Properties

Label 3040.1.cn.a.2469.7
Level $3040$
Weight $1$
Character 3040.2469
Analytic conductor $1.517$
Analytic rank $0$
Dimension $32$
Projective image $D_{32}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,1,Mod(189,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.189");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3040.cn (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.51715763840\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{64})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{32}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{32} + \cdots)\)

Embedding invariants

Embedding label 2469.7
Root \(-0.881921 - 0.471397i\) of defining polynomial
Character \(\chi\) \(=\) 3040.2469
Dual form 3040.1.cn.a.1709.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.773010 + 0.634393i) q^{2} +(0.0750191 + 0.181112i) q^{3} +(0.195090 + 0.980785i) q^{4} +(-0.923880 - 0.382683i) q^{5} +(-0.0569057 + 0.187593i) q^{6} +(-0.471397 + 0.881921i) q^{8} +(0.679933 - 0.679933i) q^{9} +O(q^{10})\) \(q+(0.773010 + 0.634393i) q^{2} +(0.0750191 + 0.181112i) q^{3} +(0.195090 + 0.980785i) q^{4} +(-0.923880 - 0.382683i) q^{5} +(-0.0569057 + 0.187593i) q^{6} +(-0.471397 + 0.881921i) q^{8} +(0.679933 - 0.679933i) q^{9} +(-0.471397 - 0.881921i) q^{10} +(0.425215 - 1.02656i) q^{11} +(-0.162997 + 0.108911i) q^{12} +(0.536376 - 0.222174i) q^{13} -0.196034i q^{15} +(-0.923880 + 0.382683i) q^{16} +(0.956940 - 0.0942504i) q^{18} +(0.923880 - 0.382683i) q^{19} +(0.195090 - 0.980785i) q^{20} +(0.979938 - 0.523788i) q^{22} +(-0.195090 - 0.0192147i) q^{24} +(0.707107 + 0.707107i) q^{25} +(0.555570 + 0.168530i) q^{26} +(0.355264 + 0.147155i) q^{27} +(0.124363 - 0.151537i) q^{30} +(-0.956940 - 0.290285i) q^{32} +0.217822 q^{33} +(0.799517 + 0.534220i) q^{36} +(1.17221 + 0.485544i) q^{37} +(0.956940 + 0.290285i) q^{38} +(0.0804769 + 0.0804769i) q^{39} +(0.773010 - 0.634393i) q^{40} +(1.08979 + 0.216773i) q^{44} +(-0.888375 + 0.367977i) q^{45} +(-0.138617 - 0.138617i) q^{48} +1.00000i q^{49} +(0.0980171 + 0.995185i) q^{50} +(0.322547 + 0.482726i) q^{52} +(-0.761681 + 1.83886i) q^{53} +(0.181269 + 0.339130i) q^{54} +(-0.785695 + 0.785695i) q^{55} +(0.138617 + 0.138617i) q^{57} +(0.192268 - 0.0382444i) q^{60} +(-0.636379 - 1.53636i) q^{61} +(-0.555570 - 0.831470i) q^{64} -0.580569 q^{65} +(0.168378 + 0.138185i) q^{66} +(-0.674993 - 1.62958i) q^{67} +(0.279129 + 0.920166i) q^{72} +(0.598102 + 1.11897i) q^{74} +(-0.0750191 + 0.181112i) q^{75} +(0.555570 + 0.831470i) q^{76} +(0.0111555 + 0.113263i) q^{78} +1.00000 q^{80} -0.886189i q^{81} +(0.704900 + 0.858923i) q^{88} +(-0.920166 - 0.279129i) q^{90} -1.00000 q^{95} +(-0.0192147 - 0.195090i) q^{96} +1.91388 q^{97} +(-0.634393 + 0.773010i) q^{98} +(-0.408874 - 0.987110i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 32 q^{66} + 32 q^{80} - 32 q^{95} - 32 q^{96} - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1217\) \(1921\) \(2661\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(3\) 0.0750191 + 0.181112i 0.0750191 + 0.181112i 0.956940 0.290285i \(-0.0937500\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(4\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(5\) −0.923880 0.382683i −0.923880 0.382683i
\(6\) −0.0569057 + 0.187593i −0.0569057 + 0.187593i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(9\) 0.679933 0.679933i 0.679933 0.679933i
\(10\) −0.471397 0.881921i −0.471397 0.881921i
\(11\) 0.425215 1.02656i 0.425215 1.02656i −0.555570 0.831470i \(-0.687500\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(12\) −0.162997 + 0.108911i −0.162997 + 0.108911i
\(13\) 0.536376 0.222174i 0.536376 0.222174i −0.0980171 0.995185i \(-0.531250\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(14\) 0 0
\(15\) 0.196034i 0.196034i
\(16\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0.956940 0.0942504i 0.956940 0.0942504i
