Properties

Label 3040.1.dv
Level $3040$
Weight $1$
Character orbit 3040.dv
Rep. character $\chi_{3040}(719,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $12$
Newform subspaces $2$
Sturm bound $480$
Trace bound $23$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3040.dv (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 760 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 2 \)
Sturm bound: \(480\)
Trace bound: \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3040, [\chi])\).

Total New Old
Modular forms 144 36 108
Cusp forms 48 12 36
Eisenstein series 96 24 72

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 12 0 0 0

Trace form

\( 12 q + O(q^{10}) \) \( 12 q + 6 q^{35} - 6 q^{41} - 6 q^{49} + 6 q^{65} + 12 q^{89} + 12 q^{91} + 6 q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3040, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3040.1.dv.a 3040.dv 760.az $6$ $1.517$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-10}) \) None 760.1.bz.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{18}^{7}q^{5}+(\zeta_{18}^{4}+\zeta_{18}^{8})q^{7}+\zeta_{18}^{8}q^{9}+\cdots\)
3040.1.dv.b 3040.dv 760.az $6$ $1.517$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-10}) \) None 760.1.bz.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{18}^{7}q^{5}+(-\zeta_{18}^{4}-\zeta_{18}^{8})q^{7}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3040, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3040, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(1520, [\chi])\)\(^{\oplus 2}\)