Properties

Label 3040.1.cn.a.189.2
Level $3040$
Weight $1$
Character 3040.189
Analytic conductor $1.517$
Analytic rank $0$
Dimension $32$
Projective image $D_{32}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,1,Mod(189,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.189");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3040.cn (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.51715763840\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{64})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{32}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{32} + \cdots)\)

Embedding invariants

Embedding label 189.2
Root \(-0.995185 + 0.0980171i\) of defining polynomial
Character \(\chi\) \(=\) 3040.189
Dual form 3040.1.cn.a.949.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.881921 - 0.471397i) q^{2} +(-1.76820 - 0.732410i) q^{3} +(0.555570 + 0.831470i) q^{4} +(-0.382683 - 0.923880i) q^{5} +(1.21415 + 1.47945i) q^{6} +(-0.0980171 - 0.995185i) q^{8} +(1.88298 + 1.88298i) q^{9} +O(q^{10})\) \(q+(-0.881921 - 0.471397i) q^{2} +(-1.76820 - 0.732410i) q^{3} +(0.555570 + 0.831470i) q^{4} +(-0.382683 - 0.923880i) q^{5} +(1.21415 + 1.47945i) q^{6} +(-0.0980171 - 0.995185i) q^{8} +(1.88298 + 1.88298i) q^{9} +(-0.0980171 + 0.995185i) q^{10} +(-1.81225 + 0.750661i) q^{11} +(-0.373380 - 1.87711i) q^{12} +(-0.485544 + 1.17221i) q^{13} +1.91388i q^{15} +(-0.382683 + 0.923880i) q^{16} +(-0.773010 - 2.54827i) q^{18} +(0.382683 - 0.923880i) q^{19} +(0.555570 - 0.831470i) q^{20} +(1.95213 + 0.192268i) q^{22} +(-0.555570 + 1.83147i) q^{24} +(-0.707107 + 0.707107i) q^{25} +(0.980785 - 0.804910i) q^{26} +(-1.21795 - 2.94040i) q^{27} +(0.902197 - 1.68789i) q^{30} +(0.773010 - 0.634393i) q^{32} +3.75421 q^{33} +(-0.519514 + 2.61177i) q^{36} +(0.360791 + 0.871028i) q^{37} +(-0.773010 + 0.634393i) q^{38} +(1.71707 - 1.71707i) q^{39} +(-0.881921 + 0.471397i) q^{40} +(-1.63099 - 1.08979i) q^{44} +(1.01906 - 2.46024i) q^{45} +(1.35332 - 1.35332i) q^{48} -1.00000i q^{49} +(0.956940 - 0.290285i) q^{50} +(-1.24441 + 0.247528i) q^{52} +(0.536376 - 0.222174i) q^{53} +(-0.311956 + 3.16734i) q^{54} +(1.38704 + 1.38704i) q^{55} +(-1.35332 + 1.35332i) q^{57} +(-1.59133 + 1.06330i) q^{60} +(0.360480 + 0.149316i) q^{61} +(-0.980785 + 0.195090i) q^{64} +1.26879 q^{65} +(-3.31092 - 1.76972i) q^{66} +(1.83886 + 0.761681i) q^{67} +(1.68935 - 2.05848i) q^{72} +(0.0924099 - 0.938254i) q^{74} +(1.76820 - 0.732410i) q^{75} +(0.980785 - 0.195090i) q^{76} +(-2.32374 + 0.704900i) q^{78} +1.00000 q^{80} +3.42831i q^{81} +(0.924678 + 1.72995i) q^{88} +(-2.05848 + 1.68935i) q^{90} -1.00000 q^{95} +(-1.83147 + 0.555570i) q^{96} -1.54602 q^{97} +(-0.471397 + 0.881921i) q^{98} +(-4.82592 - 1.99896i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 32 q^{66} + 32 q^{80} - 32 q^{95} - 32 q^{96} - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1217\) \(1921\) \(2661\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.881921 0.471397i −0.881921 0.471397i
\(3\) −1.76820 0.732410i −1.76820 0.732410i −0.995185 0.0980171i \(-0.968750\pi\)
−0.773010 0.634393i \(-0.781250\pi\)
\(4\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(5\) −0.382683 0.923880i −0.382683 0.923880i
\(6\) 1.21415 + 1.47945i 1.21415 + 1.47945i
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −0.0980171 0.995185i −0.0980171 0.995185i
\(9\) 1.88298 + 1.88298i 1.88298 + 1.88298i
\(10\) −0.0980171 + 0.995185i −0.0980171 + 0.995185i
\(11\) −1.81225 + 0.750661i −1.81225 + 0.750661i −0.831470 + 0.555570i \(0.812500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(12\) −0.373380 1.87711i −0.373380 1.87711i
\(13\) −0.485544 + 1.17221i −0.485544 + 1.17221i 0.471397 + 0.881921i \(0.343750\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(14\) 0 0
\(15\) 1.91388i 1.91388i