\(19\) 0.923880 0.382683i 0.923880 0.382683i
\(20\) 0.195090 0.980785i 0.195090 0.980785i
\(21\) 0 0
\(22\) 0.979938 0.523788i 0.979938 0.523788i
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) −0.195090 0.0192147i −0.195090 0.0192147i
\(25\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(26\) 0.555570 + 0.168530i 0.555570 + 0.168530i
\(27\) 0.355264 + 0.147155i 0.355264 + 0.147155i
\(28\) 0 0
\(29\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(30\) 0.124363 0.151537i 0.124363 0.151537i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.956940 0.290285i −0.956940 0.290285i
\(33\) 0.217822 0.217822
\(34\) 0 0
\(35\) 0 0
\(36\) 0.799517 + 0.534220i 0.799517 + 0.534220i
\(37\) 1.17221 + 0.485544i 1.17221 + 0.485544i 0.881921 0.471397i \(-0.156250\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(38\) 0.956940 + 0.290285i 0.956940 + 0.290285i
\(39\) 0.0804769 + 0.0804769i 0.0804769 + 0.0804769i
\(40\) 0.773010 0.634393i 0.773010 0.634393i
\(41\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(42\) 0 0
\(43\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(44\) 1.08979 + 0.216773i 1.08979 + 0.216773i
\(45\) −0.888375 + 0.367977i −0.888375 + 0.367977i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −0.138617 0.138617i −0.138617 0.138617i
\(49\) 1.00000i 1.00000i
\(50\) 0.0980171 + 0.995185i 0.0980171 + 0.995185i
\(51\) 0 0
\(52\) 0.322547 + 0.482726i 0.322547 + 0.482726i
\(53\) −0.761681 + 1.83886i −0.761681 + 1.83886i −0.290285 + 0.956940i \(0.593750\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(54\) 0.181269 + 0.339130i 0.181269 + 0.339130i
\(55\) −0.785695 + 0.785695i −0.785695 + 0.785695i
\(56\) 0 0
\(57\) 0.138617 + 0.138617i 0.138617 + 0.138617i
\(58\) 0 0
\(59\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(60\) 0.192268 0.0382444i 0.192268 0.0382444i
\(61\) −0.636379 1.53636i −0.636379 1.53636i −0.831470 0.555570i \(-0.812500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.555570 0.831470i −0.555570 0.831470i
\(65\) −0.580569 −0.580569
\(66\) 0.168378 + 0.138185i 0.168378 + 0.138185i
\(67\) −0.674993 1.62958i −0.674993 1.62958i −0.773010 0.634393i \(-0.781250\pi\)
0.0980171 0.995185i \(-0.468750\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(72\) 0.279129 + 0.920166i 0.279129 + 0.920166i
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0.598102 + 1.11897i 0.598102 + 1.11897i
\(75\) −0.0750191 + 0.181112i −0.0750191 + 0.181112i
\(76\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(77\) 0 0
\(78\) 0.0111555 + 0.113263i 0.0111555 + 0.113263i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000 1.00000
\(81\) 0.886189i 0.886189i
\(82\) 0 0
\(83\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.704900 + 0.858923i 0.704900 + 0.858923i
\(89\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(90\) −0.920166 0.279129i −0.920166 0.279129i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −1.00000
\(96\) −0.0192147 0.195090i −0.0192147 0.195090i
\(97\) 1.91388 1.91388 0.956940 0.290285i \(-0.0937500\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(98\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(99\) −0.408874 0.987110i −0.408874 0.987110i
\(100\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(101\) −1.02656 0.425215i −1.02656 0.425215i −0.195090 0.980785i \(-0.562500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(102\) 0 0
\(103\) 1.09320 + 1.09320i 1.09320 + 1.09320i 0.995185 + 0.0980171i \(0.0312500\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(104\) −0.0569057 + 0.577774i −0.0569057 + 0.577774i
\(105\) 0 0
\(106\) −1.75535 + 0.938254i −1.75535 + 0.938254i
\(107\) −0.360791 + 0.871028i −0.360791 + 0.871028i 0.634393 + 0.773010i \(0.281250\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(108\) −0.0750191 + 0.377146i −0.0750191 + 0.377146i
\(109\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(110\) −1.10579 + 0.108911i −1.10579 + 0.108911i
