Properties

Label 3040.2.a.d.1.1
Level $3040$
Weight $2$
Character 3040.1
Self dual yes
Analytic conductor $24.275$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3040,2,Mod(1,3040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3040.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3040.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,1,0,-3,0,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2745222145\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3040.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} -3.00000 q^{7} -2.00000 q^{9} +5.00000 q^{13} +1.00000 q^{15} -3.00000 q^{17} +1.00000 q^{19} -3.00000 q^{21} -7.00000 q^{23} +1.00000 q^{25} -5.00000 q^{27} -1.00000 q^{29} -2.00000 q^{31} -3.00000 q^{35} +2.00000 q^{37} +5.00000 q^{39} -10.0000 q^{41} +6.00000 q^{43} -2.00000 q^{45} -8.00000 q^{47} +2.00000 q^{49} -3.00000 q^{51} +9.00000 q^{53} +1.00000 q^{57} -5.00000 q^{59} +4.00000 q^{61} +6.00000 q^{63} +5.00000 q^{65} +1.00000 q^{67} -7.00000 q^{69} -12.0000 q^{71} -13.0000 q^{73} +1.00000 q^{75} +6.00000 q^{79} +1.00000 q^{81} -18.0000 q^{83} -3.00000 q^{85} -1.00000 q^{87} +2.00000 q^{89} -15.0000 q^{91} -2.00000 q^{93} +1.00000 q^{95} -14.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) −7.00000 −1.45960 −0.729800 0.683660i \(-0.760387\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 5.00000 0.800641
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) −5.00000 −0.650945 −0.325472 0.945552i \(-0.605523\pi\)
−0.325472 + 0.945552i \(0.605523\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) 5.00000 0.620174
\(66\) 0 0
\(67\) 1.00000 0.122169 0.0610847 0.998133i \(-0.480544\pi\)
0.0610847 + 0.998133i \(0.480544\pi\)
\(68\) 0 0
\(69\) −7.00000 −0.842701
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −13.0000 −1.52153 −0.760767 0.649025i \(-0.775177\pi\)
−0.760767 + 0.649025i \(0.775177\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −18.0000 −1.97576 −0.987878 0.155230i \(-0.950388\pi\)
−0.987878 + 0.155230i \(0.950388\pi\)
\(84\) 0 0
\(85\) −3.00000 −0.325396
\(86\) 0 0
\(87\) −1.00000 −0.107211
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) −15.0000 −1.57243
\(92\) 0 0
\(93\) −2.00000 −0.207390
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) −3.00000 −0.292770
\(106\) 0 0
\(107\) 7.00000 0.676716 0.338358 0.941018i \(-0.390129\pi\)
0.338358 + 0.941018i \(0.390129\pi\)
\(108\) 0 0
\(109\) 1.00000 0.0957826 0.0478913 0.998853i \(-0.484750\pi\)
0.0478913 + 0.998853i \(0.484750\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) 0 0
\(115\) −7.00000 −0.652753
\(116\) 0 0
\(117\) −10.0000 −0.924500
\(118\) 0 0
\(119\) 9.00000 0.825029
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) −10.0000 −0.901670
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) 0 0
\(129\) 6.00000 0.528271
\(130\) 0 0
\(131\) −16.0000 −1.39793 −0.698963 0.715158i \(-0.746355\pi\)
−0.698963 + 0.715158i \(0.746355\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −15.0000 −1.28154 −0.640768 0.767734i \(-0.721384\pi\)
−0.640768 + 0.767734i \(0.721384\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) 16.0000 1.31077 0.655386 0.755295i \(-0.272506\pi\)
0.655386 + 0.755295i \(0.272506\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 0 0
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) 21.0000 1.65503
