Properties

Label 304.4.i.e.273.2
Level $304$
Weight $4$
Character 304.273
Analytic conductor $17.937$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [304,4,Mod(49,304)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("304.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(304, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 304.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9365806417\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 64x^{4} + 33x^{3} + 3984x^{2} - 945x + 225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 273.2
Root \(0.118706 + 0.205606i\) of defining polynomial
Character \(\chi\) \(=\) 304.273
Dual form 304.4.i.e.49.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.881294 + 1.52645i) q^{3} +(10.3546 + 17.9347i) q^{5} -8.76259 q^{7} +(11.9466 - 20.6922i) q^{9} +62.1780 q^{11} +(32.2611 - 55.8778i) q^{13} +(-18.2509 + 31.6115i) q^{15} +(23.2077 + 40.1970i) q^{17} +(-17.3798 + 80.9750i) q^{19} +(-7.72241 - 13.3756i) q^{21} +(-18.6424 + 32.2895i) q^{23} +(-151.936 + 263.161i) q^{25} +89.7038 q^{27} +(33.2119 - 57.5247i) q^{29} -112.370 q^{31} +(54.7971 + 94.9114i) q^{33} +(-90.7332 - 157.155i) q^{35} -189.018 q^{37} +113.726 q^{39} +(120.005 + 207.854i) q^{41} +(84.1370 + 145.730i) q^{43} +494.812 q^{45} +(93.9241 - 162.681i) q^{47} -266.217 q^{49} +(-40.9056 + 70.8506i) q^{51} +(56.5285 - 97.9102i) q^{53} +(643.830 + 1115.15i) q^{55} +(-138.921 + 44.8334i) q^{57} +(92.9940 + 161.070i) q^{59} +(-154.322 + 267.293i) q^{61} +(-104.684 + 181.317i) q^{63} +1336.20 q^{65} +(19.7279 - 34.1697i) q^{67} -65.7176 q^{69} +(-175.101 - 303.284i) q^{71} +(4.80280 + 8.31870i) q^{73} -535.601 q^{75} -544.840 q^{77} +(-588.269 - 1018.91i) q^{79} +(-243.504 - 421.761i) q^{81} +257.980 q^{83} +(-480.614 + 832.448i) q^{85} +117.078 q^{87} +(66.8743 - 115.830i) q^{89} +(-282.691 + 489.634i) q^{91} +(-99.0313 - 171.527i) q^{93} +(-1632.22 + 526.763i) q^{95} +(-598.387 - 1036.44i) q^{97} +(742.819 - 1286.60i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - q^{5} - 52 q^{7} - 54 q^{9} - 8 q^{11} + 129 q^{13} + 77 q^{15} - 51 q^{17} - 40 q^{19} - 170 q^{21} - 47 q^{23} - 338 q^{25} - 718 q^{27} - 125 q^{29} + 100 q^{31} + 274 q^{33} + 84 q^{35}+ \cdots + 3184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/304\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.881294 + 1.52645i 0.169605 + 0.293765i 0.938281 0.345874i \(-0.112417\pi\)
−0.768676 + 0.639638i \(0.779084\pi\)
\(4\) 0 0
\(5\) 10.3546 + 17.9347i 0.926145 + 1.60413i 0.789709 + 0.613481i \(0.210231\pi\)
0.136436 + 0.990649i \(0.456435\pi\)
\(6\) 0 0
\(7\) −8.76259 −0.473135 −0.236568 0.971615i \(-0.576022\pi\)
−0.236568 + 0.971615i \(0.576022\pi\)
\(8\) 0 0
\(9\) 11.9466 20.6922i 0.442468 0.766378i
\(10\) 0 0
\(11\) 62.1780 1.70431 0.852154 0.523291i \(-0.175296\pi\)
0.852154 + 0.523291i \(0.175296\pi\)
\(12\) 0 0
\(13\) 32.2611 55.8778i 0.688278 1.19213i −0.284117 0.958790i \(-0.591700\pi\)
0.972395 0.233343i \(-0.0749664\pi\)
\(14\) 0 0
\(15\) −18.2509 + 31.6115i −0.314158 + 0.544137i
\(16\) 0 0
\(17\) 23.2077 + 40.1970i 0.331100 + 0.573482i 0.982728 0.185057i \(-0.0592469\pi\)
−0.651628 + 0.758539i \(0.725914\pi\)
\(18\) 0 0
\(19\) −17.3798 + 80.9750i −0.209852 + 0.977733i
\(20\) 0 0
\(21\) −7.72241 13.3756i −0.0802461 0.138990i
\(22\) 0 0
\(23\) −18.6424 + 32.2895i −0.169009 + 0.292732i −0.938072 0.346441i \(-0.887390\pi\)
0.769063 + 0.639173i \(0.220723\pi\)
\(24\) 0 0
\(25\) −151.936 + 263.161i −1.21549 + 2.10529i
\(26\) 0 0
\(27\) 89.7038 0.639389
\(28\) 0 0
\(29\) 33.2119 57.5247i 0.212665 0.368347i −0.739883 0.672736i \(-0.765119\pi\)
0.952548 + 0.304389i \(0.0984523\pi\)
\(30\) 0 0
\(31\) −112.370 −0.651043 −0.325521 0.945535i \(-0.605540\pi\)
−0.325521 + 0.945535i \(0.605540\pi\)
\(32\) 0 0
\(33\) 54.7971 + 94.9114i 0.289059 + 0.500665i
\(34\) 0 0
\(35\) −90.7332 157.155i −0.438192 0.758970i
\(36\) 0 0
\(37\) −189.018 −0.839848 −0.419924 0.907559i \(-0.637943\pi\)
−0.419924 + 0.907559i \(0.637943\pi\)
\(38\) 0 0
\(39\) 113.726 0.466942
\(40\) 0 0
\(41\) 120.005 + 207.854i 0.457112 + 0.791742i 0.998807 0.0488336i \(-0.0155504\pi\)
−0.541695 + 0.840575i \(0.682217\pi\)
