Properties

Label 3040.1.cn.a.1709.6
Level $3040$
Weight $1$
Character 3040.1709
Analytic conductor $1.517$
Analytic rank $0$
Dimension $32$
Projective image $D_{32}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3040,1,Mod(189,3040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3040.189");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3040.cn (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.51715763840\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{64})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{32}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{32} + \cdots)\)

Embedding invariants

Embedding label 1709.6
Root \(0.471397 + 0.881921i\) of defining polynomial
Character \(\chi\) \(=\) 3040.1709
Dual form 3040.1.cn.a.2469.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.634393 + 0.773010i) q^{2} +(0.761681 - 1.83886i) q^{3} +(-0.195090 + 0.980785i) q^{4} +(-0.923880 + 0.382683i) q^{5} +(1.90466 - 0.577774i) q^{6} +(-0.881921 + 0.471397i) q^{8} +(-2.09415 - 2.09415i) q^{9} +O(q^{10})\) \(q+(0.634393 + 0.773010i) q^{2} +(0.761681 - 1.83886i) q^{3} +(-0.195090 + 0.980785i) q^{4} +(-0.923880 + 0.382683i) q^{5} +(1.90466 - 0.577774i) q^{6} +(-0.881921 + 0.471397i) q^{8} +(-2.09415 - 2.09415i) q^{9} +(-0.881921 - 0.471397i) q^{10} +(-0.425215 - 1.02656i) q^{11} +(1.65493 + 1.10579i) q^{12} +(-1.76820 - 0.732410i) q^{13} +1.99037i q^{15} +(-0.923880 - 0.382683i) q^{16} +(0.290285 - 2.94731i) q^{18} +(0.923880 + 0.382683i) q^{19} +(-0.195090 - 0.980785i) q^{20} +(0.523788 - 0.979938i) q^{22} +(0.195090 + 1.98079i) q^{24} +(0.707107 - 0.707107i) q^{25} +(-0.555570 - 1.83147i) q^{26} +(-3.60706 + 1.49409i) q^{27} +(-1.53858 + 1.26268i) q^{30} +(-0.290285 - 0.956940i) q^{32} -2.21158 q^{33} +(2.46246 - 1.64536i) q^{36} +(-1.42834 + 0.591637i) q^{37} +(0.290285 + 0.956940i) q^{38} +(-2.69360 + 2.69360i) q^{39} +(0.634393 - 0.773010i) q^{40} +(1.08979 - 0.216773i) q^{44} +(2.73613 + 1.13334i) q^{45} +(-1.40740 + 1.40740i) q^{48} -1.00000i q^{49} +(0.995185 + 0.0980171i) q^{50} +(1.06330 - 1.59133i) q^{52} +(0.0750191 + 0.181112i) q^{53} +(-3.44324 - 1.84045i) q^{54} +(0.785695 + 0.785695i) q^{55} +(1.40740 - 1.40740i) q^{57} +(-1.95213 - 0.388302i) q^{60} +(0.636379 - 1.53636i) q^{61} +(0.555570 - 0.831470i) q^{64} +1.91388 q^{65} +(-1.40301 - 1.70957i) q^{66} +(0.360791 - 0.871028i) q^{67} +(2.83405 + 0.859699i) q^{72} +(-1.36347 - 0.728789i) q^{74} +(-0.761681 - 1.83886i) q^{75} +(-0.555570 + 0.831470i) q^{76} +(-3.79099 - 0.373380i) q^{78} +1.00000 q^{80} +4.80933i q^{81} +(0.858923 + 0.704900i) q^{88} +(0.859699 + 2.83405i) q^{90} -1.00000 q^{95} +(-1.98079 - 0.195090i) q^{96} +0.580569 q^{97} +(0.773010 - 0.634393i) q^{98} +(-1.25930 + 3.04023i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 32 q^{66} + 32 q^{80} - 32 q^{95} - 32 q^{96} - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1217\) \(1921\) \(2661\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.634393 + 0.773010i 0.634393 + 0.773010i
\(3\) 0.761681 1.83886i 0.761681 1.83886i 0.290285 0.956940i \(-0.406250\pi\)
0.471397 0.881921i \(-0.343750\pi\)
\(4\) −0.195090 + 0.980785i −0.195090 + 0.980785i
\(5\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(6\) 1.90466 0.577774i 1.90466 0.577774i
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −0.881921 + 0.471397i −0.881921 + 0.471397i
\(9\) −2.09415 2.09415i −2.09415 2.09415i
\(10\) −0.881921 0.471397i −0.881921 0.471397i
\(11\) −0.425215 1.02656i −0.425215 1.02656i −0.980785 0.195090i \(-0.937500\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(12\) 1.65493 + 1.10579i 1.65493 + 1.10579i
\(13\) −1.76820 0.732410i −1.76820 0.732410i −0.995185 0.0980171i \(-0.968750\pi\)
−0.773010 0.634393i \(-0.781250\pi\)
\(14\) 0 0
\(15\) 1.99037i 1.99037i
\(16\) −0.923880 0.382683i −0.923880 0.382683i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0.290285 2.94731i 0.290285 2.94731i