\(162\) 0 0
\(163\) −14.0000 −1.09656 −0.548282 0.836293i \(-0.684718\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.0000 −0.773823 −0.386912 0.922117i \(-0.626458\pi\)
−0.386912 + 0.922117i \(0.626458\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −2.00000 −0.152944
\(172\) 0 0
\(173\) 22.0000 1.67263 0.836315 0.548250i \(-0.184706\pi\)
0.836315 + 0.548250i \(0.184706\pi\)
\(174\) 0 0
\(175\) −3.00000 −0.226779
\(176\) 0 0
\(177\) −5.00000 −0.375823
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 15.0000 1.09109
\(190\) 0 0
\(191\) −1.00000 −0.0723575 −0.0361787 0.999345i \(-0.511519\pi\)
−0.0361787 + 0.999345i \(0.511519\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 5.00000 0.358057
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −1.00000 −0.0708881 −0.0354441 0.999372i \(-0.511285\pi\)
−0.0354441 + 0.999372i \(0.511285\pi\)
\(200\) 0 0
\(201\) 1.00000 0.0705346
\(202\) 0 0
\(203\) 3.00000 0.210559
\(204\) 0 0
\(205\) −10.0000 −0.698430
\(206\) 0 0
\(207\) 14.0000 0.973067
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 23.0000 1.58339 0.791693 0.610920i \(-0.209200\pi\)
0.791693 + 0.610920i \(0.209200\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) 6.00000 0.409197
\(216\) 0 0
\(217\) 6.00000 0.407307
\(218\) 0 0
\(219\) −13.0000 −0.878459
\(220\) 0 0
\(221\) −15.0000 −1.00901
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) 17.0000 1.12833 0.564165 0.825662i \(-0.309198\pi\)
0.564165 + 0.825662i \(0.309198\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 0 0
\(237\) 6.00000 0.389742
\(238\) 0 0
\(239\) 3.00000 0.194054 0.0970269 0.995282i \(-0.469067\pi\)
0.0970269 + 0.995282i \(0.469067\pi\)
\(240\) 0 0
\(241\) 8.00000 0.515325 0.257663 0.966235i \(-0.417048\pi\)
0.257663 + 0.966235i \(0.417048\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 2.00000 0.127775
\(246\) 0 0
\(247\) 5.00000 0.318142
\(248\) 0 0
\(249\) −18.0000 −1.14070
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.00000 −0.187867
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 2.00000 0.122398
\(268\) 0 0
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) −29.0000 −1.76162 −0.880812 0.473466i \(-0.843003\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) 0 0
\(273\) −15.0000 −0.907841
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.00000 0.240337 0.120168 0.992754i \(-0.461657\pi\)
0.120168 + 0.992754i \(0.461657\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) −26.0000 −1.54554 −0.772770 0.634686i \(-0.781129\pi\)
−0.772770 + 0.634686i \(0.781129\pi\)
\(284\) 0 0
\(285\) 1.00000 0.0592349
\(286\) 0 0
\(287\) 30.0000 1.77084
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 7.00000 0.408944 0.204472 0.978872i \(-0.434452\pi\)
0.204472 + 0.978872i \(0.434452\pi\)
\(294\) 0 0
\(295\) −5.00000 −0.291111
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −35.0000 −2.02410
\(300\) 0 0
\(301\) −18.0000 −1.03750
\(302\) 0 0
\(303\) −4.00000 −0.229794
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) 7.00000 0.396934 0.198467 0.980108i \(-0.436404\pi\)
0.198467 + 0.980108i \(0.436404\pi\)
\(312\) 0 0
\(313\) −9.00000 −0.508710 −0.254355 0.967111i \(-0.581863\pi\)
−0.254355 + 0.967111i \(0.581863\pi\)
\(314\) 0 0
\(315\) 6.00000 0.338062
\(316\) 0 0