\(16\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −0.773010 2.54827i −0.773010 2.54827i
\(19\) 0.382683 0.923880i 0.382683 0.923880i
\(20\) 0.555570 0.831470i 0.555570 0.831470i
\(21\) 0 0
\(22\) 1.95213 + 0.192268i 1.95213 + 0.192268i
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) −0.555570 + 1.83147i −0.555570 + 1.83147i
\(25\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(26\) 0.980785 0.804910i 0.980785 0.804910i
\(27\) −1.21795 2.94040i −1.21795 2.94040i
\(28\) 0 0
\(29\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(30\) 0.902197 1.68789i 0.902197 1.68789i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0.773010 0.634393i 0.773010 0.634393i
\(33\) 3.75421 3.75421
\(34\) 0 0
\(35\) 0 0
\(36\) −0.519514 + 2.61177i −0.519514 + 2.61177i
\(37\) 0.360791 + 0.871028i 0.360791 + 0.871028i 0.995185 + 0.0980171i \(0.0312500\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(38\) −0.773010 + 0.634393i −0.773010 + 0.634393i
\(39\) 1.71707 1.71707i 1.71707 1.71707i
\(40\) −0.881921 + 0.471397i −0.881921 + 0.471397i
\(41\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(42\) 0 0
\(43\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(44\) −1.63099 1.08979i −1.63099 1.08979i
\(45\) 1.01906 2.46024i 1.01906 2.46024i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.35332 1.35332i 1.35332 1.35332i
\(49\) 1.00000i 1.00000i
\(50\) 0.956940 0.290285i 0.956940 0.290285i
\(51\) 0 0
\(52\) −1.24441 + 0.247528i −1.24441 + 0.247528i
\(53\) 0.536376 0.222174i 0.536376 0.222174i −0.0980171 0.995185i \(-0.531250\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(54\) −0.311956 + 3.16734i −0.311956 + 3.16734i
\(55\) 1.38704 + 1.38704i 1.38704 + 1.38704i
\(56\) 0 0
\(57\) −1.35332 + 1.35332i −1.35332 + 1.35332i
\(58\) 0 0
\(59\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(60\) −1.59133 + 1.06330i −1.59133 + 1.06330i
\(61\) 0.360480 + 0.149316i 0.360480 + 0.149316i 0.555570 0.831470i \(-0.312500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(65\) 1.26879 1.26879
\(66\) −3.31092 1.76972i −3.31092 1.76972i
\(67\) 1.83886 + 0.761681i 1.83886 + 0.761681i 0.956940 + 0.290285i \(0.0937500\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(72\) 1.68935 2.05848i 1.68935 2.05848i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0.0924099 0.938254i 0.0924099 0.938254i
\(75\) 1.76820 0.732410i 1.76820 0.732410i
\(76\) 0.980785 0.195090i 0.980785 0.195090i
\(77\) 0 0
\(78\) −2.32374 + 0.704900i −2.32374 + 0.704900i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000 1.00000
\(81\) 3.42831i 3.42831i
\(82\) 0 0
\(83\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.924678 + 1.72995i 0.924678 + 1.72995i
\(89\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(90\) −2.05848 + 1.68935i −2.05848 + 1.68935i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −1.00000
\(96\) −1.83147 + 0.555570i −1.83147 + 0.555570i
\(97\) −1.54602 −1.54602 −0.773010 0.634393i \(-0.781250\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(98\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(99\) −4.82592 1.99896i −4.82592 1.99896i
\(100\) −0.980785 0.195090i −0.980785 0.195090i
\(101\) −0.750661 1.81225i −0.750661 1.81225i −0.555570 0.831470i \(-0.687500\pi\)
−0.195090 0.980785i \(-0.562500\pi\)
\(102\) 0 0
\(103\) 1.24723 1.24723i 1.24723 1.24723i 0.290285 0.956940i \(-0.406250\pi\)
0.956940 0.290285i \(-0.0937500\pi\)
\(104\) 1.21415 + 0.368309i 1.21415 + 0.368309i
\(105\) 0 0
\(106\) −0.577774 0.0569057i −0.577774 0.0569057i
\(107\) 0.181112 0.0750191i 0.181112 0.0750191i −0.290285 0.956940i \(-0.593750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(108\) 1.76820 2.64629i 1.76820 2.64629i
\(109\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(110\) −0.569414 1.87711i −0.569414 1.87711i
\(111\) 1.80439i 1.80439i
\(112\) 0 0