\(19\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(20\) −0.195090 0.980785i −0.195090 0.980785i
\(21\) 0 0
\(22\) 0.523788 0.979938i 0.523788 0.979938i
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0.195090 + 1.98079i 0.195090 + 1.98079i
\(25\) 0.707107 0.707107i 0.707107 0.707107i
\(26\) −0.555570 1.83147i −0.555570 1.83147i
\(27\) −3.60706 + 1.49409i −3.60706 + 1.49409i
\(28\) 0 0
\(29\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(30\) −1.53858 + 1.26268i −1.53858 + 1.26268i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.290285 0.956940i −0.290285 0.956940i
\(33\) −2.21158 −2.21158
\(34\) 0 0
\(35\) 0 0
\(36\) 2.46246 1.64536i 2.46246 1.64536i
\(37\) −1.42834 + 0.591637i −1.42834 + 0.591637i −0.956940 0.290285i \(-0.906250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(38\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(39\) −2.69360 + 2.69360i −2.69360 + 2.69360i
\(40\) 0.634393 0.773010i 0.634393 0.773010i
\(41\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(42\) 0 0
\(43\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(44\) 1.08979 0.216773i 1.08979 0.216773i
\(45\) 2.73613 + 1.13334i 2.73613 + 1.13334i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.40740 + 1.40740i −1.40740 + 1.40740i
\(49\) 1.00000i 1.00000i
\(50\) 0.995185 + 0.0980171i 0.995185 + 0.0980171i
\(51\) 0 0
\(52\) 1.06330 1.59133i 1.06330 1.59133i
\(53\) 0.0750191 + 0.181112i 0.0750191 + 0.181112i 0.956940 0.290285i \(-0.0937500\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(54\) −3.44324 1.84045i −3.44324 1.84045i
\(55\) 0.785695 + 0.785695i 0.785695 + 0.785695i
\(56\) 0 0
\(57\) 1.40740 1.40740i 1.40740 1.40740i
\(58\) 0 0
\(59\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(60\) −1.95213 0.388302i −1.95213 0.388302i
\(61\) 0.636379 1.53636i 0.636379 1.53636i −0.195090 0.980785i \(-0.562500\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.555570 0.831470i 0.555570 0.831470i
\(65\) 1.91388 1.91388
\(66\) −1.40301 1.70957i −1.40301 1.70957i
\(67\) 0.360791 0.871028i 0.360791 0.871028i −0.634393 0.773010i \(-0.718750\pi\)
0.995185 0.0980171i \(-0.0312500\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(72\) 2.83405 + 0.859699i 2.83405 + 0.859699i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) −1.36347 0.728789i −1.36347 0.728789i
\(75\) −0.761681 1.83886i −0.761681 1.83886i
\(76\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(77\) 0 0
\(78\) −3.79099 0.373380i −3.79099 0.373380i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000 1.00000
\(81\) 4.80933i 4.80933i
\(82\) 0 0
\(83\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.858923 + 0.704900i 0.858923 + 0.704900i
\(89\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(90\) 0.859699 + 2.83405i 0.859699 + 2.83405i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 −1.00000
\(96\) −1.98079 0.195090i −1.98079 0.195090i
\(97\) 0.580569 0.580569 0.290285 0.956940i \(-0.406250\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(98\) 0.773010 0.634393i 0.773010 0.634393i
\(99\) −1.25930 + 3.04023i −1.25930 + 3.04023i
\(100\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(101\) 1.02656 0.425215i 1.02656 0.425215i 0.195090 0.980785i \(-0.437500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(102\) 0 0
\(103\) 0.897168 0.897168i 0.897168 0.897168i −0.0980171 0.995185i \(-0.531250\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(104\) 1.90466 0.187593i 1.90466 0.187593i
\(105\) 0 0
\(106\) −0.0924099 + 0.172887i −0.0924099 + 0.172887i
\(107\) −0.674993 1.62958i −0.674993 1.62958i −0.773010 0.634393i \(-0.781250\pi\)
0.0980171 0.995185i \(-0.468750\pi\)
\(108\) −0.761681 3.82923i −0.761681 3.82923i
\(109\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(110\) −0.108911 + 1.10579i −0.108911 + 1.10579i