\(317\) 3.00000 0.168497 0.0842484 0.996445i \(-0.473151\pi\)
0.0842484 + 0.996445i \(0.473151\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 7.00000 0.390702
\(322\) 0 0
\(323\) −3.00000 −0.166924
\(324\) 0 0
\(325\) 5.00000 0.277350
\(326\) 0 0
\(327\) 1.00000 0.0553001
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) −3.00000 −0.164895 −0.0824475 0.996595i \(-0.526274\pi\)
−0.0824475 + 0.996595i \(0.526274\pi\)
\(332\) 0 0
\(333\) −4.00000 −0.219199
\(334\) 0 0
\(335\) 1.00000 0.0546358
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) −7.00000 −0.376867
\(346\) 0 0
\(347\) −22.0000 −1.18102 −0.590511 0.807030i \(-0.701074\pi\)
−0.590511 + 0.807030i \(0.701074\pi\)
\(348\) 0 0
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 0 0
\(351\) −25.0000 −1.33440
\(352\) 0 0
\(353\) −33.0000 −1.75641 −0.878206 0.478282i \(-0.841260\pi\)
−0.878206 + 0.478282i \(0.841260\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) 0 0
\(357\) 9.00000 0.476331
\(358\) 0 0
\(359\) −19.0000 −1.00278 −0.501391 0.865221i \(-0.667178\pi\)
−0.501391 + 0.865221i \(0.667178\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) −13.0000 −0.680451
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 0 0
\(369\) 20.0000 1.04116
\(370\) 0 0
\(371\) −27.0000 −1.40177
\(372\) 0 0
\(373\) −13.0000 −0.673114 −0.336557 0.941663i \(-0.609263\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −5.00000 −0.257513
\(378\) 0 0
\(379\) 11.0000 0.565032 0.282516 0.959263i \(-0.408831\pi\)
0.282516 + 0.959263i \(0.408831\pi\)
\(380\) 0 0
\(381\) 6.00000 0.307389
\(382\) 0 0
\(383\) 36.0000 1.83951 0.919757 0.392488i \(-0.128386\pi\)
0.919757 + 0.392488i \(0.128386\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) 8.00000 0.405616 0.202808 0.979219i \(-0.434993\pi\)
0.202808 + 0.979219i \(0.434993\pi\)
\(390\) 0 0
\(391\) 21.0000 1.06202
\(392\) 0 0
\(393\) −16.0000 −0.807093
\(394\) 0 0
\(395\) 6.00000 0.301893
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) 0 0
\(399\) −3.00000 −0.150188
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) −10.0000 −0.498135
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) −15.0000 −0.739895
\(412\) 0 0
\(413\) 15.0000 0.738102
\(414\) 0 0
\(415\) −18.0000 −0.883585
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) 0 0
\(423\) 16.0000 0.777947
\(424\) 0 0
\(425\) −3.00000 −0.145521
\(426\) 0 0
\(427\) −12.0000 −0.580721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) −1.00000 −0.0479463
\(436\) 0 0
\(437\) −7.00000 −0.334855
\(438\) 0 0
\(439\) 30.0000 1.43182 0.715911 0.698192i \(-0.246012\pi\)
0.715911 + 0.698192i \(0.246012\pi\)
\(440\) 0 0
\(441\) −4.00000 −0.190476
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) 2.00000 0.0948091
\(446\) 0 0
\(447\) 16.0000 0.756774
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −2.00000 −0.0939682
\(454\) 0 0
\(455\) −15.0000 −0.703211
\(456\) 0 0
\(457\) −13.0000 −0.608114 −0.304057 0.952654i \(-0.598341\pi\)
−0.304057 + 0.952654i \(0.598341\pi\)
\(458\) 0 0
\(459\) 15.0000 0.700140
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) −2.00000 −0.0927478
\(466\) 0 0
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) −3.00000 −0.138527
\(470\) 0 0
\(471\) 6.00000 0.276465
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) −18.0000 −0.824163