\(113\) 0.580569i 0.580569i −0.956940 0.290285i \(-0.906250\pi\)
0.956940 0.290285i \(-0.0937500\pi\)
\(114\) 1.83147 0.555570i 1.83147 0.555570i
\(115\) 0 0
\(116\) 0 0
\(117\) −3.12151 + 1.29297i −3.12151 + 1.29297i
\(118\) 0 0
\(119\) 0 0
\(120\) 1.90466 0.187593i 1.90466 0.187593i
\(121\) 2.01367 2.01367i 2.01367 2.01367i
\(122\) −0.247528 0.301614i −0.247528 0.301614i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(126\) 0 0
\(127\) −1.99037 −1.99037 −0.995185 0.0980171i \(-0.968750\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(128\) 0.956940 + 0.290285i 0.956940 + 0.290285i
\(129\) 0 0
\(130\) −1.11897 0.598102i −1.11897 0.598102i
\(131\) 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i \(-0.250000\pi\)
1.00000i \(0.5\pi\)
\(132\) 2.08573 + 3.12151i 2.08573 + 3.12151i
\(133\) 0 0
\(134\) −1.26268 1.53858i −1.26268 1.53858i
\(135\) −2.25049 + 2.25049i −2.25049 + 2.25049i
\(136\) 0 0
\(137\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) −1.02656 + 0.425215i −1.02656 + 0.425215i −0.831470 0.555570i \(-0.812500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.48881i 2.48881i
\(144\) −2.46024 + 1.01906i −2.46024 + 1.01906i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.732410 + 1.76820i −0.732410 + 1.76820i
\(148\) −0.523788 + 0.783904i −0.523788 + 0.783904i
\(149\) 1.02656 0.425215i 1.02656 0.425215i 0.195090 0.980785i \(-0.437500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(150\) −1.90466 0.187593i −1.90466 0.187593i
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) −0.956940 0.290285i −0.956940 0.290285i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 2.38165 + 0.473739i 2.38165 + 0.473739i
\(157\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(158\) 0 0
\(159\) −1.11114 −1.11114
\(160\) −0.881921 0.471397i −0.881921 0.471397i
\(161\) 0 0
\(162\) 1.61609 3.02350i 1.61609 3.02350i
\(163\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(164\) 0 0
\(165\) −1.43667 3.46844i −1.43667 3.46844i
\(166\) 0 0
\(167\) 0.138617 0.138617i 0.138617 0.138617i −0.634393 0.773010i \(-0.718750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(168\) 0 0
\(169\) −0.431207 0.431207i −0.431207 0.431207i
\(170\) 0 0
\(171\) 2.46024 1.01906i 2.46024 1.01906i
\(172\) 0 0
\(173\) 0.761681 1.83886i 0.761681 1.83886i 0.290285 0.956940i \(-0.406250\pi\)
0.471397 0.881921i \(-0.343750\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.96157i 1.96157i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(180\) 2.61177 0.519514i 2.61177 0.519514i
\(181\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(182\) 0 0
\(183\) −0.528038 0.528038i −0.528038 0.528038i
\(184\) 0 0
\(185\) 0.666656 0.666656i 0.666656 0.666656i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0.881921 + 0.471397i 0.881921 + 0.471397i
\(191\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(192\) 1.87711 + 0.373380i 1.87711 + 0.373380i
\(193\) 0.196034 0.196034 0.0980171 0.995185i \(-0.468750\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(194\) 1.36347 + 0.728789i 1.36347 + 0.728789i
\(195\) −2.24346 0.929273i −2.24346 0.929273i
\(196\) 0.831470 0.555570i 0.831470 0.555570i
\(197\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(198\) 3.31378 + 4.03785i 3.31378 + 4.03785i
\(199\) 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(200\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(201\) −2.69360 2.69360i −2.69360 2.69360i
\(202\) −0.192268 + 1.95213i −0.192268 + 1.95213i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −1.68789 + 0.512016i −1.68789 + 0.512016i
\(207\) 0 0
\(208\) −0.897168 0.897168i −0.897168 0.897168i
\(209\) 1.96157i 1.96157i
\(210\) 0 0
\(211\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(212\) 0.482726 + 0.322547i 0.482726 + 0.322547i
\(213\) 0 0
\(214\) −0.195090 0.0192147i −0.195090 0.0192147i