\(111\) 0.248726i 0.248726i
\(112\) 0 0
\(113\) 1.99037i 1.99037i 0.0980171 + 0.995185i \(0.468750\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(114\) 0.0192147 + 0.195090i 0.0192147 + 0.195090i
\(115\) 0 0
\(116\) 0 0
\(117\) 0.213636 0.515764i 0.213636 0.515764i
\(118\) 0 0
\(119\) 0 0
\(120\) 0.172887 + 0.0924099i 0.172887 + 0.0924099i
\(121\) −0.165911 0.165911i −0.165911 0.165911i
\(122\) 0.482726 1.59133i 0.482726 1.59133i
\(123\) 0 0
\(124\) 0 0
\(125\) −0.382683 0.923880i −0.382683 0.923880i
\(126\) 0 0
\(127\) −1.76384 −1.76384 −0.881921 0.471397i \(-0.843750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(128\) 0.0980171 0.995185i 0.0980171 0.995185i
\(129\) 0 0
\(130\) −0.448786 0.368309i −0.448786 0.368309i
\(131\) −0.707107 1.70711i −0.707107 1.70711i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(-0.5\pi\)
\(132\) 0.0424949 + 0.213636i 0.0424949 + 0.213636i
\(133\) 0 0
\(134\) 0.512016 1.68789i 0.512016 1.68789i
\(135\) −0.271907 0.271907i −0.271907 0.271907i
\(136\) 0 0
\(137\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(138\) 0 0
\(139\) 0.149316 0.360480i 0.149316 0.360480i −0.831470 0.555570i \(-0.812500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.645094i 0.645094i
\(144\) −0.367977 + 0.888375i −0.367977 + 0.888375i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.181112 + 0.0750191i −0.181112 + 0.0750191i
\(148\) −0.247528 + 1.24441i −0.247528 + 1.24441i
\(149\) −0.149316 + 0.360480i −0.149316 + 0.360480i −0.980785 0.195090i \(-0.937500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(150\) −0.172887 + 0.0924099i −0.172887 + 0.0924099i
\(151\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(152\) −0.0980171 + 0.995185i −0.0980171 + 0.995185i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.0632303 + 0.0946308i −0.0632303 + 0.0946308i
\(157\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(158\) 0 0
\(159\) −0.390181 −0.390181
\(160\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(161\) 0 0
\(162\) 0.562192 0.685033i 0.562192 0.685033i
\(163\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(164\) 0 0
\(165\) −0.201241 0.0833567i −0.201241 0.0833567i
\(166\) 0 0
\(167\) −0.666656 0.666656i −0.666656 0.666656i 0.290285 0.956940i \(-0.406250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(168\) 0 0
\(169\) −0.468769 + 0.468769i −0.468769 + 0.468769i
\(170\) 0 0
\(171\) 0.367977 0.888375i 0.367977 0.888375i
\(172\) 0 0
\(173\) 1.62958 0.674993i 1.62958 0.674993i 0.634393 0.773010i \(-0.281250\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.11114i 1.11114i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(180\) −0.534220 0.799517i −0.534220 0.799517i
\(181\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(182\) 0 0
\(183\) 0.230512 0.230512i 0.230512 0.230512i
\(184\) 0 0
\(185\) −0.897168 0.897168i −0.897168 0.897168i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −0.773010 0.634393i −0.773010 0.634393i
\(191\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(192\) 0.108911 0.162997i 0.108911 0.162997i
\(193\) 0.942793 0.942793 0.471397 0.881921i \(-0.343750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(194\) 1.47945 + 1.21415i 1.47945 + 1.21415i
\(195\) −0.0435538 0.105148i −0.0435538 0.105148i
\(196\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(197\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(198\) 0.310152 1.02243i 0.310152 1.02243i
\(199\) 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(200\) −0.956940 + 0.290285i −0.956940 + 0.290285i
\(201\) 0.244499 0.244499i 0.244499 0.244499i
\(202\) −0.523788 0.979938i −0.523788 0.979938i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0.151537 + 1.53858i 0.151537 + 1.53858i
\(207\) 0 0
\(208\) −0.410525 + 0.410525i −0.410525 + 0.410525i
\(209\) 1.11114i 1.11114i
\(210\) 0 0