\(111\) 3.07715i 3.07715i
\(112\) 0 0
\(113\) 0.196034i 0.196034i 0.995185 + 0.0980171i \(0.0312500\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(114\) 1.98079 + 0.195090i 1.98079 + 0.195090i
\(115\) 0 0
\(116\) 0 0
\(117\) 2.16909 + 5.23663i 2.16909 + 5.23663i
\(118\) 0 0
\(119\) 0 0
\(120\) −0.938254 1.75535i −0.938254 1.75535i
\(121\) −0.165911 + 0.165911i −0.165911 + 0.165911i
\(122\) 1.59133 0.482726i 1.59133 0.482726i
\(123\) 0 0
\(124\) 0 0
\(125\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(126\) 0 0
\(127\) 0.942793 0.942793 0.471397 0.881921i \(-0.343750\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(128\) 0.995185 0.0980171i 0.995185 0.0980171i
\(129\) 0 0
\(130\) 1.21415 + 1.47945i 1.21415 + 1.47945i
\(131\) −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i \(0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(132\) 0.431458 2.16909i 0.431458 2.16909i
\(133\) 0 0
\(134\) 0.902197 0.273678i 0.902197 0.273678i
\(135\) 2.76072 2.76072i 2.76072 2.76072i
\(136\) 0 0
\(137\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) −0.149316 0.360480i −0.149316 0.360480i 0.831470 0.555570i \(-0.187500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.12659i 2.12659i
\(144\) 1.13334 + 2.73613i 1.13334 + 2.73613i
\(145\) 0 0
\(146\) 0 0
\(147\) −1.83886 0.761681i −1.83886 0.761681i
\(148\) −0.301614 1.51631i −0.301614 1.51631i
\(149\) 0.149316 + 0.360480i 0.149316 + 0.360480i 0.980785 0.195090i \(-0.0625000\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(150\) 0.938254 1.75535i 0.938254 1.75535i
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) −0.995185 + 0.0980171i −0.995185 + 0.0980171i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −2.11635 3.16734i −2.11635 3.16734i
\(157\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(158\) 0 0
\(159\) 0.390181 0.390181
\(160\) 0.634393 + 0.773010i 0.634393 + 0.773010i
\(161\) 0 0
\(162\) −3.71766 + 3.05101i −3.71766 + 3.05101i
\(163\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(164\) 0 0
\(165\) 2.04323 0.846335i 2.04323 0.846335i
\(166\) 0 0
\(167\) −1.24723 + 1.24723i −1.24723 + 1.24723i −0.290285 + 0.956940i \(0.593750\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(168\) 0 0
\(169\) 1.88298 + 1.88298i 1.88298 + 1.88298i
\(170\) 0 0
\(171\) −1.13334 2.73613i −1.13334 2.73613i
\(172\) 0 0
\(173\) −0.871028 0.360791i −0.871028 0.360791i −0.0980171 0.995185i \(-0.531250\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.11114i 1.11114i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(180\) −1.64536 + 2.46246i −1.64536 + 2.46246i
\(181\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(182\) 0 0
\(183\) −2.34043 2.34043i −2.34043 2.34043i
\(184\) 0 0
\(185\) 1.09320 1.09320i 1.09320 1.09320i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −0.634393 0.773010i −0.634393 0.773010i
\(191\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(192\) −1.10579 1.65493i −1.10579 1.65493i
\(193\) 1.76384 1.76384 0.881921 0.471397i \(-0.156250\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(194\) 0.368309 + 0.448786i 0.368309 + 0.448786i
\(195\) 1.45777 3.51936i 1.45777 3.51936i
\(196\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(197\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(198\) −3.14902 + 0.955246i −3.14902 + 0.955246i
\(199\) 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(200\) −0.290285 + 0.956940i −0.290285 + 0.956940i
\(201\) −1.32689 1.32689i −1.32689 1.32689i
\(202\) 0.979938 + 0.523788i 0.979938 + 0.523788i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 1.26268 + 0.124363i 1.26268 + 0.124363i
\(207\) 0 0
\(208\) 1.35332 + 1.35332i 1.35332 + 1.35332i
\(209\) 1.11114i 1.11114i
\(210\) 0 0
\(211\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(212\) −0.192268 + 0.0382444i −0.192268 + 0.0382444i
\(213\) 0 0
\(214\) 0.831470 1.55557i 0.831470 1.55557i