\(215\) 0 0
\(216\) −2.80686 + 1.50030i −2.80686 + 1.50030i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −0.382683 + 1.92388i −0.382683 + 1.92388i
\(221\) 0 0
\(222\) −0.850586 + 1.59133i −0.850586 + 1.59133i
\(223\) 1.54602 1.54602 0.773010 0.634393i \(-0.218750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(224\) 0 0
\(225\) −2.66294 −2.66294
\(226\) −0.273678 + 0.512016i −0.273678 + 0.512016i
\(227\) −1.42834 0.591637i −1.42834 0.591637i −0.471397 0.881921i \(-0.656250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(228\) −1.87711 0.373380i −1.87711 0.373380i
\(229\) −0.425215 1.02656i −0.425215 1.02656i −0.980785 0.195090i \(-0.937500\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 3.36243 + 0.331171i 3.36243 + 0.331171i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) −1.76820 0.732410i −1.76820 0.732410i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −2.72514 + 0.826661i −2.72514 + 0.826661i
\(243\) 1.29297 3.12151i 1.29297 3.12151i
\(244\) 0.0761205 + 0.382683i 0.0761205 + 0.382683i
\(245\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(246\) 0 0
\(247\) 0.897168 + 0.897168i 0.897168 + 0.897168i
\(248\) 0 0
\(249\) 0 0
\(250\) −0.634393 0.773010i −0.634393 0.773010i
\(251\) 0.541196 + 1.30656i 0.541196 + 1.30656i 0.923880 + 0.382683i \(0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.75535 + 0.938254i 1.75535 + 0.938254i
\(255\) 0 0
\(256\) −0.707107 0.707107i −0.707107 0.707107i
\(257\) −0.196034 −0.196034 −0.0980171 0.995185i \(-0.531250\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.704900 + 1.05496i 0.704900 + 1.05496i
\(261\) 0 0
\(262\) −0.485544 0.591637i −0.485544 0.591637i
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) −0.367977 3.73613i −0.367977 3.73613i
\(265\) −0.410525 0.410525i −0.410525 0.410525i
\(266\) 0 0
\(267\) 0 0
\(268\) 0.388302 + 1.95213i 0.388302 + 1.95213i
\(269\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(270\) 3.04562 0.923880i 3.04562 0.923880i
\(271\) 1.11114i 1.11114i 0.831470 + 0.555570i \(0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.750661 1.81225i 0.750661 1.81225i
\(276\) 0 0
\(277\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(278\) 1.10579 + 0.108911i 1.10579 + 0.108911i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(282\) 0 0
\(283\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(284\) 0 0
\(285\) 1.76820 + 0.732410i 1.76820 + 0.732410i
\(286\) −1.17322 + 2.19494i −1.17322 + 2.19494i
\(287\) 0 0
\(288\) 2.65012 + 0.261014i 2.65012 + 0.261014i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 2.73367 + 1.13232i 2.73367 + 1.13232i
\(292\) 0 0
\(293\) 0.674993 + 1.62958i 0.674993 + 1.62958i 0.773010 + 0.634393i \(0.218750\pi\)
−0.0980171 + 0.995185i \(0.531250\pi\)
\(294\) 1.47945 1.21415i 1.47945 1.21415i
\(295\) 0 0
\(296\) 0.831470 0.444430i 0.831470 0.444430i
\(297\) 4.41449 + 4.41449i 4.41449 + 4.41449i
\(298\) −1.10579 0.108911i −1.10579 0.108911i
\(299\) 0 0
\(300\) 1.59133 + 1.06330i 1.59133 + 1.06330i
\(301\) 0 0
\(302\) 0 0
\(303\) 3.75421i 3.75421i
\(304\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(305\) 0.390181i 0.390181i
\(306\) 0 0
\(307\) 0.591637 1.42834i 0.591637 1.42834i −0.290285 0.956940i \(-0.593750\pi\)
0.881921 0.471397i \(-0.156250\pi\)
\(308\) 0 0
\(309\) −3.11882 + 1.29186i −3.11882 + 1.29186i
\(310\) 0 0
\(311\) 0.275899 + 0.275899i 0.275899 + 0.275899i 0.831470 0.555570i \(-0.187500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(312\) −1.87711 1.54050i −1.87711 1.54050i
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.181112 0.0750191i −0.181112 0.0750191i 0.290285 0.956940i \(-0.406250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(318\) 0.979938 + 0.523788i 0.979938 + 0.523788i
\(319\) 0 0