\(42\) 0 0
\(43\) 84.1370 + 145.730i 0.298390 + 0.516827i 0.975768 0.218809i \(-0.0702170\pi\)
−0.677378 + 0.735635i \(0.736884\pi\)
\(44\) 0 0
\(45\) 494.812 1.63916
\(46\) 0 0
\(47\) 93.9241 162.681i 0.291494 0.504883i −0.682669 0.730728i \(-0.739181\pi\)
0.974163 + 0.225845i \(0.0725142\pi\)
\(48\) 0 0
\(49\) −266.217 −0.776143
\(50\) 0 0
\(51\) −40.9056 + 70.8506i −0.112312 + 0.194531i
\(52\) 0 0
\(53\) 56.5285 97.9102i 0.146505 0.253755i −0.783428 0.621482i \(-0.786531\pi\)
0.929934 + 0.367728i \(0.119864\pi\)
\(54\) 0 0
\(55\) 643.830 + 1115.15i 1.57844 + 2.73393i
\(56\) 0 0
\(57\) −138.921 + 44.8334i −0.322815 + 0.104181i
\(58\) 0 0
\(59\) 92.9940 + 161.070i 0.205200 + 0.355417i 0.950196 0.311652i \(-0.100882\pi\)
−0.744997 + 0.667068i \(0.767549\pi\)
\(60\) 0 0
\(61\) −154.322 + 267.293i −0.323916 + 0.561038i −0.981292 0.192524i \(-0.938333\pi\)
0.657377 + 0.753562i \(0.271666\pi\)
\(62\) 0 0
\(63\) −104.684 + 181.317i −0.209347 + 0.362600i
\(64\) 0 0
\(65\) 1336.20 2.54978
\(66\) 0 0
\(67\) 19.7279 34.1697i 0.0359723 0.0623058i −0.847479 0.530829i \(-0.821881\pi\)
0.883451 + 0.468523i \(0.155214\pi\)
\(68\) 0 0
\(69\) −65.7176 −0.114659
\(70\) 0 0
\(71\) −175.101 303.284i −0.292686 0.506946i 0.681758 0.731578i \(-0.261216\pi\)
−0.974444 + 0.224631i \(0.927882\pi\)
\(72\) 0 0
\(73\) 4.80280 + 8.31870i 0.00770035 + 0.0133374i 0.869850 0.493316i \(-0.164216\pi\)
−0.862150 + 0.506654i \(0.830882\pi\)
\(74\) 0 0
\(75\) −535.601 −0.824612
\(76\) 0 0
\(77\) −544.840 −0.806368
\(78\) 0 0
\(79\) −588.269 1018.91i −0.837791 1.45110i −0.891738 0.452552i \(-0.850514\pi\)
0.0539471 0.998544i \(-0.482820\pi\)
\(80\) 0 0
\(81\) −243.504 421.761i −0.334025 0.578548i
\(82\) 0 0
\(83\) 257.980 0.341168 0.170584 0.985343i \(-0.445435\pi\)
0.170584 + 0.985343i \(0.445435\pi\)
\(84\) 0 0
\(85\) −480.614 + 832.448i −0.613293 + 1.06226i
\(86\) 0 0
\(87\) 117.078 0.144276
\(88\) 0 0
\(89\) 66.8743 115.830i 0.0796479 0.137954i −0.823450 0.567389i \(-0.807954\pi\)
0.903098 + 0.429434i \(0.141287\pi\)
\(90\) 0 0
\(91\) −282.691 + 489.634i −0.325649 + 0.564040i
\(92\) 0 0
\(93\) −99.0313 171.527i −0.110420 0.191253i
\(94\) 0 0
\(95\) −1632.22 + 526.763i −1.76276 + 0.568892i
\(96\) 0 0
\(97\) −598.387 1036.44i −0.626361 1.08489i −0.988276 0.152678i \(-0.951210\pi\)
0.361915 0.932211i \(-0.382123\pi\)
\(98\) 0 0
\(99\) 742.819 1286.60i 0.754102 1.30614i
\(100\) 0 0
\(101\) −434.472 + 752.527i −0.428035 + 0.741378i −0.996698 0.0811919i \(-0.974127\pi\)
0.568663 + 0.822570i \(0.307461\pi\)
\(102\) 0 0
\(103\) 1491.56 1.42687 0.713437 0.700720i \(-0.247138\pi\)
0.713437 + 0.700720i \(0.247138\pi\)
\(104\) 0 0
\(105\) 159.925 276.999i 0.148639 0.257450i
\(106\) 0 0
\(107\) 1610.18 1.45478 0.727392 0.686222i \(-0.240732\pi\)
0.727392 + 0.686222i \(0.240732\pi\)
\(108\) 0 0
\(109\) 25.5111 + 44.1865i 0.0224176 + 0.0388284i 0.877017 0.480460i \(-0.159530\pi\)
−0.854599 + 0.519289i \(0.826197\pi\)
\(110\) 0 0
\(111\) −166.580 288.526i −0.142442 0.246717i
\(112\) 0 0
\(113\) 1789.55 1.48979 0.744895 0.667181i \(-0.232499\pi\)
0.744895 + 0.667181i \(0.232499\pi\)
\(114\) 0 0
\(115\) −772.139 −0.626107
\(116\) 0 0
\(117\) −770.823 1335.11i −0.609082 1.05496i
\(118\) 0 0
\(119\) −203.360 352.229i −0.156655 0.271335i
\(120\) 0 0
\(121\) 2535.11 1.90466
\(122\) 0 0
\(123\) −211.519 + 366.362i −0.155057 + 0.268567i
\(124\) 0 0
\(125\) −3704.31 −2.65059
\(126\) 0 0
\(127\) 138.888 240.560i 0.0970416 0.168081i −0.813417 0.581681i \(-0.802395\pi\)
0.910459 + 0.413600i \(0.135729\pi\)
\(128\) 0 0
\(129\) −148.299 + 256.861i −0.101217 + 0.175313i
\(130\) 0 0
\(131\) −911.342 1578.49i −0.607819 1.05277i −0.991599 0.129349i \(-0.958711\pi\)
0.383780 0.923424i \(-0.374622\pi\)
\(132\) 0 0
\(133\) 152.292 709.550i 0.0992886 0.462600i
\(134\) 0 0
\(135\) 928.849 + 1608.81i 0.592167 + 1.02566i
\(136\) 0 0
\(137\) −330.481 + 572.411i −0.206094 + 0.356966i −0.950481 0.310783i \(-0.899409\pi\)
0.744386 + 0.667749i \(0.232742\pi\)
\(138\) 0 0
\(139\) −622.975 + 1079.02i −0.380144 + 0.658429i −0.991083 0.133249i \(-0.957459\pi\)
0.610938 + 0.791678i \(0.290792\pi\)
\(140\) 0 0
\(141\) 331.099 0.197756
\(142\) 0 0