\(211\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(212\) −1.95213 0.388302i −1.95213 0.388302i
\(213\) 0 0
\(214\) −0.831470 + 0.444430i −0.831470 + 0.444430i
\(215\) 0 0
\(216\) −0.297250 + 0.243946i −0.297250 + 0.243946i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −0.923880 0.617317i −0.923880 0.617317i
\(221\) 0 0
\(222\) −0.157790 + 0.192268i −0.157790 + 0.192268i
\(223\) −1.91388 −1.91388 −0.956940 0.290285i \(-0.906250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(224\) 0 0
\(225\) 0.961571 0.961571
\(226\) −1.26268 + 1.53858i −1.26268 + 1.53858i
\(227\) −0.732410 1.76820i −0.732410 1.76820i −0.634393 0.773010i \(-0.718750\pi\)
−0.0980171 0.995185i \(-0.531250\pi\)
\(228\) −0.108911 + 0.162997i −0.108911 + 0.162997i
\(229\) −0.360480 0.149316i −0.360480 0.149316i 0.195090 0.980785i \(-0.437500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(234\) 0.492340 0.263161i 0.492340 0.263161i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 0.0750191 + 0.181112i 0.0750191 + 0.181112i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −0.0229981 0.233503i −0.0229981 0.233503i
\(243\) 0.515764 0.213636i 0.515764 0.213636i
\(244\) 1.38268 0.923880i 1.38268 0.923880i
\(245\) 0.382683 0.923880i 0.382683 0.923880i
\(246\) 0 0
\(247\) 0.410525 0.410525i 0.410525 0.410525i
\(248\) 0 0
\(249\) 0 0
\(250\) 0.290285 0.956940i 0.290285 0.956940i
\(251\) −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −1.36347 1.11897i −1.36347 1.11897i
\(255\) 0 0
\(256\) 0.707107 0.707107i 0.707107 0.707107i
\(257\) −0.942793 −0.942793 −0.471397 0.881921i \(-0.656250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.113263 0.569414i −0.113263 0.569414i
\(261\) 0 0
\(262\) 0.536376 1.76820i 0.536376 1.76820i
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) −0.102680 + 0.192102i −0.102680 + 0.192102i
\(265\) 1.40740 1.40740i 1.40740 1.40740i
\(266\) 0 0
\(267\) 0 0
\(268\) 1.46658 0.979938i 1.46658 0.979938i
\(269\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(270\) −0.0376910 0.382683i −0.0376910 0.382683i
\(271\) 0.390181i 0.390181i −0.980785 0.195090i \(-0.937500\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.02656 0.425215i 1.02656 0.425215i
\(276\) 0 0
\(277\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(278\) 0.344109 0.183930i 0.344109 0.183930i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(282\) 0 0
\(283\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(284\) 0 0
\(285\) −0.0750191 0.181112i −0.0750191 0.181112i
\(286\) 0.409243 0.498664i 0.409243 0.498664i
\(287\) 0 0
\(288\) −0.848030 + 0.453281i −0.848030 + 0.453281i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 0.143578 + 0.346627i 0.143578 + 0.346627i
\(292\) 0 0
\(293\) −1.42834 0.591637i −1.42834 0.591637i −0.471397 0.881921i \(-0.656250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(294\) −0.187593 0.0569057i −0.187593 0.0569057i
\(295\) 0 0
\(296\) −0.980785 + 0.804910i −0.980785 + 0.804910i
\(297\) 0.302127 0.302127i 0.302127 0.302127i
\(298\) −0.344109 + 0.183930i −0.344109 + 0.183930i
\(299\) 0 0
\(300\) −0.192268 0.0382444i −0.192268 0.0382444i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.217822i 0.217822i
\(304\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(305\) 1.66294i 1.66294i
\(306\) 0 0
\(307\) −1.76820 + 0.732410i −1.76820 + 0.732410i −0.773010 + 0.634393i \(0.781250\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(308\) 0 0
\(309\) −0.115981 + 0.280003i −0.115981 + 0.280003i
\(310\) 0 0
\(311\) −1.17588 + 1.17588i −1.17588 + 1.17588i −0.195090 + 0.980785i \(0.562500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(312\) −0.108911 + 0.0330377i −0.108911 + 0.0330377i
\(313\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.360791 + 0.871028i 0.360791 + 0.871028i 0.995185 + 0.0980171i \(0.0312500\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(318\) −0.301614 0.247528i −0.301614 0.247528i