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 10.0000 0.455961
\(482\) 0 0
\(483\) 21.0000 0.955533
\(484\) 0 0
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) −18.0000 −0.815658 −0.407829 0.913058i \(-0.633714\pi\)
−0.407829 + 0.913058i \(0.633714\pi\)
\(488\) 0 0
\(489\) −14.0000 −0.633102
\(490\) 0 0
\(491\) 2.00000 0.0902587 0.0451294 0.998981i \(-0.485630\pi\)
0.0451294 + 0.998981i \(0.485630\pi\)
\(492\) 0 0
\(493\) 3.00000 0.135113
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 36.0000 1.61482
\(498\) 0 0
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) −10.0000 −0.446767
\(502\) 0 0
\(503\) 21.0000 0.936344 0.468172 0.883637i \(-0.344913\pi\)
0.468172 + 0.883637i \(0.344913\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 39.0000 1.72526
\(512\) 0 0
\(513\) −5.00000 −0.220755
\(514\) 0 0
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 0 0
\(523\) −5.00000 −0.218635 −0.109317 0.994007i \(-0.534866\pi\)
−0.109317 + 0.994007i \(0.534866\pi\)
\(524\) 0 0
\(525\) −3.00000 −0.130931
\(526\) 0 0
\(527\) 6.00000 0.261364
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) −50.0000 −2.16574
\(534\) 0 0
\(535\) 7.00000 0.302636
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 0 0
\(543\) 6.00000 0.257485
\(544\) 0 0
\(545\) 1.00000 0.0428353
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) 0 0
\(549\) −8.00000 −0.341432
\(550\) 0 0
\(551\) −1.00000 −0.0426014
\(552\) 0 0
\(553\) −18.0000 −0.765438
\(554\) 0 0
\(555\) 2.00000 0.0848953
\(556\) 0 0
\(557\) −28.0000 −1.18640 −0.593199 0.805056i \(-0.702135\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) 0 0
\(559\) 30.0000 1.26886
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20.0000 0.842900 0.421450 0.906852i \(-0.361521\pi\)
0.421450 + 0.906852i \(0.361521\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) 0 0
\(567\) −3.00000 −0.125988
\(568\) 0 0
\(569\) −12.0000 −0.503066 −0.251533 0.967849i \(-0.580935\pi\)
−0.251533 + 0.967849i \(0.580935\pi\)
\(570\) 0 0
\(571\) 2.00000 0.0836974 0.0418487 0.999124i \(-0.486675\pi\)
0.0418487 + 0.999124i \(0.486675\pi\)
\(572\) 0 0
\(573\) −1.00000 −0.0417756
\(574\) 0 0
\(575\) −7.00000 −0.291920
\(576\) 0 0
\(577\) 17.0000 0.707719 0.353860 0.935299i \(-0.384869\pi\)
0.353860 + 0.935299i \(0.384869\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) 54.0000 2.24030
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −10.0000 −0.413449
\(586\) 0 0
\(587\) 42.0000 1.73353 0.866763 0.498721i \(-0.166197\pi\)
0.866763 + 0.498721i \(0.166197\pi\)
\(588\) 0 0
\(589\) −2.00000 −0.0824086
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 9.00000 0.368964
\(596\) 0 0
\(597\) −1.00000 −0.0409273
\(598\) 0 0
\(599\) −6.00000 −0.245153 −0.122577 0.992459i \(-0.539116\pi\)
−0.122577 + 0.992459i \(0.539116\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) 0 0
\(605\) −11.0000 −0.447214
\(606\) 0 0
\(607\) −2.00000 −0.0811775 −0.0405887 0.999176i \(-0.512923\pi\)
−0.0405887 + 0.999176i \(0.512923\pi\)
\(608\) 0 0
\(609\) 3.00000 0.121566
\(610\) 0 0
\(611\) −40.0000 −1.61823
\(612\) 0 0
\(613\) 44.0000 1.77714 0.888572 0.458738i \(-0.151698\pi\)
0.888572 + 0.458738i \(0.151698\pi\)
\(614\) 0 0
\(615\) −10.0000 −0.403239
\(616\) 0 0
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) 0 0