\(320\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(321\) −0.375186 −0.375186
\(322\) 0 0
\(323\) 0 0
\(324\) −2.85053 + 1.90466i −2.85053 + 1.90466i
\(325\) −0.485544 1.17221i −0.485544 1.17221i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −0.367977 + 3.73613i −0.367977 + 3.73613i
\(331\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(332\) 0 0
\(333\) −0.960766 + 2.31949i −0.960766 + 2.31949i
\(334\) −0.187593 + 0.0569057i −0.187593 + 0.0569057i
\(335\) 1.99037i 1.99037i
\(336\) 0 0
\(337\) 0.942793i 0.942793i −0.881921 0.471397i \(-0.843750\pi\)
0.881921 0.471397i \(-0.156250\pi\)
\(338\) 0.177021 + 0.583561i 0.177021 + 0.583561i
\(339\) −0.425215 + 1.02656i −0.425215 + 1.02656i
\(340\) 0 0
\(341\) 0 0
\(342\) −2.65012 0.261014i −2.65012 0.261014i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.53858 + 1.26268i −1.53858 + 1.26268i
\(347\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(348\) 0 0
\(349\) 1.30656 + 0.541196i 1.30656 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(350\) 0 0
\(351\) 4.03813 4.03813
\(352\) −0.924678 + 1.72995i −0.924678 + 1.72995i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.785695 0.785695i 0.785695 0.785695i −0.195090 0.980785i \(-0.562500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(360\) −2.54827 0.773010i −2.54827 0.773010i
\(361\) −0.707107 0.707107i −0.707107 0.707107i
\(362\) 0 0
\(363\) −5.03539 + 2.08573i −5.03539 + 2.08573i
\(364\) 0 0
\(365\) 0 0
\(366\) 0.216773 + 0.714604i 0.216773 + 0.714604i
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.902197 + 0.273678i −0.902197 + 0.273678i
\(371\) 0 0
\(372\) 0 0
\(373\) 1.76820 0.732410i 1.76820 0.732410i 0.773010 0.634393i \(-0.218750\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(374\) 0 0
\(375\) −1.35332 1.35332i −1.35332 1.35332i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(380\) −0.555570 0.831470i −0.555570 0.831470i
\(381\) 3.51936 + 1.45777i 3.51936 + 1.45777i
\(382\) 1.62958 + 0.871028i 1.62958 + 0.871028i
\(383\) 1.76384 1.76384 0.881921 0.471397i \(-0.156250\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(384\) −1.47945 1.21415i −1.47945 1.21415i
\(385\) 0 0
\(386\) −0.172887 0.0924099i −0.172887 0.0924099i
\(387\) 0 0
\(388\) −0.858923 1.28547i −0.858923 1.28547i
\(389\) 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 \(0\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(390\) 1.54050 + 1.87711i 1.54050 + 1.87711i
\(391\) 0 0
\(392\) −0.995185 + 0.0980171i −0.995185 + 0.0980171i
\(393\) −1.03578 1.03578i −1.03578 1.03578i
\(394\) 0 0
\(395\) 0 0
\(396\) −1.01906 5.12317i −1.01906 5.12317i
\(397\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(398\) −1.76820 + 0.536376i −1.76820 + 0.536376i
\(399\) 0 0
\(400\) −0.382683 0.923880i −0.382683 0.923880i
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 1.10579 + 3.64530i 1.10579 + 3.64530i
\(403\) 0 0
\(404\) 1.08979 1.63099i 1.08979 1.63099i
\(405\) 3.16734 1.31196i 3.16734 1.31196i
\(406\) 0 0
\(407\) −1.30769 1.30769i −1.30769 1.30769i
\(408\) 0 0
\(409\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.72995 + 0.344109i 1.72995 + 0.344109i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.368309 + 1.21415i 0.368309 + 1.21415i
\(417\) 2.12659 2.12659
\(418\) 0.924678 1.72995i 0.924678 1.72995i
\(419\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(420\) 0 0
\(421\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.273678 0.512016i −0.273678 0.512016i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.162997 + 0.108911i 0.162997 + 0.108911i
\(429\) −1.82283 + 4.40071i −1.82283 + 4.40071i
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 3.18267 3.18267
\(433\) 1.91388i 1.91388i −0.290285 0.956940i \(-0.593750\pi\)
0.290285 0.956940i \(-0.406250\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(440\) 1.24441 1.51631i 1.24441 1.51631i