\(143\) 2005.93 3474.37i 1.17304 2.03176i
\(144\) 0 0
\(145\) 1375.59 0.787835
\(146\) 0 0
\(147\) −234.615 406.366i −0.131638 0.228003i
\(148\) 0 0
\(149\) −1136.01 1967.62i −0.624599 1.08184i −0.988618 0.150446i \(-0.951929\pi\)
0.364019 0.931392i \(-0.381404\pi\)
\(150\) 0 0
\(151\) −3637.77 −1.96051 −0.980256 0.197734i \(-0.936642\pi\)
−0.980256 + 0.197734i \(0.936642\pi\)
\(152\) 0 0
\(153\) 1109.02 0.586005
\(154\) 0 0
\(155\) −1163.55 2015.33i −0.602960 1.04436i
\(156\) 0 0
\(157\) 225.885 + 391.244i 0.114825 + 0.198883i 0.917710 0.397251i \(-0.130036\pi\)
−0.802885 + 0.596135i \(0.796702\pi\)
\(158\) 0 0
\(159\) 199.273 0.0993922
\(160\) 0 0
\(161\) 163.355 282.940i 0.0799641 0.138502i
\(162\) 0 0
\(163\) −215.631 −0.103617 −0.0518084 0.998657i \(-0.516498\pi\)
−0.0518084 + 0.998657i \(0.516498\pi\)
\(164\) 0 0
\(165\) −1134.81 + 1965.54i −0.535421 + 0.927377i
\(166\) 0 0
\(167\) −1660.74 + 2876.49i −0.769533 + 1.33287i 0.168283 + 0.985739i \(0.446178\pi\)
−0.937816 + 0.347132i \(0.887156\pi\)
\(168\) 0 0
\(169\) −983.055 1702.70i −0.447453 0.775012i
\(170\) 0 0
\(171\) 1467.92 + 1327.00i 0.656460 + 0.593442i
\(172\) 0 0
\(173\) −736.228 1275.19i −0.323552 0.560408i 0.657667 0.753309i \(-0.271544\pi\)
−0.981218 + 0.192901i \(0.938210\pi\)
\(174\) 0 0
\(175\) 1331.35 2305.97i 0.575091 0.996086i
\(176\) 0 0
\(177\) −163.910 + 283.901i −0.0696058 + 0.120561i
\(178\) 0 0
\(179\) −3573.98 −1.49236 −0.746179 0.665745i \(-0.768114\pi\)
−0.746179 + 0.665745i \(0.768114\pi\)
\(180\) 0 0
\(181\) 1471.86 2549.34i 0.604436 1.04691i −0.387705 0.921784i \(-0.626732\pi\)
0.992140 0.125130i \(-0.0399347\pi\)
\(182\) 0 0
\(183\) −544.011 −0.219751
\(184\) 0 0
\(185\) −1957.21 3389.98i −0.777821 1.34722i
\(186\) 0 0
\(187\) 1443.01 + 2499.37i 0.564296 + 0.977390i
\(188\) 0 0
\(189\) −786.038 −0.302518
\(190\) 0 0
\(191\) 700.359 0.265321 0.132660 0.991162i \(-0.457648\pi\)
0.132660 + 0.991162i \(0.457648\pi\)
\(192\) 0 0
\(193\) 29.9508 + 51.8763i 0.0111705 + 0.0193478i 0.871557 0.490295i \(-0.163111\pi\)
−0.860386 + 0.509643i \(0.829778\pi\)
\(194\) 0 0
\(195\) 1177.59 + 2039.64i 0.432456 + 0.749035i
\(196\) 0 0
\(197\) −374.382 −0.135399 −0.0676994 0.997706i \(-0.521566\pi\)
−0.0676994 + 0.997706i \(0.521566\pi\)
\(198\) 0 0
\(199\) 2301.88 3986.98i 0.819981 1.42025i −0.0857147 0.996320i \(-0.527317\pi\)
0.905696 0.423929i \(-0.139349\pi\)
\(200\) 0 0
\(201\) 69.5442 0.0244043
\(202\) 0 0
\(203\) −291.022 + 504.065i −0.100619 + 0.174278i
\(204\) 0 0
\(205\) −2485.21 + 4304.51i −0.846705 + 1.46654i
\(206\) 0 0
\(207\) 445.428 + 771.503i 0.149562 + 0.259049i
\(208\) 0 0
\(209\) −1080.64 + 5034.86i −0.357653 + 1.66636i
\(210\) 0 0
\(211\) −1478.36 2560.60i −0.482344 0.835444i 0.517451 0.855713i \(-0.326881\pi\)
−0.999795 + 0.0202687i \(0.993548\pi\)
\(212\) 0 0
\(213\) 308.631 534.564i 0.0992819 0.171961i
\(214\) 0 0
\(215\) −1742.41 + 3017.95i −0.552705 + 0.957313i
\(216\) 0 0
\(217\) 984.655 0.308031
\(218\) 0 0
\(219\) −8.46536 + 14.6624i −0.00261204 + 0.00452418i
\(220\) 0 0
\(221\) 2994.83 0.911555
\(222\) 0 0
\(223\) 265.320 + 459.548i 0.0796733 + 0.137998i 0.903109 0.429411i \(-0.141279\pi\)
−0.823436 + 0.567410i \(0.807946\pi\)
\(224\) 0 0
\(225\) 3630.25 + 6287.78i 1.07563 + 1.86305i
\(226\) 0 0
\(227\) 3479.72 1.01743 0.508716 0.860934i \(-0.330120\pi\)
0.508716 + 0.860934i \(0.330120\pi\)
\(228\) 0 0
\(229\) 3566.48 1.02917 0.514584 0.857440i \(-0.327946\pi\)
0.514584 + 0.857440i \(0.327946\pi\)
\(230\) 0 0
\(231\) −480.164 831.669i −0.136764 0.236882i
\(232\) 0 0
\(233\) 2995.60 + 5188.53i 0.842267 + 1.45885i 0.887974 + 0.459894i \(0.152113\pi\)
−0.0457068 + 0.998955i \(0.514554\pi\)
\(234\) 0 0
\(235\) 3890.19 1.07986
\(236\) 0 0
\(237\) 1036.88 1795.92i 0.284187 0.492226i
\(238\) 0 0
\(239\) 606.478 0.164141 0.0820707 0.996627i \(-0.473847\pi\)
0.0820707 + 0.996627i \(0.473847\pi\)
\(240\) 0 0
\(241\) 1722.58 2983.60i 0.460421 0.797472i −0.538561 0.842586i \(-0.681032\pi\)
0.998982 + 0.0451143i \(0.0143652\pi\)
\(242\) 0 0
\(243\) 1640.20 2840.91i 0.432999 0.749977i
\(244\) 0 0
\(245\) −2756.58 4774.53i −0.718821 1.24503i
\(246\) 0 0
\(247\) 3964.01 + 3583.48i 1.02115 + 0.923124i
\(248\) 0 0
