0.742427 + 0.669926i \(0.233674\pi\)
\(864\) 0 0
\(865\) −12.8994 −0.438592
\(866\) 0 0
\(867\) 6.25553 0.212449
\(868\) 0 0
\(869\) 35.4156 1.20139
\(870\) 0 0
\(871\) 21.6180 0.732498
\(872\) 0 0
\(873\) −3.04700 −0.103125
\(874\) 0 0
\(875\) −4.15633 −0.140509
\(876\) 0 0
\(877\) 45.2746 1.52881 0.764407 0.644734i \(-0.223032\pi\)
0.764407 + 0.644734i \(0.223032\pi\)
\(878\) 0 0
\(879\) −0.0839316 −0.00283094
\(880\) 0 0
\(881\) −5.76845 −0.194344 −0.0971720 0.995268i \(-0.530980\pi\)
−0.0971720 + 0.995268i \(0.530980\pi\)
\(882\) 0 0
\(883\) −6.91748 −0.232792 −0.116396 0.993203i \(-0.537134\pi\)
−0.116396 + 0.993203i \(0.537134\pi\)
\(884\) 0 0
\(885\) −1.73813 −0.0584268
\(886\) 0 0
\(887\) −8.93444 −0.299989 −0.149995 0.988687i \(-0.547926\pi\)
−0.149995 + 0.988687i \(0.547926\pi\)
\(888\) 0 0
\(889\) 5.47627 0.183668
\(890\) 0 0
\(891\) 22.2607 0.745762
\(892\) 0 0
\(893\) 4.15633 0.139086
\(894\) 0 0
\(895\) 3.61213 0.120740
\(896\) 0 0
\(897\) 13.2750 0.443241
\(898\) 0 0
\(899\) −35.3982 −1.18060
\(900\) 0 0
\(901\) 1.27504 0.0424777
\(902\) 0 0
\(903\) 24.6859 0.821496
\(904\) 0 0
\(905\) 12.5501 0.417179
\(906\) 0 0
\(907\) 9.28329 0.308247 0.154123 0.988052i \(-0.450745\pi\)
0.154123 + 0.988052i \(0.450745\pi\)
\(908\) 0 0
\(909\) −41.6472 −1.38135
\(910\) 0 0
\(911\) −34.4650 −1.14188 −0.570938 0.820993i \(-0.693420\pi\)
−0.570938 + 0.820993i \(0.693420\pi\)
\(912\) 0 0
\(913\) 42.8989 1.41975
\(914\) 0 0
\(915\) −6.37328 −0.210694
\(916\) 0 0
\(917\) 81.1002 2.67816
\(918\) 0 0
\(919\) 55.5534 1.83254 0.916269 0.400564i \(-0.131186\pi\)
0.916269 + 0.400564i \(0.131186\pi\)
\(920\) 0 0
\(921\) 8.17793 0.269472
\(922\) 0 0
\(923\) −30.3634 −0.999425
\(924\) 0 0
\(925\) −4.63752 −0.152481
\(926\) 0 0
\(927\) 55.0430 1.80785
\(928\) 0 0
\(929\) 2.12127 0.0695966 0.0347983 0.999394i \(-0.488921\pi\)
0.0347983 + 0.999394i \(0.488921\pi\)
\(930\) 0 0
\(931\) −10.2750 −0.336751
\(932\) 0 0
\(933\) −13.0132 −0.426032
\(934\) 0 0
\(935\) 6.38787 0.208906
\(936\) 0 0
\(937\) −18.6907 −0.610598 −0.305299 0.952257i \(-0.598756\pi\)
−0.305299 + 0.952257i \(0.598756\pi\)
\(938\) 0 0
\(939\) −3.72355 −0.121513
\(940\) 0 0
\(941\) −36.0870 −1.17640 −0.588201 0.808715i \(-0.700164\pi\)
−0.588201 + 0.808715i \(0.700164\pi\)
\(942\) 0 0
\(943\) −7.22425 −0.235254
\(944\) 0 0
\(945\) −11.5369 −0.375296
\(946\) 0 0
\(947\) −22.2315 −0.722428 −0.361214 0.932483i \(-0.617638\pi\)
−0.361214 + 0.932483i \(0.617638\pi\)
\(948\) 0 0
\(949\) −1.73813 −0.0564222
\(950\) 0 0
\(951\) 4.89587 0.158760
\(952\) 0 0
\(953\) 14.8994 0.482638 0.241319 0.970446i \(-0.422420\pi\)
0.241319 + 0.970446i \(0.422420\pi\)
\(954\) 0 0
\(955\) −1.08840 −0.0352197
\(956\) 0 0
\(957\) 11.8928 0.384439
\(958\) 0 0
\(959\) 6.38787 0.206275
\(960\) 0 0
\(961\) −10.0738 −0.324962
\(962\) 0 0
\(963\) 17.0097 0.548129
\(964\) 0 0
\(965\) 15.6507 0.503814
\(966\) 0 0
\(967\) 54.5198 1.75324 0.876619 0.481186i \(-0.159794\pi\)
0.876619 + 0.481186i \(0.159794\pi\)
\(968\) 0 0
\(969\) 0.962389 0.0309164
\(970\) 0 0
\(971\) 5.18806 0.166493 0.0832463 0.996529i \(-0.473471\pi\)
0.0832463 + 0.996529i \(0.473471\pi\)
\(972\) 0 0
\(973\) −39.8251 −1.27673
\(974\) 0 0
\(975\) 3.19394 0.102288
\(976\) 0 0
\(977\) 49.0127 1.56806 0.784028 0.620726i \(-0.213162\pi\)
0.784028 + 0.620726i \(0.213162\pi\)
\(978\) 0 0
\(979\) 11.9394 0.381584
\(980\) 0 0
\(981\) −20.8656 −0.666186
\(982\) 0 0
\(983\) −36.8564 −1.17554 −0.587768 0.809029i \(-0.699993\pi\)
−0.587768 + 0.809029i \(0.699993\pi\)
\(984\) 0 0
\(985\) −7.73813 −0.246557
\(986\) 0 0
\(987\) −8.31265 −0.264595
\(988\) 0 0
\(989\) 51.3014 1.63129
\(990\) 0 0
\(991\) −22.2736 −0.707545 −0.353772 0.935332i \(-0.615101\pi\)
−0.353772 + 0.935332i \(0.615101\pi\)
\(992\) 0 0
\(993\) −9.16079 −0.290709
\(994\) 0 0
\(995\) −14.7005 −0.466038
\(996\) 0 0
\(997\) 41.0738 1.30082 0.650410 0.759583i \(-0.274597\pi\)
0.650410 + 0.759583i \(0.274597\pi\)
\(998\) 0 0
\(999\) −12.8726 −0.407270
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.2.a.p.1.1 yes 3
4.3 odd 2 3040.2.a.j.1.3 3
8.3 odd 2 6080.2.a.ca.1.1 3
8.5 even 2 6080.2.a.bm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.j.1.3 3 4.3 odd 2
3040.2.a.p.1.1 yes 3 1.1 even 1 trivial
6080.2.a.bm.1.3 3 8.5 even 2
6080.2.a.ca.1.1 3 8.3 odd 2