\(441\) 1.88298 1.88298i 1.88298 1.88298i
\(442\) 0 0
\(443\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(444\) 1.50030 1.00247i 1.50030 1.00247i
\(445\) 0 0
\(446\) −1.36347 0.728789i −1.36347 0.728789i
\(447\) −2.12659 −2.12659
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 2.34850 + 1.25530i 2.34850 + 1.25530i
\(451\) 0 0
\(452\) 0.482726 0.322547i 0.482726 0.322547i
\(453\) 0 0
\(454\) 0.980785 + 1.19509i 0.980785 + 1.19509i
\(455\) 0 0
\(456\) 1.47945 + 1.21415i 1.47945 + 1.21415i
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) −0.108911 + 1.10579i −0.108911 + 1.10579i
\(459\) 0 0
\(460\) 0 0
\(461\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(468\) −2.80929 1.87711i −2.80929 1.87711i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(476\) 0 0
\(477\) 1.42834 + 0.591637i 1.42834 + 0.591637i
\(478\) 0.666656 1.24723i 0.666656 1.24723i
\(479\) 1.96157 1.96157 0.980785 0.195090i \(-0.0625000\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(480\) 1.21415 + 1.47945i 1.21415 + 1.47945i
\(481\) −1.19620 −1.19620
\(482\) 0 0
\(483\) 0 0
\(484\) 2.79304 + 0.555570i 2.79304 + 0.555570i
\(485\) 0.591637 + 1.42834i 0.591637 + 1.42834i
\(486\) −2.61177 + 2.14343i −2.61177 + 2.14343i
\(487\) 0.410525 0.410525i 0.410525 0.410525i −0.471397 0.881921i \(-0.656250\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(488\) 0.113263 0.373380i 0.113263 0.373380i
\(489\) 0 0
\(490\) 0.995185 + 0.0980171i 0.995185 + 0.0980171i
\(491\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.368309 1.21415i −0.368309 1.21415i
\(495\) 5.22354i 5.22354i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.636379 1.53636i 0.636379 1.53636i −0.195090 0.980785i \(-0.562500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(500\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(501\) −0.346627 + 0.143578i −0.346627 + 0.143578i
\(502\) 0.138617 1.40740i 0.138617 1.40740i
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) −1.38704 + 1.38704i −1.38704 + 1.38704i
\(506\) 0 0
\(507\) 0.446638 + 1.07828i 0.446638 + 1.07828i
\(508\) −1.10579 1.65493i −1.10579 1.65493i
\(509\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(513\) −3.18267 −3.18267
\(514\) 0.172887 + 0.0924099i 0.172887 + 0.0924099i
\(515\) −1.62958 0.674993i −1.62958 0.674993i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −2.69360 + 2.69360i −2.69360 + 2.69360i
\(520\) −0.124363 1.26268i −0.124363 1.26268i
\(521\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(522\) 0 0
\(523\) −1.62958 + 0.674993i −1.62958 + 0.674993i −0.995185 0.0980171i \(-0.968750\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(524\) 0.149316 + 0.750661i 0.149316 + 0.750661i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −1.43667 + 3.46844i −1.43667 + 3.46844i
\(529\) 1.00000i 1.00000i
\(530\) 0.168530 + 0.555570i 0.168530 + 0.555570i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.138617 0.138617i −0.138617 0.138617i
\(536\) 0.577774 1.90466i 0.577774 1.90466i
\(537\) 0 0
\(538\) 0 0
\(539\) 0.750661 + 1.81225i 0.750661 + 1.81225i
\(540\) −3.12151 0.620908i −3.12151 0.620908i
\(541\) 1.53636 + 0.636379i 1.53636 + 0.636379i 0.980785 0.195090i \(-0.0625000\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(542\) 0.523788 0.979938i 0.523788 0.979938i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.871028 + 0.360791i 0.871028 + 0.360791i 0.773010 0.634393i \(-0.218750\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(548\) 0 0
\(549\) 0.397619 + 0.959936i 0.397619 + 0.959936i
\(550\) −1.51631 + 1.24441i −1.51631 + 1.24441i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.66704 + 0.690512i −1.66704 + 0.690512i
\(556\) −0.923880 0.617317i −0.923880 0.617317i