\(319\) 0 0
\(320\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(321\) −0.184820 −0.184820
\(322\) 0 0
\(323\) 0 0
\(324\) 0.869161 0.172887i 0.869161 0.172887i
\(325\) 0.536376 + 0.222174i 0.536376 + 0.222174i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −0.102680 0.192102i −0.102680 0.192102i
\(331\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(332\) 0 0
\(333\) 1.12716 0.466884i 1.12716 0.466884i
\(334\) −0.0924099 0.938254i −0.0924099 0.938254i
\(335\) 1.76384i 1.76384i
\(336\) 0 0
\(337\) 1.26879i 1.26879i 0.773010 + 0.634393i \(0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(338\) −0.659747 + 0.0649794i −0.659747 + 0.0649794i
\(339\) −0.360480 + 0.149316i −0.360480 + 0.149316i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.848030 0.453281i 0.848030 0.453281i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 1.68789 + 0.512016i 1.68789 + 0.512016i
\(347\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(348\) 0 0
\(349\) 0.541196 + 1.30656i 0.541196 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(350\) 0 0
\(351\) 0.223249 0.223249
\(352\) −0.704900 + 0.858923i −0.704900 + 0.858923i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.275899 0.275899i −0.275899 0.275899i 0.555570 0.831470i \(-0.312500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(360\) 0.0942504 0.956940i 0.0942504 0.956940i
\(361\) 0.707107 0.707107i 0.707107 0.707107i
\(362\) 0 0
\(363\) 0.0176020 0.0424949i 0.0176020 0.0424949i
\(364\) 0 0
\(365\) 0 0
\(366\) 0.324423 0.0319529i 0.324423 0.0319529i
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.124363 1.26268i −0.124363 1.26268i
\(371\) 0 0
\(372\) 0 0
\(373\) −0.0750191 + 0.181112i −0.0750191 + 0.181112i −0.956940 0.290285i \(-0.906250\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(374\) 0 0
\(375\) 0.138617 0.138617i 0.138617 0.138617i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(380\) −0.195090 0.980785i −0.195090 0.980785i
\(381\) −0.132322 0.319453i −0.132322 0.319453i
\(382\) 0.591637 + 0.485544i 0.591637 + 0.485544i
\(383\) −1.54602 −1.54602 −0.773010 0.634393i \(-0.781250\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(384\) 0.187593 0.0569057i 0.187593 0.0569057i
\(385\) 0 0
\(386\) 0.728789 + 0.598102i 0.728789 + 0.598102i
\(387\) 0 0
\(388\) 0.373380 + 1.87711i 0.373380 + 1.87711i
\(389\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(390\) 0.0330377 0.108911i 0.0330377 0.108911i
\(391\) 0 0
\(392\) −0.881921 0.471397i −0.881921 0.471397i
\(393\) 0.256131 0.256131i 0.256131 0.256131i
\(394\) 0 0
\(395\) 0 0
\(396\) 0.888375 0.593593i 0.888375 0.593593i
\(397\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(398\) 0.0750191 + 0.761681i 0.0750191 + 0.761681i
\(399\) 0 0
\(400\) −0.923880 0.382683i −0.923880 0.382683i
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0.344109 0.0338917i 0.344109 0.0338917i
\(403\) 0 0
\(404\) 0.216773 1.08979i 0.216773 1.08979i
\(405\) −0.339130 + 0.818731i −0.339130 + 0.818731i
\(406\) 0 0
\(407\) 0.996879 0.996879i 0.996879 0.996879i
\(408\) 0 0
\(409\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.858923 + 1.28547i −0.858923 + 1.28547i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.577774 + 0.0569057i −0.577774 + 0.0569057i
\(417\) 0.0764888 0.0764888
\(418\) 0.704900 0.858923i 0.704900 0.858923i
\(419\) 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 \(0\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) 0 0
\(421\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.26268 1.53858i −1.26268 1.53858i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.924678 0.183930i −0.924678 0.183930i
\(429\) 0.116834 0.0483944i 0.116834 0.0483944i
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −0.384535 −0.384535
\(433\) 0.196034i 0.196034i 0.995185 + 0.0980171i \(0.0312500\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(440\) −0.322547 1.06330i −0.322547 1.06330i