\(621\) 35.0000 1.40450
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.00000 −0.239236
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 23.0000 0.914168
\(634\) 0 0
\(635\) 6.00000 0.238103
\(636\) 0 0
\(637\) 10.0000 0.396214
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) 0 0
\(641\) −40.0000 −1.57991 −0.789953 0.613168i \(-0.789895\pi\)
−0.789953 + 0.613168i \(0.789895\pi\)
\(642\) 0 0
\(643\) −26.0000 −1.02534 −0.512670 0.858586i \(-0.671344\pi\)
−0.512670 + 0.858586i \(0.671344\pi\)
\(644\) 0 0
\(645\) 6.00000 0.236250
\(646\) 0 0
\(647\) −35.0000 −1.37599 −0.687996 0.725714i \(-0.741509\pi\)
−0.687996 + 0.725714i \(0.741509\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 6.00000 0.235159
\(652\) 0 0
\(653\) 12.0000 0.469596 0.234798 0.972044i \(-0.424557\pi\)
0.234798 + 0.972044i \(0.424557\pi\)
\(654\) 0 0
\(655\) −16.0000 −0.625172
\(656\) 0 0
\(657\) 26.0000 1.01436
\(658\) 0 0
\(659\) 13.0000 0.506408 0.253204 0.967413i \(-0.418516\pi\)
0.253204 + 0.967413i \(0.418516\pi\)
\(660\) 0 0
\(661\) −11.0000 −0.427850 −0.213925 0.976850i \(-0.568625\pi\)
−0.213925 + 0.976850i \(0.568625\pi\)
\(662\) 0 0
\(663\) −15.0000 −0.582552
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) 7.00000 0.271041
\(668\) 0 0
\(669\) 2.00000 0.0773245
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −40.0000 −1.54189 −0.770943 0.636904i \(-0.780215\pi\)
−0.770943 + 0.636904i \(0.780215\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) −37.0000 −1.42203 −0.711013 0.703179i \(-0.751763\pi\)
−0.711013 + 0.703179i \(0.751763\pi\)
\(678\) 0 0
\(679\) 42.0000 1.61181
\(680\) 0 0
\(681\) 17.0000 0.651441
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) −15.0000 −0.573121
\(686\) 0 0
\(687\) 6.00000 0.228914
\(688\) 0 0
\(689\) 45.0000 1.71436
\(690\) 0 0
\(691\) −18.0000 −0.684752 −0.342376 0.939563i \(-0.611232\pi\)
−0.342376 + 0.939563i \(0.611232\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.0000 −0.758643
\(696\) 0 0
\(697\) 30.0000 1.13633
\(698\) 0 0
\(699\) 18.0000 0.680823
\(700\) 0 0
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) −12.0000 −0.450035
\(712\) 0 0
\(713\) 14.0000 0.524304
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.00000 0.112037
\(718\) 0 0
\(719\) 3.00000 0.111881 0.0559406 0.998434i \(-0.482184\pi\)
0.0559406 + 0.998434i \(0.482184\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) 0 0
\(723\) 8.00000 0.297523
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) 49.0000 1.81731 0.908655 0.417548i \(-0.137111\pi\)
0.908655 + 0.417548i \(0.137111\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −18.0000 −0.665754
\(732\) 0 0
\(733\) −36.0000 −1.32969 −0.664845 0.746981i \(-0.731502\pi\)
−0.664845 + 0.746981i \(0.731502\pi\)
\(734\) 0 0
\(735\) 2.00000 0.0737711
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 14.0000 0.514998 0.257499 0.966279i \(-0.417102\pi\)
0.257499 + 0.966279i \(0.417102\pi\)
\(740\) 0 0
\(741\) 5.00000 0.183680
\(742\) 0 0
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 0 0
\(745\) 16.0000 0.586195
\(746\) 0 0
\(747\) 36.0000 1.31717
\(748\) 0 0
\(749\) −21.0000 −0.767323
\(750\) 0 0
\(751\) −18.0000 −0.656829 −0.328415 0.944534i \(-0.606514\pi\)
−0.328415 + 0.944534i \(0.606514\pi\)
\(752\) 0 0
\(753\) −24.0000 −0.874609
\(754\) 0 0