\(215\) 0 0
\(216\) 2.47683 3.01803i 2.47683 3.01803i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −0.923880 + 0.617317i −0.923880 + 0.617317i
\(221\) 0 0
\(222\) −2.37867 + 1.95213i −2.37867 + 1.95213i
\(223\) −0.580569 −0.580569 −0.290285 0.956940i \(-0.593750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(224\) 0 0
\(225\) −2.96157 −2.96157
\(226\) −0.151537 + 0.124363i −0.151537 + 0.124363i
\(227\) −0.222174 + 0.536376i −0.222174 + 0.536376i −0.995185 0.0980171i \(-0.968750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(228\) 1.10579 + 1.65493i 1.10579 + 1.65493i
\(229\) 0.360480 0.149316i 0.360480 0.149316i −0.195090 0.980785i \(-0.562500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) −2.67192 + 4.99881i −2.67192 + 4.99881i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(240\) 0.761681 1.83886i 0.761681 1.83886i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −0.233503 0.0229981i −0.233503 0.0229981i
\(243\) 5.23663 + 2.16909i 5.23663 + 2.16909i
\(244\) 1.38268 + 0.923880i 1.38268 + 0.923880i
\(245\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(246\) 0 0
\(247\) −1.35332 1.35332i −1.35332 1.35332i
\(248\) 0 0
\(249\) 0 0
\(250\) −0.956940 + 0.290285i −0.956940 + 0.290285i
\(251\) −1.30656 + 0.541196i −1.30656 + 0.541196i −0.923880 0.382683i \(-0.875000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.598102 + 0.728789i 0.598102 + 0.728789i
\(255\) 0 0
\(256\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(257\) −1.76384 −1.76384 −0.881921 0.471397i \(-0.843750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.373380 + 1.87711i −0.373380 + 1.87711i
\(261\) 0 0
\(262\) −1.76820 + 0.536376i −1.76820 + 0.536376i
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 1.95044 1.04253i 1.95044 1.04253i
\(265\) −0.138617 0.138617i −0.138617 0.138617i
\(266\) 0 0
\(267\) 0 0
\(268\) 0.783904 + 0.523788i 0.783904 + 0.523788i
\(269\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(270\) 3.88545 + 0.382683i 3.88545 + 0.382683i
\(271\) 0.390181i 0.390181i −0.980785 0.195090i \(-0.937500\pi\)
0.980785 0.195090i \(-0.0625000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.02656 0.425215i −1.02656 0.425215i
\(276\) 0 0
\(277\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(278\) 0.183930 0.344109i 0.183930 0.344109i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(282\) 0 0
\(283\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(284\) 0 0
\(285\) −0.761681 + 1.83886i −0.761681 + 1.83886i
\(286\) −1.64388 + 1.34909i −1.64388 + 1.34909i
\(287\) 0 0
\(288\) −1.39607 + 2.61187i −1.39607 + 2.61187i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 0.442209 1.06759i 0.442209 1.06759i
\(292\) 0 0
\(293\) −1.17221 + 0.485544i −1.17221 + 0.485544i −0.881921 0.471397i \(-0.843750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(294\) −0.577774 1.90466i −0.577774 1.90466i
\(295\) 0 0
\(296\) 0.980785 1.19509i 0.980785 1.19509i
\(297\) 3.06755 + 3.06755i 3.06755 + 3.06755i
\(298\) −0.183930 + 0.344109i −0.183930 + 0.344109i
\(299\) 0 0
\(300\) 1.95213 0.388302i 1.95213 0.388302i
\(301\) 0 0
\(302\) 0 0
\(303\) 2.21158i 2.21158i
\(304\) −0.707107 0.707107i −0.707107 0.707107i
\(305\) 1.66294i 1.66294i
\(306\) 0 0
\(307\) −0.536376 0.222174i −0.536376 0.222174i 0.0980171 0.995185i \(-0.468750\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(308\) 0 0
\(309\) −0.966411 2.33312i −0.966411 2.33312i
\(310\) 0 0
\(311\) 1.17588 + 1.17588i 1.17588 + 1.17588i 0.980785 + 0.195090i \(0.0625000\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(312\) 1.10579 3.64530i 1.10579 3.64530i
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.674993 1.62958i 0.674993 1.62958i −0.0980171 0.995185i \(-0.531250\pi\)
0.773010 0.634393i \(-0.218750\pi\)
\(318\) 0.247528 + 0.301614i 0.247528 + 0.301614i
\(319\) 0 0
\(320\) −0.195090 + 0.980785i −0.195090 + 0.980785i