\(249\) 227.356 + 393.792i 0.0578638 + 0.100223i
\(250\) 0 0
\(251\) 902.687 1563.50i 0.227000 0.393176i −0.729917 0.683535i \(-0.760441\pi\)
0.956918 + 0.290359i \(0.0937748\pi\)
\(252\) 0 0
\(253\) −1159.15 + 2007.70i −0.288043 + 0.498905i
\(254\) 0 0
\(255\) −1694.25 −0.416070
\(256\) 0 0
\(257\) −1118.48 + 1937.27i −0.271475 + 0.470208i −0.969240 0.246119i \(-0.920845\pi\)
0.697765 + 0.716327i \(0.254178\pi\)
\(258\) 0 0
\(259\) 1656.29 0.397362
\(260\) 0 0
\(261\) −793.541 1374.45i −0.188195 0.325964i
\(262\) 0 0
\(263\) 416.129 + 720.757i 0.0975651 + 0.168988i 0.910676 0.413121i \(-0.135561\pi\)
−0.813111 + 0.582108i \(0.802228\pi\)
\(264\) 0 0
\(265\) 2341.32 0.542741
\(266\) 0 0
\(267\) 235.743 0.0540347
\(268\) 0 0
\(269\) 1741.94 + 3017.13i 0.394826 + 0.683858i 0.993079 0.117449i \(-0.0374716\pi\)
−0.598253 + 0.801307i \(0.704138\pi\)
\(270\) 0 0
\(271\) 894.554 + 1549.41i 0.200518 + 0.347307i 0.948695 0.316192i \(-0.102404\pi\)
−0.748178 + 0.663498i \(0.769071\pi\)
\(272\) 0 0
\(273\) −996.533 −0.220927
\(274\) 0 0
\(275\) −9447.09 + 16362.8i −2.07157 + 3.58806i
\(276\) 0 0
\(277\) −5548.66 −1.20356 −0.601781 0.798661i \(-0.705542\pi\)
−0.601781 + 0.798661i \(0.705542\pi\)
\(278\) 0 0
\(279\) −1342.45 + 2325.19i −0.288066 + 0.498944i
\(280\) 0 0
\(281\) 22.8948 39.6549i 0.00486046 0.00841856i −0.863585 0.504203i \(-0.831786\pi\)
0.868445 + 0.495785i \(0.165120\pi\)
\(282\) 0 0
\(283\) −3060.37 5300.72i −0.642827 1.11341i −0.984799 0.173699i \(-0.944428\pi\)
0.341971 0.939710i \(-0.388905\pi\)
\(284\) 0 0
\(285\) −2242.54 2027.27i −0.466094 0.421351i
\(286\) 0 0
\(287\) −1051.55 1821.34i −0.216276 0.374601i
\(288\) 0 0
\(289\) 1379.30 2389.02i 0.280746 0.486266i
\(290\) 0 0
\(291\) 1054.71 1826.81i 0.212468 0.368005i
\(292\) 0 0
\(293\) −7395.39 −1.47455 −0.737276 0.675592i \(-0.763888\pi\)
−0.737276 + 0.675592i \(0.763888\pi\)
\(294\) 0 0
\(295\) −1925.83 + 3335.64i −0.380090 + 0.658334i
\(296\) 0 0
\(297\) 5577.61 1.08972
\(298\) 0 0
\(299\) 1202.85 + 2083.39i 0.232650 + 0.402962i
\(300\) 0 0
\(301\) −737.258 1276.97i −0.141179 0.244529i
\(302\) 0 0
\(303\) −1531.59 −0.290388
\(304\) 0 0
\(305\) −6391.76 −1.19997
\(306\) 0 0
\(307\) −287.534 498.024i −0.0534542 0.0925854i 0.838060 0.545578i \(-0.183690\pi\)
−0.891514 + 0.452992i \(0.850356\pi\)
\(308\) 0 0
\(309\) 1314.50 + 2276.79i 0.242005 + 0.419165i
\(310\) 0 0
\(311\) 36.6434 0.00668120 0.00334060 0.999994i \(-0.498937\pi\)
0.00334060 + 0.999994i \(0.498937\pi\)
\(312\) 0 0
\(313\) 2441.86 4229.43i 0.440966 0.763775i −0.556795 0.830650i \(-0.687969\pi\)
0.997761 + 0.0668742i \(0.0213026\pi\)
\(314\) 0 0
\(315\) −4335.83 −0.775544
\(316\) 0 0
\(317\) 2933.65 5081.23i 0.519779 0.900284i −0.479956 0.877292i \(-0.659348\pi\)
0.999736 0.0229917i \(-0.00731913\pi\)
\(318\) 0 0
\(319\) 2065.05 3576.77i 0.362447 0.627777i
\(320\) 0 0
\(321\) 1419.04 + 2457.85i 0.246739 + 0.427364i
\(322\) 0 0
\(323\) −3658.29 + 1180.63i −0.630195 + 0.203381i
\(324\) 0 0
\(325\) 9803.25 + 16979.7i 1.67319 + 2.89805i
\(326\) 0 0
\(327\) −44.9655 + 77.8825i −0.00760428 + 0.0131710i
\(328\) 0 0
\(329\) −823.018 + 1425.51i −0.137916 + 0.238878i
\(330\) 0 0
\(331\) 8866.06 1.47227 0.736137 0.676833i \(-0.236648\pi\)
0.736137 + 0.676833i \(0.236648\pi\)
\(332\) 0 0
\(333\) −2258.13 + 3911.20i −0.371606 + 0.643640i
\(334\) 0 0
\(335\) 817.098 0.133262
\(336\) 0 0
\(337\) −1513.60 2621.63i −0.244662 0.423767i 0.717375 0.696688i \(-0.245344\pi\)
−0.962037 + 0.272921i \(0.912010\pi\)
\(338\) 0 0
\(339\) 1577.12 + 2731.64i 0.252676 + 0.437648i
\(340\) 0 0
\(341\) −6986.97 −1.10958
\(342\) 0 0
\(343\) 5338.32 0.840356
\(344\) 0 0
\(345\) −680.481 1178.63i −0.106191 0.183928i
\(346\) 0 0
\(347\) −4437.88 7686.63i −0.686564 1.18916i −0.972942 0.231048i \(-0.925785\pi\)
0.286378 0.958117i \(-0.407549\pi\)
\(348\) 0 0
\(349\) 2808.70 0.430791 0.215395 0.976527i \(-0.430896\pi\)
0.215395 + 0.976527i \(0.430896\pi\)
\(350\) 0 0
\(351\) 2893.94 5012.46i 0.440078 0.762237i
\(352\) 0 0
\(353\) 11702.4 1.76446 0.882230 0.470819i \(-0.156041\pi\)
0.882230 + 0.470819i \(0.156041\pi\)
\(354\) 0 0
\(355\) 3626.21 6280.78i 0.542139 0.939012i
\(356\) 0 0
