Properties

Label 304.5.e.b
Level $304$
Weight $5$
Character orbit 304.e
Self dual yes
Analytic conductor $31.424$
Analytic rank $0$
Dimension $2$
CM discriminant -19
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 304.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(31.4244687775\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
Defining polynomial: \(x^{2} - x - 14\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(-1 + 3\sqrt{57})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -17 - 3 \beta ) q^{5} + ( -39 - 5 \beta ) q^{7} + 81 q^{9} +O(q^{10})\) \( q + ( -17 - 3 \beta ) q^{5} + ( -39 - 5 \beta ) q^{7} + 81 q^{9} + ( -119 - 5 \beta ) q^{11} + ( 159 - 35 \beta ) q^{17} -361 q^{19} + 158 q^{23} + ( 816 + 93 \beta ) q^{25} + ( 2583 + 187 \beta ) q^{35} + ( 1721 - 85 \beta ) q^{43} + ( -1377 - 243 \beta ) q^{45} + ( 441 - 325 \beta ) q^{47} + ( 2320 + 365 \beta ) q^{49} + ( 3943 + 427 \beta ) q^{55} + ( -1841 - 515 \beta ) q^{61} + ( -3159 - 405 \beta ) q^{63} + ( 4879 - 275 \beta ) q^{73} + ( 7841 + 765 \beta ) q^{77} + 6561 q^{81} + 5678 q^{83} + ( 10737 + 13 \beta ) q^{85} + ( 6137 + 1083 \beta ) q^{95} + ( -9639 - 405 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 31q^{5} - 73q^{7} + 162q^{9} + O(q^{10}) \) \( 2q - 31q^{5} - 73q^{7} + 162q^{9} - 233q^{11} + 353q^{17} - 722q^{19} + 316q^{23} + 1539q^{25} + 4979q^{35} + 3527q^{43} - 2511q^{45} + 1207q^{47} + 4275q^{49} + 7459q^{55} - 3167q^{61} - 5913q^{63} + 10033q^{73} + 14917q^{77} + 13122q^{81} + 11356q^{83} + 21461q^{85} + 11191q^{95} - 18873q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/304\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
113.1
4.27492
−3.27492
0 0 0 −49.4743 0 −93.1238 0 81.0000 0
113.2 0 0 0 18.4743 0 20.1238 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 304.5.e.b 2
4.b odd 2 1 76.5.c.a 2
12.b even 2 1 684.5.h.b 2
19.b odd 2 1 CM 304.5.e.b 2
76.d even 2 1 76.5.c.a 2
228.b odd 2 1 684.5.h.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.5.c.a 2 4.b odd 2 1
76.5.c.a 2 76.d even 2 1
304.5.e.b 2 1.a even 1 1 trivial
304.5.e.b 2 19.b odd 2 1 CM
684.5.h.b 2 12.b even 2 1
684.5.h.b 2 228.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(304, [\chi])\):

\( T_{3} \)
\( T_{5}^{2} + 31 T_{5} - 914 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( -914 + 31 T + T^{2} \)
$7$ \( -1874 + 73 T + T^{2} \)
$11$ \( 10366 + 233 T + T^{2} \)
$13$ \( T^{2} \)
$17$ \( -125954 - 353 T + T^{2} \)
$19$ \( ( 361 + T )^{2} \)
$23$ \( ( -158 + T )^{2} \)
$29$ \( T^{2} \)
$31$ \( T^{2} \)
$37$ \( T^{2} \)
$41$ \( T^{2} \)
$43$ \( 2183326 - 3527 T + T^{2} \)
$47$ \( -13182194 - 1207 T + T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( -31507634 + 3167 T + T^{2} \)
$67$ \( T^{2} \)
$71$ \( T^{2} \)
$73$ \( 15466366 - 10033 T + T^{2} \)
$79$ \( T^{2} \)
$83$ \( ( -5678 + T )^{2} \)
$89$ \( T^{2} \)
$97$ \( T^{2} \)
show more
show less