\(321\) −3.51070 −3.51070
\(322\) 0 0
\(323\) 0 0
\(324\) −4.71692 0.938254i −4.71692 0.938254i
\(325\) −1.76820 + 0.732410i −1.76820 + 0.732410i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 1.95044 + 1.04253i 1.95044 + 1.04253i
\(331\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(332\) 0 0
\(333\) 4.23012 + 1.75217i 4.23012 + 1.75217i
\(334\) −1.75535 0.172887i −1.75535 0.172887i
\(335\) 0.942793i 0.942793i
\(336\) 0 0
\(337\) 1.54602i 1.54602i 0.634393 + 0.773010i \(0.281250\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(338\) −0.261014 + 2.65012i −0.261014 + 2.65012i
\(339\) 0.360480 + 0.149316i 0.360480 + 0.149316i
\(340\) 0 0
\(341\) 0 0
\(342\) 1.39607 2.61187i 1.39607 2.61187i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.273678 0.902197i −0.273678 0.902197i
\(347\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(348\) 0 0
\(349\) 0.541196 1.30656i 0.541196 1.30656i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(350\) 0 0
\(351\) 7.47227 7.47227
\(352\) −0.858923 + 0.704900i −0.858923 + 0.704900i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.275899 0.275899i 0.275899 0.275899i −0.555570 0.831470i \(-0.687500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(360\) −2.94731 + 0.290285i −2.94731 + 0.290285i
\(361\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(362\) 0 0
\(363\) 0.178716 + 0.431458i 0.178716 + 0.431458i
\(364\) 0 0
\(365\) 0 0
\(366\) 0.324423 3.29393i 0.324423 3.29393i
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 1.53858 + 0.151537i 1.53858 + 0.151537i
\(371\) 0 0
\(372\) 0 0
\(373\) −0.761681 1.83886i −0.761681 1.83886i −0.471397 0.881921i \(-0.656250\pi\)
−0.290285 0.956940i \(-0.593750\pi\)
\(374\) 0 0
\(375\) 1.40740 + 1.40740i 1.40740 + 1.40740i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(380\) 0.195090 0.980785i 0.195090 0.980785i
\(381\) 0.718108 1.73367i 0.718108 1.73367i
\(382\) 0.485544 + 0.591637i 0.485544 + 0.591637i
\(383\) −1.26879 −1.26879 −0.634393 0.773010i \(-0.718750\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(384\) 0.577774 1.90466i 0.577774 1.90466i
\(385\) 0 0
\(386\) 1.11897 + 1.36347i 1.11897 + 1.36347i
\(387\) 0 0
\(388\) −0.113263 + 0.569414i −0.113263 + 0.569414i
\(389\) 1.70711 0.707107i 1.70711 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
1.00000 \(0\)
\(390\) 3.64530 1.10579i 3.64530 1.10579i
\(391\) 0 0
\(392\) 0.471397 + 0.881921i 0.471397 + 0.881921i
\(393\) 2.60054 + 2.60054i 2.60054 + 2.60054i
\(394\) 0 0
\(395\) 0 0
\(396\) −2.73613 1.82823i −2.73613 1.82823i
\(397\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(398\) 0.761681 + 0.0750191i 0.761681 + 0.0750191i
\(399\) 0 0
\(400\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0.183930 1.86747i 0.183930 1.86747i
\(403\) 0 0
\(404\) 0.216773 + 1.08979i 0.216773 + 1.08979i
\(405\) −1.84045 4.44324i −1.84045 4.44324i
\(406\) 0 0
\(407\) 1.21470 + 1.21470i 1.21470 + 1.21470i
\(408\) 0 0
\(409\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.704900 + 1.05496i 0.704900 + 1.05496i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.187593 + 1.90466i −0.187593 + 1.90466i
\(417\) −0.776604 −0.776604
\(418\) 0.858923 0.704900i 0.858923 0.704900i
\(419\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(420\) 0 0
\(421\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.151537 0.124363i −0.151537 0.124363i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 1.72995 0.344109i 1.72995 0.344109i
\(429\) 3.91051 + 1.61978i 3.91051 + 1.61978i
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 3.90425 3.90425
\(433\) 1.99037i 1.99037i −0.0980171 0.995185i \(-0.531250\pi\)
0.0980171 0.995185i \(-0.468750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(440\) −1.06330 0.322547i −1.06330 0.322547i
\(441\) −2.09415 + 2.09415i −2.09415 + 2.09415i
\(442\) 0 0