\(357\) 358.439 620.835i 0.0531390 0.0920394i
\(358\) 0 0
\(359\) −843.014 1460.14i −0.123935 0.214661i 0.797381 0.603476i \(-0.206218\pi\)
−0.921316 + 0.388815i \(0.872885\pi\)
\(360\) 0 0
\(361\) −6254.89 2814.66i −0.911924 0.410359i
\(362\) 0 0
\(363\) 2234.17 + 3869.70i 0.323041 + 0.559523i
\(364\) 0 0
\(365\) −99.4624 + 172.274i −0.0142633 + 0.0247047i
\(366\) 0 0
\(367\) −4218.01 + 7305.81i −0.599941 + 1.03913i 0.392888 + 0.919586i \(0.371476\pi\)
−0.992829 + 0.119542i \(0.961857\pi\)
\(368\) 0 0
\(369\) 5734.62 0.809031
\(370\) 0 0
\(371\) −495.336 + 857.947i −0.0693169 + 0.120060i
\(372\) 0 0
\(373\) −1743.67 −0.242048 −0.121024 0.992650i \(-0.538618\pi\)
−0.121024 + 0.992650i \(0.538618\pi\)
\(374\) 0 0
\(375\) −3264.58 5654.42i −0.449553 0.778648i
\(376\) 0 0
\(377\) −2142.90 3711.62i −0.292746 0.507050i
\(378\) 0 0
\(379\) 1591.45 0.215693 0.107846 0.994168i \(-0.465605\pi\)
0.107846 + 0.994168i \(0.465605\pi\)
\(380\) 0 0
\(381\) 489.603 0.0658350
\(382\) 0 0
\(383\) 4502.45 + 7798.48i 0.600691 + 1.04043i 0.992717 + 0.120473i \(0.0384410\pi\)
−0.392026 + 0.919954i \(0.628226\pi\)
\(384\) 0 0
\(385\) −5641.61 9771.56i −0.746814 1.29352i
\(386\) 0 0
\(387\) 4020.62 0.528113
\(388\) 0 0
\(389\) −2034.97 + 3524.66i −0.265236 + 0.459402i −0.967625 0.252391i \(-0.918783\pi\)
0.702389 + 0.711793i \(0.252117\pi\)
\(390\) 0 0
\(391\) −1730.59 −0.223835
\(392\) 0 0
\(393\) 1606.32 2782.23i 0.206178 0.357111i
\(394\) 0 0
\(395\) 12182.6 21100.9i 1.55183 2.68785i
\(396\) 0 0
\(397\) −164.785 285.416i −0.0208321 0.0360822i 0.855421 0.517933i \(-0.173298\pi\)
−0.876253 + 0.481850i \(0.839965\pi\)
\(398\) 0 0
\(399\) 1217.30 392.857i 0.152735 0.0492918i
\(400\) 0 0
\(401\) −4093.53 7090.20i −0.509778 0.882962i −0.999936 0.0113281i \(-0.996394\pi\)
0.490158 0.871634i \(-0.336939\pi\)
\(402\) 0 0
\(403\) −3625.19 + 6279.02i −0.448098 + 0.776129i
\(404\) 0 0
\(405\) 5042.78 8734.35i 0.618710 1.07164i
\(406\) 0 0
\(407\) −11752.8 −1.43136
\(408\) 0 0
\(409\) −2499.25 + 4328.83i −0.302152 + 0.523342i −0.976623 0.214959i \(-0.931038\pi\)
0.674472 + 0.738301i \(0.264372\pi\)
\(410\) 0 0
\(411\) −1165.00 −0.139819
\(412\) 0 0
\(413\) −814.868 1411.39i −0.0970873 0.168160i
\(414\) 0 0
\(415\) 2671.28 + 4626.80i 0.315971 + 0.547278i
\(416\) 0 0
\(417\) −2196.10 −0.257898
\(418\) 0 0
\(419\) −11941.1 −1.39227 −0.696134 0.717912i \(-0.745098\pi\)
−0.696134 + 0.717912i \(0.745098\pi\)
\(420\) 0 0
\(421\) 5991.40 + 10377.4i 0.693594 + 1.20134i 0.970653 + 0.240486i \(0.0773069\pi\)
−0.277059 + 0.960853i \(0.589360\pi\)
\(422\) 0 0
\(423\) −2244.16 3886.99i −0.257954 0.446790i
\(424\) 0 0
\(425\) −14104.4 −1.60979
\(426\) 0 0
\(427\) 1352.26 2342.18i 0.153256 0.265447i
\(428\) 0 0
\(429\) 7071.26 0.795812
\(430\) 0 0
\(431\) 3541.49 6134.04i 0.395795 0.685537i −0.597407 0.801938i \(-0.703802\pi\)
0.993202 + 0.116401i \(0.0371358\pi\)
\(432\) 0 0
\(433\) 3701.50 6411.19i 0.410815 0.711552i −0.584164 0.811635i \(-0.698578\pi\)
0.994979 + 0.100084i \(0.0319110\pi\)
\(434\) 0 0
\(435\) 1212.29 + 2099.76i 0.133621 + 0.231438i
\(436\) 0 0
\(437\) −2290.64 2070.75i −0.250747 0.226676i
\(438\) 0 0
\(439\) −3837.72 6647.12i −0.417231 0.722665i 0.578429 0.815733i \(-0.303666\pi\)
−0.995660 + 0.0930680i \(0.970333\pi\)
\(440\) 0 0
\(441\) −3180.40 + 5508.62i −0.343419 + 0.594819i
\(442\) 0 0
\(443\) −1341.94 + 2324.32i −0.143923 + 0.249281i −0.928970 0.370154i \(-0.879305\pi\)
0.785048 + 0.619435i \(0.212638\pi\)
\(444\) 0 0
\(445\) 2769.83 0.295062
\(446\) 0 0
\(447\) 2002.31 3468.10i 0.211870 0.366970i
\(448\) 0 0
\(449\) −14097.6 −1.48175 −0.740874 0.671644i \(-0.765589\pi\)
−0.740874 + 0.671644i \(0.765589\pi\)
\(450\) 0 0
\(451\) 7461.67 + 12924.0i 0.779060 + 1.34937i
\(452\) 0 0
\(453\) −3205.94 5552.85i −0.332513 0.575929i
\(454\) 0 0
\(455\) −11708.6 −1.20639
\(456\) 0 0
\(457\) 7040.20 0.720627 0.360314 0.932831i \(-0.382670\pi\)
0.360314 + 0.932831i \(0.382670\pi\)
\(458\) 0 0
\(459\) 2081.82 + 3605.82i 0.211702 + 0.366678i
\(460\) 0 0
\(461\) −3676.54 6367.96i −0.371440 0.643352i 0.618348 0.785905i \(-0.287802\pi\)
−0.989787 + 0.142552i \(0.954469\pi\)
\(462\) 0 0
\(463\) −14054.7 −1.41075 −0.705377 0.708832i \(-0.749222\pi\)