\(441\) 0.679933 + 0.679933i 0.679933 + 0.679933i
\(442\) 0 0
\(443\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(444\) −0.243946 + 0.0485240i −0.243946 + 0.0485240i
\(445\) 0 0
\(446\) −1.47945 1.21415i −1.47945 1.21415i
\(447\) −0.0764888 −0.0764888
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0.743304 + 0.610014i 0.743304 + 0.610014i
\(451\) 0 0
\(452\) −1.95213 + 0.388302i −1.95213 + 0.388302i
\(453\) 0 0
\(454\) 0.555570 1.83147i 0.555570 1.83147i
\(455\) 0 0
\(456\) −0.187593 + 0.0569057i −0.187593 + 0.0569057i
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) −0.183930 0.344109i −0.183930 0.344109i
\(459\) 0 0
\(460\) 0 0
\(461\) −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(468\) 0.547532 + 0.108911i 0.547532 + 0.108911i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(476\) 0 0
\(477\) 0.732410 + 1.76820i 0.732410 + 1.76820i
\(478\) −0.897168 + 1.09320i −0.897168 + 1.09320i
\(479\) 1.11114 1.11114 0.555570 0.831470i \(-0.312500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(480\) −0.0569057 + 0.187593i −0.0569057 + 0.187593i
\(481\) 0.736619 0.736619
\(482\) 0 0
\(483\) 0 0
\(484\) 0.130355 0.195090i 0.130355 0.195090i
\(485\) −1.76820 0.732410i −1.76820 0.732410i
\(486\) 0.534220 + 0.162054i 0.534220 + 0.162054i
\(487\) −1.40740 1.40740i −1.40740 1.40740i −0.773010 0.634393i \(-0.781250\pi\)
−0.634393 0.773010i \(-0.718750\pi\)
\(488\) 1.65493 + 0.162997i 1.65493 + 0.162997i
\(489\) 0 0
\(490\) 0.881921 0.471397i 0.881921 0.471397i
\(491\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.577774 0.0569057i 0.577774 0.0569057i
\(495\) 1.06844i 1.06844i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.81225 + 0.750661i −1.81225 + 0.750661i −0.831470 + 0.555570i \(0.812500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(500\) 0.831470 0.555570i 0.831470 0.555570i
\(501\) 0.0707275 0.170751i 0.0707275 0.170751i
\(502\) −0.666656 1.24723i −0.666656 1.24723i
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0.785695 + 0.785695i 0.785695 + 0.785695i
\(506\) 0 0
\(507\) −0.120066 0.0497331i −0.120066 0.0497331i
\(508\) −0.344109 1.72995i −0.344109 1.72995i
\(509\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.995185 0.0980171i 0.995185 0.0980171i
\(513\) 0.384535 0.384535
\(514\) −0.728789 0.598102i −0.728789 0.598102i
\(515\) −0.591637 1.42834i −0.591637 1.42834i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.244499 + 0.244499i 0.244499 + 0.244499i
\(520\) 0.273678 0.512016i 0.273678 0.512016i
\(521\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(522\) 0 0
\(523\) −0.591637 + 1.42834i −0.591637 + 1.42834i 0.290285 + 0.956940i \(0.406250\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(524\) 1.53636 1.02656i 1.53636 1.02656i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.201241 + 0.0833567i −0.201241 + 0.0833567i
\(529\) 1.00000i 1.00000i
\(530\) 1.98079 0.195090i 1.98079 0.195090i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.666656 0.666656i 0.666656 0.666656i
\(536\) 1.75535 + 0.172887i 1.75535 + 0.172887i
\(537\) 0 0
\(538\) 0 0
\(539\) 1.02656 + 0.425215i 1.02656 + 0.425215i
\(540\) 0.213636 0.319729i 0.213636 0.319729i
\(541\) 0.750661 + 1.81225i 0.750661 + 1.81225i 0.555570 + 0.831470i \(0.312500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(542\) 0.247528 0.301614i 0.247528 0.301614i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.485544 1.17221i −0.485544 1.17221i −0.956940 0.290285i \(-0.906250\pi\)
0.471397 0.881921i \(-0.343750\pi\)
\(548\) 0 0
\(549\) −1.47731 0.611924i −1.47731 0.611924i
\(550\) 1.06330 + 0.322547i 1.06330 + 0.322547i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.0951832 0.229793i 0.0951832 0.229793i
\(556\) 0.382683 + 0.0761205i 0.382683 + 0.0761205i