\(443\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(444\) −3.01803 0.600323i −3.01803 0.600323i
\(445\) 0 0
\(446\) −0.368309 0.448786i −0.368309 0.448786i
\(447\) 0.776604 0.776604
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.87880 2.28933i −1.87880 2.28933i
\(451\) 0 0
\(452\) −0.192268 0.0382444i −0.192268 0.0382444i
\(453\) 0 0
\(454\) −0.555570 + 0.168530i −0.555570 + 0.168530i
\(455\) 0 0
\(456\) −0.577774 + 1.90466i −0.577774 + 1.90466i
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) 0.344109 + 0.183930i 0.344109 + 0.183930i
\(459\) 0 0
\(460\) 0 0
\(461\) −0.707107 0.292893i −0.707107 0.292893i 1.00000i \(-0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(468\) −5.55918 + 1.10579i −5.55918 + 1.10579i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.923880 0.382683i 0.923880 0.382683i
\(476\) 0 0
\(477\) 0.222174 0.536376i 0.222174 0.536376i
\(478\) 1.09320 0.897168i 1.09320 0.897168i
\(479\) −1.11114 −1.11114 −0.555570 0.831470i \(-0.687500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(480\) 1.90466 0.577774i 1.90466 0.577774i
\(481\) 2.95890 2.95890
\(482\) 0 0
\(483\) 0 0
\(484\) −0.130355 0.195090i −0.130355 0.195090i
\(485\) −0.536376 + 0.222174i −0.536376 + 0.222174i
\(486\) 1.64536 + 5.42403i 1.64536 + 5.42403i
\(487\) 0.138617 0.138617i 0.138617 0.138617i −0.634393 0.773010i \(-0.718750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(488\) 0.162997 + 1.65493i 0.162997 + 1.65493i
\(489\) 0 0
\(490\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(491\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.187593 1.90466i 0.187593 1.90466i
\(495\) 3.29072i 3.29072i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.81225 + 0.750661i 1.81225 + 0.750661i 0.980785 + 0.195090i \(0.0625000\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(500\) −0.831470 0.555570i −0.831470 0.555570i
\(501\) 1.34349 + 3.24346i 1.34349 + 3.24346i
\(502\) −1.24723 0.666656i −1.24723 0.666656i
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) −0.785695 + 0.785695i −0.785695 + 0.785695i
\(506\) 0 0
\(507\) 4.89678 2.02831i 4.89678 2.02831i
\(508\) −0.183930 + 0.924678i −0.183930 + 0.924678i
\(509\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.0980171 + 0.995185i −0.0980171 + 0.995185i
\(513\) −3.90425 −3.90425
\(514\) −1.11897 1.36347i −1.11897 1.36347i
\(515\) −0.485544 + 1.17221i −0.485544 + 1.17221i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −1.32689 + 1.32689i −1.32689 + 1.32689i
\(520\) −1.68789 + 0.902197i −1.68789 + 0.902197i
\(521\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(522\) 0 0
\(523\) −0.485544 1.17221i −0.485544 1.17221i −0.956940 0.290285i \(-0.906250\pi\)
0.471397 0.881921i \(-0.343750\pi\)
\(524\) −1.53636 1.02656i −1.53636 1.02656i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 2.04323 + 0.846335i 2.04323 + 0.846335i
\(529\) 1.00000i 1.00000i
\(530\) 0.0192147 0.195090i 0.0192147 0.195090i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.24723 + 1.24723i 1.24723 + 1.24723i
\(536\) 0.0924099 + 0.938254i 0.0924099 + 0.938254i
\(537\) 0 0
\(538\) 0 0
\(539\) −1.02656 + 0.425215i −1.02656 + 0.425215i
\(540\) 2.16909 + 3.24627i 2.16909 + 3.24627i
\(541\) −0.750661 + 1.81225i −0.750661 + 1.81225i −0.195090 + 0.980785i \(0.562500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(542\) 0.301614 0.247528i 0.301614 0.247528i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.591637 1.42834i 0.591637 1.42834i −0.290285 0.956940i \(-0.593750\pi\)
0.881921 0.471397i \(-0.156250\pi\)
\(548\) 0 0
\(549\) −4.55003 + 1.88468i −4.55003 + 1.88468i
\(550\) −0.322547 1.06330i −0.322547 1.06330i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.17758 2.84292i −1.17758 2.84292i
\(556\) 0.382683 0.0761205i 0.382683 0.0761205i
\(557\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.42834 0.591637i −1.42834 0.591637i −0.471397 0.881921i \(-0.656250\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(564\) 0 0