\(755\) −2.00000 −0.0727875
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0000 −0.761249 −0.380625 0.924730i \(-0.624291\pi\)
−0.380625 + 0.924730i \(0.624291\pi\)
\(762\) 0 0
\(763\) −3.00000 −0.108607
\(764\) 0 0
\(765\) 6.00000 0.216930
\(766\) 0 0
\(767\) −25.0000 −0.902698
\(768\) 0 0
\(769\) −7.00000 −0.252426 −0.126213 0.992003i \(-0.540282\pi\)
−0.126213 + 0.992003i \(0.540282\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) 23.0000 0.827253 0.413626 0.910447i \(-0.364262\pi\)
0.413626 + 0.910447i \(0.364262\pi\)
\(774\) 0 0
\(775\) −2.00000 −0.0718421
\(776\) 0 0
\(777\) −6.00000 −0.215249
\(778\) 0 0
\(779\) −10.0000 −0.358287
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 5.00000 0.178685
\(784\) 0 0
\(785\) 6.00000 0.214149
\(786\) 0 0
\(787\) 29.0000 1.03374 0.516869 0.856064i \(-0.327097\pi\)
0.516869 + 0.856064i \(0.327097\pi\)
\(788\) 0 0
\(789\) −16.0000 −0.569615
\(790\) 0 0
\(791\) −36.0000 −1.28001
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) 0 0
\(795\) 9.00000 0.319197
\(796\) 0 0
\(797\) −27.0000 −0.956389 −0.478195 0.878254i \(-0.658709\pi\)
−0.478195 + 0.878254i \(0.658709\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) −4.00000 −0.141333
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 21.0000 0.740153
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) 33.0000 1.16022 0.580109 0.814539i \(-0.303010\pi\)
0.580109 + 0.814539i \(0.303010\pi\)
\(810\) 0 0
\(811\) −7.00000 −0.245803 −0.122902 0.992419i \(-0.539220\pi\)
−0.122902 + 0.992419i \(0.539220\pi\)
\(812\) 0 0
\(813\) −29.0000 −1.01707
\(814\) 0 0
\(815\) −14.0000 −0.490399
\(816\) 0 0
\(817\) 6.00000 0.209913
\(818\) 0 0
\(819\) 30.0000 1.04828
\(820\) 0 0
\(821\) −24.0000 −0.837606 −0.418803 0.908077i \(-0.637550\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(822\) 0 0
\(823\) −13.0000 −0.453152 −0.226576 0.973994i \(-0.572753\pi\)
−0.226576 + 0.973994i \(0.572753\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.00000 0.312961 0.156480 0.987681i \(-0.449985\pi\)
0.156480 + 0.987681i \(0.449985\pi\)
\(828\) 0 0
\(829\) −23.0000 −0.798823 −0.399412 0.916772i \(-0.630786\pi\)
−0.399412 + 0.916772i \(0.630786\pi\)
\(830\) 0 0
\(831\) 4.00000 0.138758
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) −10.0000 −0.346064
\(836\) 0 0
\(837\) 10.0000 0.345651
\(838\) 0 0
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0 0
\(843\) 30.0000 1.03325
\(844\) 0 0
\(845\) 12.0000 0.412813
\(846\) 0 0
\(847\) 33.0000 1.13389
\(848\) 0 0
\(849\) −26.0000 −0.892318
\(850\) 0 0
\(851\) −14.0000 −0.479914
\(852\) 0 0
\(853\) 14.0000 0.479351 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(854\) 0 0
\(855\) −2.00000 −0.0683986
\(856\) 0 0
\(857\) −24.0000 −0.819824 −0.409912 0.912125i \(-0.634441\pi\)
−0.409912 + 0.912125i \(0.634441\pi\)
\(858\) 0 0
\(859\) −36.0000 −1.22830 −0.614152 0.789188i \(-0.710502\pi\)
−0.614152 + 0.789188i \(0.710502\pi\)
\(860\) 0 0
\(861\) 30.0000 1.02240
\(862\) 0 0
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) 22.0000 0.748022
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 5.00000 0.169419
\(872\) 0 0
\(873\) 28.0000 0.947656
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) 59.0000 1.99229 0.996144 0.0877308i \(-0.0279615\pi\)
0.996144 + 0.0877308i \(0.0279615\pi\)