\(557\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.17221 0.485544i 1.17221 0.485544i 0.290285 0.956940i \(-0.406250\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(564\) 0 0
\(565\) 0.761681 1.83886i 0.761681 1.83886i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(570\) 0.0569057 0.187593i 0.0569057 0.187593i
\(571\) 1.81225 + 0.750661i 1.81225 + 0.750661i 0.980785 + 0.195090i \(0.0625000\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(572\) 0.632699 0.125852i 0.632699 0.125852i
\(573\) 0.0574171 + 0.138617i 0.0574171 + 0.138617i
\(574\) 0 0
\(575\) 0 0
\(576\) −0.943094 0.187593i −0.943094 0.187593i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.773010 0.634393i −0.773010 0.634393i
\(579\) 0.0707275 + 0.170751i 0.0707275 + 0.170751i
\(580\) 0 0
\(581\) 0 0
\(582\) −0.108911 + 0.359031i −0.108911 + 0.359031i
\(583\) 1.56382 + 1.56382i 1.56382 + 1.56382i
\(584\) 0 0
\(585\) −0.394748 + 0.394748i −0.394748 + 0.394748i
\(586\) −0.728789 1.36347i −0.728789 1.36347i
\(587\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(588\) −0.108911 0.162997i −0.108911 0.162997i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −1.26879 −1.26879
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0.425215 0.0418800i 0.425215 0.0418800i
\(595\) 0 0
\(596\) −0.382683 0.0761205i −0.382683 0.0761205i
\(597\) −0.0574171 + 0.138617i −0.0574171 + 0.138617i
\(598\) 0 0
\(599\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(600\) −0.124363 0.151537i −0.124363 0.151537i
\(601\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(602\) 0 0
\(603\) −1.56695 0.649054i −1.56695 0.649054i
\(604\) 0 0
\(605\) 0.0897902 + 0.216773i 0.0897902 + 0.216773i
\(606\) 0.138185 0.168378i 0.138185 0.168378i
\(607\) −1.99037 −1.99037 −0.995185 0.0980171i \(-0.968750\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(608\) −0.995185 + 0.0980171i −0.995185 + 0.0980171i
\(609\) 0 0
\(610\) −1.05496 + 1.28547i −1.05496 + 1.28547i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(614\) −1.83147 0.555570i −1.83147 0.555570i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) −0.267287 + 0.142868i −0.267287 + 0.142868i
\(619\) −0.636379 + 1.53636i −0.636379 + 1.53636i 0.195090 + 0.980785i \(0.437500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.65493 + 0.162997i −1.65493 + 0.162997i
\(623\) 0 0
\(624\) −0.105148 0.0435538i −0.105148 0.0435538i
\(625\) 1.00000i 1.00000i
\(626\) 0 0
\(627\) 0.201241 0.0833567i 0.201241 0.0833567i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.38704 1.38704i 1.38704 1.38704i 0.555570 0.831470i \(-0.312500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −0.273678 + 0.902197i −0.273678 + 0.902197i
\(635\) 1.62958 + 0.674993i 1.62958 + 0.674993i
\(636\) −0.0761205 0.382683i −0.0761205 0.382683i
\(637\) 0.222174 + 0.536376i 0.222174 + 0.536376i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −0.142868 0.117248i −0.142868 0.117248i
\(643\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0.781548 + 0.417746i 0.781548 + 0.417746i
\(649\) 0 0
\(650\) 0.273678 + 0.512016i 0.273678 + 0.512016i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(654\) 0 0
\(655\) 1.84776i 1.84776i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(660\) 0.0424949 0.213636i 0.0424949 0.213636i
\(661\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.16749 + 0.354155i 1.16749 + 0.354155i
\(667\) 0 0
\(668\) 0.523788 0.783904i 0.523788 0.783904i
\(669\) −0.143578 0.346627i −0.143578 0.346627i
\(670\) −1.11897 + 1.36347i −1.11897 + 1.36347i
\(671\) −1.84776 −1.84776
\(672\) 0 0
\(673\) −1.26879 −1.26879 −0.634393 0.773010i \(-0.718750\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(674\) −0.804910 + 0.980785i −0.804910 + 0.980785i
\(675\) 0.147155 + 0.355264i 0.147155 + 0.355264i
\(676\) −0.551214 0.368309i −0.551214 0.368309i