−0.705377 + 0.708832i \(0.749222\pi\)
\(464\) 0 0
\(465\) 2050.86 3552.20i 0.204530 0.354256i
\(466\) 0 0
\(467\) −5875.16 −0.582163 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(468\) 0 0
\(469\) −172.867 + 299.415i −0.0170198 + 0.0294791i
\(470\) 0 0
\(471\) −398.142 + 689.602i −0.0389499 + 0.0674633i
\(472\) 0 0
\(473\) 5231.48 + 9061.18i 0.508549 + 0.880832i
\(474\) 0 0
\(475\) −18668.8 16876.7i −1.80334 1.63022i
\(476\) 0 0
\(477\) −1350.65 2339.40i −0.129648 0.224557i
\(478\) 0 0
\(479\) −88.8904 + 153.963i −0.00847914 + 0.0146863i −0.870234 0.492639i \(-0.836032\pi\)
0.861755 + 0.507325i \(0.169366\pi\)
\(480\) 0 0
\(481\) −6097.92 + 10561.9i −0.578049 + 1.00121i
\(482\) 0 0
\(483\) 575.856 0.0542492
\(484\) 0 0
\(485\) 12392.1 21463.8i 1.16020 2.00953i
\(486\) 0 0
\(487\) −12319.9 −1.14634 −0.573172 0.819435i \(-0.694287\pi\)
−0.573172 + 0.819435i \(0.694287\pi\)
\(488\) 0 0
\(489\) −190.034 329.149i −0.0175739 0.0304389i
\(490\) 0 0
\(491\) −4220.92 7310.84i −0.387958 0.671963i 0.604217 0.796820i \(-0.293486\pi\)
−0.992175 + 0.124857i \(0.960153\pi\)
\(492\) 0 0
\(493\) 3083.09 0.281654
\(494\) 0 0
\(495\) 30766.4 2.79363
\(496\) 0 0
\(497\) 1534.34 + 2657.55i 0.138480 + 0.239854i
\(498\) 0 0
\(499\) −3105.62 5379.09i −0.278610 0.482567i 0.692429 0.721486i \(-0.256540\pi\)
−0.971040 + 0.238918i \(0.923207\pi\)
\(500\) 0 0
\(501\) −5854.40 −0.522067
\(502\) 0 0
\(503\) 7836.70 13573.6i 0.694675 1.20321i −0.275616 0.961268i \(-0.588882\pi\)
0.970290 0.241944i \(-0.0777850\pi\)
\(504\) 0 0
\(505\) −17995.1 −1.58569
\(506\) 0 0
\(507\) 1732.72 3001.16i 0.151781 0.262892i
\(508\) 0 0
\(509\) 9897.72 17143.3i 0.861903 1.49286i −0.00818701 0.999966i \(-0.502606\pi\)
0.870090 0.492893i \(-0.164061\pi\)
\(510\) 0 0
\(511\) −42.0850 72.8933i −0.00364331 0.00631039i
\(512\) 0 0
\(513\) −1559.03 + 7263.76i −0.134177 + 0.625152i
\(514\) 0 0
\(515\) 15444.5 + 26750.7i 1.32149 + 2.28889i
\(516\) 0 0
\(517\) 5840.02 10115.2i 0.496796 0.860476i
\(518\) 0 0
\(519\) 1297.67 2247.62i 0.109752 0.190096i
\(520\) 0 0
\(521\) −21391.1 −1.79877 −0.899385 0.437157i \(-0.855986\pi\)
−0.899385 + 0.437157i \(0.855986\pi\)
\(522\) 0 0
\(523\) 1601.07 2773.13i 0.133862 0.231855i −0.791300 0.611428i \(-0.790596\pi\)
0.925162 + 0.379572i \(0.123929\pi\)
\(524\) 0 0
\(525\) 4693.25 0.390153
\(526\) 0 0
\(527\) −2607.86 4516.95i −0.215560 0.373361i
\(528\) 0 0
\(529\) 5388.42 + 9333.02i 0.442872 + 0.767077i
\(530\) 0 0
\(531\) 4443.87 0.363178
\(532\) 0 0
\(533\) 15485.9 1.25848
\(534\) 0 0
\(535\) 16672.8 + 28878.1i 1.34734 + 2.33366i
\(536\) 0 0
\(537\) −3149.73 5455.49i −0.253111 0.438402i
\(538\) 0 0
\(539\) −16552.9 −1.32279
\(540\) 0 0
\(541\) 3681.50 6376.55i 0.292569 0.506745i −0.681847 0.731495i \(-0.738823\pi\)
0.974417 + 0.224750i \(0.0721564\pi\)
\(542\) 0 0
\(543\) 5188.58 0.410061
\(544\) 0 0
\(545\) −528.315 + 915.068i −0.0415239 + 0.0719215i
\(546\) 0 0
\(547\) −6484.65 + 11231.7i −0.506880 + 0.877942i 0.493088 + 0.869979i \(0.335868\pi\)
−0.999968 + 0.00796294i \(0.997465\pi\)
\(548\) 0 0
\(549\) 3687.25 + 6386.50i 0.286645 + 0.496483i
\(550\) 0 0
\(551\) 4080.84 + 3689.10i 0.315517 + 0.285228i
\(552\) 0 0
\(553\) 5154.76 + 8928.31i 0.396388 + 0.686565i
\(554\) 0 0
\(555\) 3449.75 5975.14i 0.263845 0.456992i
\(556\) 0 0
\(557\) −9997.27 + 17315.8i −0.760499 + 1.31722i 0.182095 + 0.983281i \(0.441712\pi\)
−0.942594 + 0.333942i \(0.891621\pi\)
\(558\) 0 0
\(559\) 10857.4 0.821502
\(560\) 0 0
\(561\) −2543.43 + 4405.35i −0.191415 + 0.331540i
\(562\) 0 0
\(563\) 15654.6 1.17187 0.585936 0.810358i \(-0.300727\pi\)
0.585936 + 0.810358i \(0.300727\pi\)
\(564\) 0 0
\(565\) 18530.1 + 32095.0i 1.37976 + 2.38982i
\(566\) 0 0
\(567\) 2133.72 + 3695.72i 0.158039 + 0.273731i
\(568\) 0 0
\(569\) −6450.45 −0.475249 −0.237625 0.971357i \(-0.576369\pi\)
−0.237625 + 0.971357i \(0.576369\pi\)
\(570\) 0 0
\(571\) −18704.6 −1.37086 −0.685431 0.728138i \(-0.740386\pi\)
−0.685431 + 0.728138i \(0.740386\pi\)
\(572\) 0 0
\(573\) 617.222 + 1069.06i 0.0449997 + 0.0779418i
\(574\) 0 0
\(575\) −5664.90 9811.90i −0.410857 0.711625i
\(576\) 0 0
\(577\) −12394.4 −0.894257 −0.447128 0.894470i \(-0.647553\pi\)