\(557\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.360791 0.871028i 0.360791 0.871028i −0.634393 0.773010i \(-0.718750\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(564\) 0 0
\(565\) −0.536376 + 0.222174i −0.536376 + 0.222174i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(570\) −1.21415 1.47945i −1.21415 1.47945i
\(571\) −0.636379 1.53636i −0.636379 1.53636i −0.831470 0.555570i \(-0.812500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(572\) 2.06937 1.38271i 2.06937 1.38271i
\(573\) 3.26720 + 1.35332i 3.26720 + 1.35332i
\(574\) 0 0
\(575\) 0 0
\(576\) −2.21415 1.47945i −2.21415 1.47945i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.881921 + 0.471397i 0.881921 + 0.471397i
\(579\) −0.346627 0.143578i −0.346627 0.143578i
\(580\) 0 0
\(581\) 0 0
\(582\) −1.87711 2.28726i −1.87711 2.28726i
\(583\) −0.805273 + 0.805273i −0.805273 + 0.805273i
\(584\) 0 0
\(585\) 2.38910 + 2.38910i 2.38910 + 2.38910i
\(586\) 0.172887 1.75535i 0.172887 1.75535i
\(587\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(588\) −1.87711 + 0.373380i −1.87711 + 0.373380i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.942793 −0.942793
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −1.81225 5.97420i −1.81225 5.97420i
\(595\) 0 0
\(596\) 0.923880 + 0.617317i 0.923880 + 0.617317i
\(597\) −3.26720 + 1.35332i −3.26720 + 1.35332i
\(598\) 0 0
\(599\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(600\) −0.902197 1.68789i −0.902197 1.68789i
\(601\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(602\) 0 0
\(603\) 2.02831 + 4.89678i 2.02831 + 4.89678i
\(604\) 0 0
\(605\) −2.63099 1.08979i −2.63099 1.08979i
\(606\) 1.76972 3.31092i 1.76972 3.31092i
\(607\) −0.580569 −0.580569 −0.290285 0.956940i \(-0.593750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(608\) −0.290285 0.956940i −0.290285 0.956940i
\(609\) 0 0
\(610\) −0.183930 + 0.344109i −0.183930 + 0.344109i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(614\) −1.19509 + 0.980785i −1.19509 + 0.980785i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(618\) 3.35953 + 0.330885i 3.35953 + 0.330885i
\(619\) 0.360480 0.149316i 0.360480 0.149316i −0.195090 0.980785i \(-0.562500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −0.113263 0.373380i −0.113263 0.373380i
\(623\) 0 0
\(624\) 0.929273 + 2.24346i 0.929273 + 2.24346i
\(625\) 1.00000i 1.00000i
\(626\) 0 0
\(627\) 1.43667 3.46844i 1.43667 3.46844i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.17588 + 1.17588i 1.17588 + 1.17588i 0.980785 + 0.195090i \(0.0625000\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.124363 + 0.151537i 0.124363 + 0.151537i
\(635\) 0.761681 + 1.83886i 0.761681 + 1.83886i
\(636\) −0.617317 0.923880i −0.617317 0.923880i
\(637\) 1.17221 + 0.485544i 1.17221 + 0.485544i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.0980171 0.995185i −0.0980171 0.995185i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0.330885 + 0.176862i 0.330885 + 0.176862i
\(643\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 3.41180 0.336033i 3.41180 0.336033i
\(649\) 0 0
\(650\) −0.124363 + 1.26268i −0.124363 + 1.26268i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(654\) 0 0
\(655\) 0.765367i 0.765367i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(660\) 2.08573 3.12151i 2.08573 3.12151i
\(661\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.94072 1.59271i 1.94072 1.59271i
\(667\) 0 0
\(668\) 0.192268 + 0.0382444i 0.192268 + 0.0382444i
\(669\) −2.73367 1.13232i −2.73367 1.13232i
\(670\) −0.938254 + 1.75535i −0.938254 + 1.75535i
\(671\) −0.765367 −0.765367
\(672\) 0 0
\(673\) −0.942793 −0.942793 −0.471397 0.881921i \(-0.656250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(674\) −0.444430 + 0.831470i −0.444430 + 0.831470i
\(675\) 2.94040 + 1.21795i 2.94040 + 1.21795i
\(676\) 0.118970 0.598102i 0.118970 0.598102i