\(878\) 0 0
\(879\) 7.00000 0.236104
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 46.0000 1.54802 0.774012 0.633171i \(-0.218247\pi\)
0.774012 + 0.633171i \(0.218247\pi\)
\(884\) 0 0
\(885\) −5.00000 −0.168073
\(886\) 0 0
\(887\) −52.0000 −1.74599 −0.872995 0.487730i \(-0.837825\pi\)
−0.872995 + 0.487730i \(0.837825\pi\)
\(888\) 0 0
\(889\) −18.0000 −0.603701
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.00000 −0.267710
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −35.0000 −1.16862
\(898\) 0 0
\(899\) 2.00000 0.0667037
\(900\) 0 0
\(901\) −27.0000 −0.899500
\(902\) 0 0
\(903\) −18.0000 −0.599002
\(904\) 0 0
\(905\) 6.00000 0.199447
\(906\) 0 0
\(907\) 43.0000 1.42779 0.713896 0.700252i \(-0.246929\pi\)
0.713896 + 0.700252i \(0.246929\pi\)
\(908\) 0 0
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 4.00000 0.132236
\(916\) 0 0
\(917\) 48.0000 1.58510
\(918\) 0 0
\(919\) −11.0000 −0.362857 −0.181428 0.983404i \(-0.558072\pi\)
−0.181428 + 0.983404i \(0.558072\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 0 0
\(923\) −60.0000 −1.97492
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −19.0000 −0.623370 −0.311685 0.950186i \(-0.600893\pi\)
−0.311685 + 0.950186i \(0.600893\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) 0 0
\(933\) 7.00000 0.229170
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 55.0000 1.79677 0.898386 0.439207i \(-0.144741\pi\)
0.898386 + 0.439207i \(0.144741\pi\)
\(938\) 0 0
\(939\) −9.00000 −0.293704
\(940\) 0 0
\(941\) 7.00000 0.228193 0.114097 0.993470i \(-0.463603\pi\)
0.114097 + 0.993470i \(0.463603\pi\)
\(942\) 0 0
\(943\) 70.0000 2.27951
\(944\) 0 0
\(945\) 15.0000 0.487950
\(946\) 0 0
\(947\) 48.0000 1.55979 0.779895 0.625910i \(-0.215272\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(948\) 0 0
\(949\) −65.0000 −2.10999
\(950\) 0 0
\(951\) 3.00000 0.0972817
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −1.00000 −0.0323592
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 45.0000 1.45313
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −14.0000 −0.451144
\(964\) 0 0
\(965\) 14.0000 0.450676
\(966\) 0 0
\(967\) 28.0000 0.900419 0.450210 0.892923i \(-0.351349\pi\)
0.450210 + 0.892923i \(0.351349\pi\)
\(968\) 0 0
\(969\) −3.00000 −0.0963739
\(970\) 0 0
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 0 0
\(973\) 60.0000 1.92351
\(974\) 0 0
\(975\) 5.00000 0.160128
\(976\) 0 0
\(977\) 6.00000 0.191957 0.0959785 0.995383i \(-0.469402\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 0 0
\(983\) −54.0000 −1.72233 −0.861166 0.508323i \(-0.830265\pi\)
−0.861166 + 0.508323i \(0.830265\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) 24.0000 0.763928
\(988\) 0 0
\(989\) −42.0000 −1.33552
\(990\) 0 0
\(991\) 58.0000 1.84243 0.921215 0.389053i \(-0.127198\pi\)
0.921215 + 0.389053i \(0.127198\pi\)
\(992\) 0 0
\(993\) −3.00000 −0.0952021
\(994\) 0 0
\(995\) −1.00000 −0.0317021
\(996\) 0 0
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) 0 0
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.2.a.d.1.1 yes 1
4.3 odd 2 3040.2.a.a.1.1 1
8.3 odd 2 6080.2.a.q.1.1 1
8.5 even 2 6080.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3040.2.a.a.1.1 1 4.3 odd 2
3040.2.a.d.1.1 yes 1 1.1 even 1 trivial
6080.2.a.g.1.1 1 8.5 even 2
6080.2.a.q.1.1 1 8.3 odd 2