\(565\) −0.0750191 0.181112i −0.0750191 0.181112i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(570\) −1.90466 + 0.577774i −1.90466 + 0.577774i
\(571\) −1.81225 + 0.750661i −1.81225 + 0.750661i −0.831470 + 0.555570i \(0.812500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(572\) −2.08573 0.414877i −2.08573 0.414877i
\(573\) 0.582966 1.40740i 0.582966 1.40740i
\(574\) 0 0
\(575\) 0 0
\(576\) −2.90466 + 0.577774i −2.90466 + 0.577774i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.634393 0.773010i −0.634393 0.773010i
\(579\) 1.34349 3.24346i 1.34349 3.24346i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.10579 0.335438i 1.10579 0.335438i
\(583\) 0.154023 0.154023i 0.154023 0.154023i
\(584\) 0 0
\(585\) −4.00795 4.00795i −4.00795 4.00795i
\(586\) −1.11897 0.598102i −1.11897 0.598102i
\(587\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(588\) 1.10579 1.65493i 1.10579 1.65493i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.54602 1.54602
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −0.425215 + 4.31728i −0.425215 + 4.31728i
\(595\) 0 0
\(596\) −0.382683 + 0.0761205i −0.382683 + 0.0761205i
\(597\) −0.582966 1.40740i −0.582966 1.40740i
\(598\) 0 0
\(599\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(600\) 1.53858 + 1.26268i 1.53858 + 1.26268i
\(601\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(602\) 0 0
\(603\) −2.57961 + 1.06851i −2.57961 + 1.06851i
\(604\) 0 0
\(605\) 0.0897902 0.216773i 0.0897902 0.216773i
\(606\) 1.70957 1.40301i 1.70957 1.40301i
\(607\) 0.196034 0.196034 0.0980171 0.995185i \(-0.468750\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(608\) 0.0980171 0.995185i 0.0980171 0.995185i
\(609\) 0 0
\(610\) −1.28547 + 1.05496i −1.28547 + 1.05496i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(614\) −0.168530 0.555570i −0.168530 0.555570i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(618\) 1.19044 2.22716i 1.19044 2.22716i
\(619\) 0.636379 + 1.53636i 0.636379 + 1.53636i 0.831470 + 0.555570i \(0.187500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −0.162997 + 1.65493i −0.162997 + 1.65493i
\(623\) 0 0
\(624\) 3.51936 1.45777i 3.51936 1.45777i
\(625\) 1.00000i 1.00000i
\(626\) 0 0
\(627\) −2.04323 0.846335i −2.04323 0.846335i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.38704 1.38704i −1.38704 1.38704i −0.831470 0.555570i \(-0.812500\pi\)
−0.555570 0.831470i \(-0.687500\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.68789 0.512016i 1.68789 0.512016i
\(635\) −0.871028 + 0.360791i −0.871028 + 0.360791i
\(636\) −0.0761205 + 0.382683i −0.0761205 + 0.382683i
\(637\) −0.732410 + 1.76820i −0.732410 + 1.76820i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.881921 + 0.471397i −0.881921 + 0.471397i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −2.22716 2.71381i −2.22716 2.71381i
\(643\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) −2.26710 4.24145i −2.26710 4.24145i
\(649\) 0 0
\(650\) −1.68789 0.902197i −1.68789 0.902197i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(654\) 0 0
\(655\) 1.84776i 1.84776i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(660\) 0.431458 + 2.16909i 0.431458 + 2.16909i
\(661\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.32911 + 4.38149i 1.32911 + 4.38149i
\(667\) 0 0
\(668\) −0.979938 1.46658i −0.979938 1.46658i
\(669\) −0.442209 + 1.06759i −0.442209 + 1.06759i
\(670\) −0.728789 + 0.598102i −0.728789 + 0.598102i
\(671\) −1.84776 −1.84776
\(672\) 0 0
\(673\) 1.54602 1.54602 0.773010 0.634393i \(-0.218750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(674\) −1.19509 + 0.980785i −1.19509 + 0.980785i
\(675\) −1.49409 + 3.60706i −1.49409 + 3.60706i
\(676\) −2.21415 + 1.47945i −2.21415 + 1.47945i