\(677\) −1.17221 0.485544i −1.17221 0.485544i −0.290285 0.956940i \(-0.593750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(678\) −0.373380 0.113263i −0.373380 0.113263i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.265297 0.265297i 0.265297 0.265297i
\(682\) 0 0
\(683\) −0.485544 + 1.17221i −0.485544 + 1.17221i 0.471397 + 0.881921i \(0.343750\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(684\) 0.943094 + 0.187593i 0.943094 + 0.187593i
\(685\) 0 0
\(686\) 0 0
\(687\) 0.0764888i 0.0764888i
\(688\) 0 0
\(689\) 1.15555i 1.15555i
\(690\) 0 0
\(691\) 1.53636 0.636379i 1.53636 0.636379i 0.555570 0.831470i \(-0.312500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(692\) 0.979938 + 1.46658i 0.979938 + 1.46658i
\(693\) 0 0
\(694\) 0 0
\(695\) −0.275899 + 0.275899i −0.275899 + 0.275899i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.410525 + 1.35332i −0.410525 + 1.35332i
\(699\) 0 0
\(700\) 0 0
\(701\) −0.750661 1.81225i −0.750661 1.81225i −0.555570 0.831470i \(-0.687500\pi\)
−0.195090 0.980785i \(-0.562500\pi\)
\(702\) 0.172574 + 0.141628i 0.172574 + 0.141628i
\(703\) 1.26879 1.26879
\(704\) −1.08979 + 0.216773i −1.08979 + 0.216773i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.30656 + 0.541196i 1.30656 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −0.246867 + 0.595989i −0.246867 + 0.595989i
\(716\) 0 0
\(717\) −0.256131 + 0.106093i −0.256131 + 0.106093i
\(718\) −0.0382444 0.388302i −0.0382444 0.388302i
\(719\) 1.96157i 1.96157i −0.195090 0.980785i \(-0.562500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(720\) 0.679933 0.679933i 0.679933 0.679933i
\(721\) 0 0
\(722\) 0.995185 0.0980171i 0.995185 0.0980171i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.0405650 0.0216824i 0.0405650 0.0216824i
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) −0.549246 0.549246i −0.549246 0.549246i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.271053 + 0.181112i 0.271053 + 0.181112i
\(733\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(734\) 0 0
\(735\) 0.196034 0.196034
\(736\) 0 0
\(737\) −1.95988 −1.95988
\(738\) 0 0
\(739\) 0.541196 + 1.30656i 0.541196 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(740\) 0.704900 1.05496i 0.704900 1.05496i
\(741\) 0.105148 + 0.0435538i 0.105148 + 0.0435538i
\(742\) 0 0
\(743\) 0.410525 + 0.410525i 0.410525 + 0.410525i 0.881921 0.471397i \(-0.156250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(744\) 0 0
\(745\) 0.275899 0.275899i 0.275899 0.275899i
\(746\) −0.172887 + 0.0924099i −0.172887 + 0.0924099i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0.195090 0.0192147i 0.195090 0.0192147i
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0.277234i 0.277234i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.471397 0.881921i 0.471397 0.881921i
\(761\) 1.17588 + 1.17588i 1.17588 + 1.17588i 0.980785 + 0.195090i \(0.0625000\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(762\) 0.100373 0.330885i 0.100373 0.330885i
\(763\) 0 0
\(764\) 0.149316 + 0.750661i 0.149316 + 0.750661i
\(765\) 0 0
\(766\) −1.19509 0.980785i −1.19509 0.980785i
\(767\) 0 0
\(768\) 0.181112 + 0.0750191i 0.181112 + 0.0750191i
\(769\) −0.390181 −0.390181 −0.195090 0.980785i \(-0.562500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(770\) 0 0
\(771\) −0.0707275 0.170751i −0.0707275 0.170751i
\(772\) 0.183930 + 0.924678i 0.183930 + 0.924678i
\(773\) −1.76820 0.732410i −1.76820 0.732410i −0.995185 0.0980171i \(-0.968750\pi\)
−0.773010 0.634393i \(-0.781250\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.902197 + 1.68789i −0.902197 + 1.68789i
\(777\) 0 0
\(778\) 0.871028 + 1.62958i 0.871028 + 1.62958i
\(779\) 0 0
\(780\) 0.0946308 0.0632303i 0.0946308 0.0632303i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.382683 0.923880i −0.382683 0.923880i
\(785\) 0 0
\(786\) 0.360480 0.0355042i 0.360480 0.0355042i
\(787\) 1.42834 0.591637i 1.42834 0.591637i 0.471397 0.881921i \(-0.343750\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(788\) 0 0
\(789\) 0 0