−0.447128 + 0.894470i \(0.647553\pi\)
\(578\) 0 0
\(579\) −52.7908 + 91.4364i −0.00378914 + 0.00656298i
\(580\) 0 0
\(581\) −2260.57 −0.161419
\(582\) 0 0
\(583\) 3514.83 6087.87i 0.249690 0.432476i
\(584\) 0 0
\(585\) 15963.2 27649.0i 1.12820 1.95409i
\(586\) 0 0
\(587\) −3212.31 5563.88i −0.225871 0.391220i 0.730710 0.682688i \(-0.239189\pi\)
−0.956580 + 0.291469i \(0.905856\pi\)
\(588\) 0 0
\(589\) 1952.97 9099.19i 0.136623 0.636546i
\(590\) 0 0
\(591\) −329.940 571.473i −0.0229643 0.0397754i
\(592\) 0 0
\(593\) −9050.05 + 15675.2i −0.626714 + 1.08550i 0.361493 + 0.932375i \(0.382267\pi\)
−0.988207 + 0.153125i \(0.951066\pi\)
\(594\) 0 0
\(595\) 4211.42 7294.40i 0.290171 0.502590i
\(596\) 0 0
\(597\) 8114.54 0.556291
\(598\) 0 0
\(599\) −1423.60 + 2465.74i −0.0971061 + 0.168193i −0.910486 0.413541i \(-0.864292\pi\)
0.813380 + 0.581733i \(0.197625\pi\)
\(600\) 0 0
\(601\) 6934.19 0.470635 0.235317 0.971919i \(-0.424387\pi\)
0.235317 + 0.971919i \(0.424387\pi\)
\(602\) 0 0
\(603\) −471.364 816.426i −0.0318332 0.0551367i
\(604\) 0 0
\(605\) 26250.1 + 45466.5i 1.76400 + 3.05533i
\(606\) 0 0
\(607\) −9089.78 −0.607813 −0.303907 0.952702i \(-0.598291\pi\)
−0.303907 + 0.952702i \(0.598291\pi\)
\(608\) 0 0
\(609\) −1025.90 −0.0682622
\(610\) 0 0
\(611\) −6060.19 10496.6i −0.401259 0.695000i
\(612\) 0 0
\(613\) −12818.6 22202.5i −0.844598 1.46289i −0.885970 0.463743i \(-0.846506\pi\)
0.0413712 0.999144i \(-0.486827\pi\)
\(614\) 0 0
\(615\) −8760.79 −0.574421
\(616\) 0 0
\(617\) −10891.1 + 18863.9i −0.710630 + 1.23085i 0.253991 + 0.967207i \(0.418257\pi\)
−0.964621 + 0.263641i \(0.915077\pi\)
\(618\) 0 0
\(619\) 23717.7 1.54006 0.770029 0.638008i \(-0.220242\pi\)
0.770029 + 0.638008i \(0.220242\pi\)
\(620\) 0 0
\(621\) −1672.29 + 2896.50i −0.108062 + 0.187170i
\(622\) 0 0
\(623\) −585.992 + 1014.97i −0.0376842 + 0.0652710i
\(624\) 0 0
\(625\) −19364.7 33540.6i −1.23934 2.14660i
\(626\) 0 0
\(627\) −8637.81 + 2787.65i −0.550177 + 0.177557i
\(628\) 0 0
\(629\) −4386.68 7597.95i −0.278074 0.481638i
\(630\) 0 0
\(631\) −13101.6 + 22692.6i −0.826571 + 1.43166i 0.0741409 + 0.997248i \(0.476379\pi\)
−0.900712 + 0.434416i \(0.856955\pi\)
\(632\) 0 0
\(633\) 2605.74 4513.28i 0.163616 0.283391i
\(634\) 0 0
\(635\) 5752.51 0.359498
\(636\) 0 0
\(637\) −8588.45 + 14875.6i −0.534202 + 0.925265i
\(638\) 0 0
\(639\) −8367.48 −0.518016
\(640\) 0 0
\(641\) −2092.66 3624.59i −0.128947 0.223343i 0.794322 0.607497i \(-0.207826\pi\)
−0.923269 + 0.384154i \(0.874493\pi\)
\(642\) 0 0
\(643\) 16099.1 + 27884.5i 0.987383 + 1.71020i 0.630827 + 0.775924i \(0.282716\pi\)
0.356556 + 0.934274i \(0.383951\pi\)
\(644\) 0 0
\(645\) −6142.31 −0.374966
\(646\) 0 0
\(647\) −371.159 −0.0225530 −0.0112765 0.999936i \(-0.503589\pi\)
−0.0112765 + 0.999936i \(0.503589\pi\)
\(648\) 0 0
\(649\) 5782.19 + 10015.0i 0.349724 + 0.605739i
\(650\) 0 0
\(651\) 867.770 + 1503.02i 0.0522436 + 0.0904886i
\(652\) 0 0
\(653\) 1659.89 0.0994741 0.0497370 0.998762i \(-0.484162\pi\)
0.0497370 + 0.998762i \(0.484162\pi\)
\(654\) 0 0
\(655\) 18873.2 32689.3i 1.12586 1.95004i
\(656\) 0 0
\(657\) 229.510 0.0136286
\(658\) 0 0
\(659\) −12365.0 + 21416.8i −0.730914 + 1.26598i 0.225578 + 0.974225i \(0.427573\pi\)
−0.956493 + 0.291756i \(0.905760\pi\)
\(660\) 0 0
\(661\) 4199.93 7274.48i 0.247138 0.428055i −0.715593 0.698518i \(-0.753843\pi\)
0.962731 + 0.270462i \(0.0871766\pi\)
\(662\) 0 0
\(663\) 2639.32 + 4571.44i 0.154604 + 0.267783i
\(664\) 0 0
\(665\) 14302.5 4615.81i 0.834026 0.269163i
\(666\) 0 0
\(667\) 1238.30 + 2144.79i 0.0718846 + 0.124508i
\(668\) 0 0
\(669\) −467.649 + 809.993i −0.0270260 + 0.0468104i
\(670\) 0 0
\(671\) −9595.41 + 16619.7i −0.552052 + 0.956182i
\(672\) 0 0
\(673\) 27850.0 1.59516 0.797578 0.603216i \(-0.206114\pi\)
0.797578 + 0.603216i \(0.206114\pi\)
\(674\) 0 0
\(675\) −13629.3 + 23606.6i −0.777171 + 1.34610i
\(676\) 0 0
\(677\) 20343.1 1.15487 0.577437 0.816435i \(-0.304053\pi\)
0.577437 + 0.816435i \(0.304053\pi\)
\(678\) 0 0
\(679\) 5243.42 + 9081.86i 0.296353 + 0.513299i
\(680\) 0 0
\(681\) 3066.66 + 5311.60i 0.172562 + 0.298886i
\(682\) 0 0
\(683\) 26794.4 1.50111 0.750556 0.660807i \(-0.229786\pi\)