\(677\) −0.360791 0.871028i −0.360791 0.871028i −0.995185 0.0980171i \(-0.968750\pi\)
0.634393 0.773010i \(-0.281250\pi\)
\(678\) 0.858923 0.704900i 0.858923 0.704900i
\(679\) 0 0
\(680\) 0 0
\(681\) 2.09226 + 2.09226i 2.09226 + 2.09226i
\(682\) 0 0
\(683\) 0.871028 0.360791i 0.871028 0.360791i 0.0980171 0.995185i \(-0.468750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(684\) 2.21415 + 1.47945i 2.21415 + 1.47945i
\(685\) 0 0
\(686\) 0 0
\(687\) 2.12659i 2.12659i
\(688\) 0 0
\(689\) 0.736619i 0.736619i
\(690\) 0 0
\(691\) 0.149316 0.360480i 0.149316 0.360480i −0.831470 0.555570i \(-0.812500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(692\) 1.95213 0.388302i 1.95213 0.388302i
\(693\) 0 0
\(694\) 0 0
\(695\) 0.785695 + 0.785695i 0.785695 + 0.785695i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.897168 1.09320i −0.897168 1.09320i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.53636 0.636379i −1.53636 0.636379i −0.555570 0.831470i \(-0.687500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(702\) −3.56131 1.90356i −3.56131 1.90356i
\(703\) 0.942793 0.942793
\(704\) 1.63099 1.08979i 1.63099 1.08979i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i \(-0.875000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −2.29936 + 0.952428i −2.29936 + 0.952428i
\(716\) 0 0
\(717\) 1.03578 2.50061i 1.03578 2.50061i
\(718\) −1.06330 + 0.322547i −1.06330 + 0.322547i
\(719\) 1.66294i 1.66294i −0.555570 0.831470i \(-0.687500\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(720\) 1.88298 + 1.88298i 1.88298 + 1.88298i
\(721\) 0 0
\(722\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 5.42403 + 0.534220i 5.42403 + 0.534220i
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) −2.14828 + 2.14828i −2.14828 + 2.14828i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.145685 0.732410i 0.145685 0.732410i
\(733\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(734\) 0 0
\(735\) 1.91388 1.91388
\(736\) 0 0
\(737\) −3.90425 −3.90425
\(738\) 0 0
\(739\) 1.30656 + 0.541196i 1.30656 + 0.541196i 0.923880 0.382683i \(-0.125000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(740\) 0.924678 + 0.183930i 0.924678 + 0.183930i
\(741\) −0.929273 2.24346i −0.929273 2.24346i
\(742\) 0 0
\(743\) 0.897168 0.897168i 0.897168 0.897168i −0.0980171 0.995185i \(-0.531250\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(744\) 0 0
\(745\) −0.785695 0.785695i −0.785695 0.785695i
\(746\) −1.90466 0.187593i −1.90466 0.187593i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0.555570 + 1.83147i 0.555570 + 1.83147i
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 2.70664i 2.70664i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.0980171 + 0.995185i 0.0980171 + 0.995185i
\(761\) −0.275899 + 0.275899i −0.275899 + 0.275899i −0.831470 0.555570i \(-0.812500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(762\) −2.41661 2.94465i −2.41661 2.94465i
\(763\) 0 0
\(764\) −1.02656 1.53636i −1.02656 1.53636i
\(765\) 0 0
\(766\) −1.55557 0.831470i −1.55557 0.831470i
\(767\) 0 0
\(768\) 0.732410 + 1.76820i 0.732410 + 1.76820i
\(769\) −1.11114 −1.11114 −0.555570 0.831470i \(-0.687500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(770\) 0 0
\(771\) 0.346627 + 0.143578i 0.346627 + 0.143578i
\(772\) 0.108911 + 0.162997i 0.108911 + 0.162997i
\(773\) 0.591637 + 1.42834i 0.591637 + 1.42834i 0.881921 + 0.471397i \(0.156250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.151537 + 1.53858i 0.151537 + 1.53858i
\(777\) 0 0
\(778\) 0.0750191 0.761681i 0.0750191 0.761681i
\(779\) 0 0
\(780\) −0.473739 2.38165i −0.473739 2.38165i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(785\) 0 0
\(786\) 0.425215 + 1.40175i 0.425215 + 1.40175i
\(787\) −0.674993 + 1.62958i −0.674993 + 1.62958i 0.0980171 + 0.995185i \(0.468750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0