\(677\) 1.42834 0.591637i 1.42834 0.591637i 0.471397 0.881921i \(-0.343750\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(678\) 0.113263 + 0.373380i 0.113263 + 0.373380i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.817095 + 0.817095i 0.817095 + 0.817095i
\(682\) 0 0
\(683\) 0.591637 + 1.42834i 0.591637 + 1.42834i 0.881921 + 0.471397i \(0.156250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(684\) 2.90466 0.577774i 2.90466 0.577774i
\(685\) 0 0
\(686\) 0 0
\(687\) 0.776604i 0.776604i
\(688\) 0 0
\(689\) 0.375186i 0.375186i
\(690\) 0 0
\(691\) −1.53636 0.636379i −1.53636 0.636379i −0.555570 0.831470i \(-0.687500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(692\) 0.523788 0.783904i 0.523788 0.783904i
\(693\) 0 0
\(694\) 0 0
\(695\) 0.275899 + 0.275899i 0.275899 + 0.275899i
\(696\) 0 0
\(697\) 0 0
\(698\) 1.35332 0.410525i 1.35332 0.410525i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.750661 1.81225i 0.750661 1.81225i 0.195090 0.980785i \(-0.437500\pi\)
0.555570 0.831470i \(-0.312500\pi\)
\(702\) 4.74036 + 5.77614i 4.74036 + 5.77614i
\(703\) −1.54602 −1.54602
\(704\) −1.08979 0.216773i −1.08979 0.216773i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.30656 0.541196i 1.30656 0.541196i 0.382683 0.923880i \(-0.375000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −0.813811 1.96471i −0.813811 1.96471i
\(716\) 0 0
\(717\) −2.60054 1.07718i −2.60054 1.07718i
\(718\) 0.388302 + 0.0382444i 0.388302 + 0.0382444i
\(719\) 1.96157i 1.96157i −0.195090 0.980785i \(-0.562500\pi\)
0.195090 0.980785i \(-0.437500\pi\)
\(720\) −2.09415 2.09415i −2.09415 2.09415i
\(721\) 0 0
\(722\) −0.0980171 + 0.995185i −0.0980171 + 0.995185i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −0.220145 + 0.411863i −0.220145 + 0.411863i
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 4.57659 4.57659i 4.57659 4.57659i
\(730\) 0 0
\(731\) 0 0
\(732\) 2.75205 1.83886i 2.75205 1.83886i
\(733\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(734\) 0 0
\(735\) 1.99037 1.99037
\(736\) 0 0
\(737\) −1.04758 −1.04758
\(738\) 0 0
\(739\) 0.541196 1.30656i 0.541196 1.30656i −0.382683 0.923880i \(-0.625000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(740\) 0.858923 + 1.28547i 0.858923 + 1.28547i
\(741\) −3.51936 + 1.45777i −3.51936 + 1.45777i
\(742\) 0 0
\(743\) −1.35332 + 1.35332i −1.35332 + 1.35332i −0.471397 + 0.881921i \(0.656250\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(744\) 0 0
\(745\) −0.275899 0.275899i −0.275899 0.275899i
\(746\) 0.938254 1.75535i 0.938254 1.75535i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −0.195090 + 1.98079i −0.195090 + 1.98079i
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 2.81481i 2.81481i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.881921 0.471397i 0.881921 0.471397i
\(761\) −1.17588 + 1.17588i −1.17588 + 1.17588i −0.195090 + 0.980785i \(0.562500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(762\) 1.79571 0.544721i 1.79571 0.544721i
\(763\) 0 0
\(764\) −0.149316 + 0.750661i −0.149316 + 0.750661i
\(765\) 0 0
\(766\) −0.804910 0.980785i −0.804910 0.980785i
\(767\) 0 0
\(768\) 1.83886 0.761681i 1.83886 0.761681i
\(769\) 0.390181 0.390181 0.195090 0.980785i \(-0.437500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(770\) 0 0
\(771\) −1.34349 + 3.24346i −1.34349 + 3.24346i
\(772\) −0.344109 + 1.72995i −0.344109 + 1.72995i
\(773\) −0.536376 + 0.222174i −0.536376 + 0.222174i −0.634393 0.773010i \(-0.718750\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.512016 + 0.273678i −0.512016 + 0.273678i
\(777\) 0 0
\(778\) 1.62958 + 0.871028i 1.62958 + 0.871028i
\(779\) 0 0
\(780\) 3.16734 + 2.11635i 3.16734 + 2.11635i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(785\) 0 0
\(786\) −0.360480 + 3.66001i −0.360480 + 3.66001i
\(787\) 1.17221 + 0.485544i 1.17221 + 0.485544i 0.881921 0.471397i \(-0.156250\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0