0.750556 + 0.660807i \(0.229786\pi\)
\(684\) 0 0
\(685\) −13688.0 −0.763493
\(686\) 0 0
\(687\) 3143.11 + 5444.03i 0.174552 + 0.302333i
\(688\) 0 0
\(689\) −3647.34 6317.38i −0.201673 0.349308i
\(690\) 0 0
\(691\) −29092.3 −1.60162 −0.800812 0.598916i \(-0.795598\pi\)
−0.800812 + 0.598916i \(0.795598\pi\)
\(692\) 0 0
\(693\) −6509.02 + 11273.9i −0.356792 + 0.617982i
\(694\) 0 0
\(695\) −25802.7 −1.40827
\(696\) 0 0
\(697\) −5570.08 + 9647.66i −0.302700 + 0.524291i
\(698\) 0 0
\(699\) −5280.00 + 9145.23i −0.285705 + 0.494856i
\(700\) 0 0
\(701\) −10761.5 18639.5i −0.579824 1.00428i −0.995499 0.0947713i \(-0.969788\pi\)
0.415675 0.909513i \(-0.363545\pi\)
\(702\) 0 0
\(703\) 3285.09 15305.7i 0.176244 0.821147i
\(704\) 0 0
\(705\) 3428.40 + 5938.17i 0.183150 + 0.317226i
\(706\) 0 0
\(707\) 3807.09 6594.08i 0.202518 0.350772i
\(708\) 0 0
\(709\) −7482.91 + 12960.8i −0.396370 + 0.686533i −0.993275 0.115779i \(-0.963064\pi\)
0.596905 + 0.802312i \(0.296397\pi\)
\(710\) 0 0
\(711\) −28111.4 −1.48278
\(712\) 0 0
\(713\) 2094.85 3628.39i 0.110032 0.190581i
\(714\) 0 0
\(715\) 83082.6 4.34561
\(716\) 0 0
\(717\) 534.485 + 925.756i 0.0278392 + 0.0482189i
\(718\) 0 0
\(719\) 3678.90 + 6372.03i 0.190820 + 0.330510i 0.945522 0.325557i \(-0.105552\pi\)
−0.754702 + 0.656068i \(0.772219\pi\)
\(720\) 0 0
\(721\) −13069.9 −0.675104
\(722\) 0 0
\(723\) 6072.41 0.312359
\(724\) 0 0
\(725\) 10092.2 + 17480.1i 0.516984 + 0.895443i
\(726\) 0 0
\(727\) 14574.2 + 25243.2i 0.743503 + 1.28779i 0.950891 + 0.309527i \(0.100171\pi\)
−0.207387 + 0.978259i \(0.566496\pi\)
\(728\) 0 0
\(729\) −7367.23 −0.374294
\(730\) 0 0
\(731\) −3905.26 + 6764.11i −0.197594 + 0.342243i
\(732\) 0 0
\(733\) 21514.5 1.08412 0.542059 0.840341i \(-0.317645\pi\)
0.542059 + 0.840341i \(0.317645\pi\)
\(734\) 0 0
\(735\) 4858.70 8415.52i 0.243831 0.422328i
\(736\) 0 0
\(737\) 1226.64 2124.60i 0.0613079 0.106188i
\(738\) 0 0
\(739\) −11558.0 20019.0i −0.575326 0.996495i −0.996006 0.0892854i \(-0.971542\pi\)
0.420680 0.907209i \(-0.361792\pi\)
\(740\) 0 0
\(741\) −1976.53 + 9208.95i −0.0979889 + 0.456544i
\(742\) 0 0
\(743\) 7551.47 + 13079.5i 0.372862 + 0.645816i 0.990005 0.141035i \(-0.0450430\pi\)
−0.617142 + 0.786852i \(0.711710\pi\)
\(744\) 0 0
\(745\) 23525.8 40747.9i 1.15694 2.00388i
\(746\) 0 0
\(747\) 3081.99 5338.17i 0.150956 0.261464i
\(748\) 0 0
\(749\) −14109.3 −0.688310
\(750\) 0 0
\(751\) 14297.9 24764.7i 0.694726 1.20330i −0.275547 0.961288i \(-0.588859\pi\)
0.970273 0.242013i \(-0.0778076\pi\)
\(752\) 0 0
\(753\) 3182.13 0.154002
\(754\) 0 0
\(755\) −37667.7 65242.3i −1.81572 3.14492i
\(756\) 0 0
\(757\) 3822.82 + 6621.32i 0.183544 + 0.317908i 0.943085 0.332552i \(-0.107910\pi\)
−0.759541 + 0.650460i \(0.774576\pi\)
\(758\) 0 0
\(759\) −4086.19 −0.195414
\(760\) 0 0
\(761\) 10724.9 0.510876 0.255438 0.966825i \(-0.417780\pi\)
0.255438 + 0.966825i \(0.417780\pi\)
\(762\) 0 0
\(763\) −223.543 387.188i −0.0106066 0.0183711i
\(764\) 0 0
\(765\) 11483.5 + 19889.9i 0.542726 + 0.940028i
\(766\) 0 0
\(767\) 12000.4 0.564938
\(768\) 0 0
\(769\) 1981.77 3432.52i 0.0929315 0.160962i −0.815812 0.578317i \(-0.803710\pi\)
0.908743 + 0.417355i \(0.137043\pi\)
\(770\) 0 0
\(771\) −3942.85 −0.184174
\(772\) 0 0
\(773\) 2222.65 3849.74i 0.103419 0.179128i −0.809672 0.586883i \(-0.800355\pi\)
0.913091 + 0.407755i \(0.133688\pi\)
\(774\) 0 0
\(775\) 17073.1 29571.5i 0.791335 1.37063i
\(776\) 0 0
\(777\) 1459.67 + 2528.23i 0.0673945 + 0.116731i
\(778\) 0 0
\(779\) −18916.7 + 6104.92i −0.870038 + 0.280785i
\(780\) 0 0
\(781\) −10887.4 18857.6i −0.498826 0.863992i
\(782\) 0 0
\(783\) 2979.23 5160.18i 0.135976 0.235517i
\(784\) 0 0
\(785\) −4677.91 + 8102.37i −0.212690 + 0.368390i
\(786\) 0 0
\(787\) −3452.08 −0.156357 −0.0781787 0.996939i \(-0.524910\pi\)
−0.0781787 + 0.996939i \(0.524910\pi\)
\(788\) 0 0
\(789\) −733.464 + 1270.40i −0.0330951 + 0.0573223i
\(790\) 0 0
\(791\) −15681.1 −0.704872
\(792\) 0 0
\(793\) 9957.16 + 17246.3i 0.445888 + 0.772301i
\(794\) 0 0
\(795\) 2063.39 + 3573.90i 0.0920516 + 0.159438i
\(796\) 0 0
\(797\) −25298.0 −1.12434 −0.562171 0.827021i \(-0.690034\pi\)
−0.562171 + 0.827021i \(0.690034\pi\)
\(798\) 0 0
\(799\) 8719.06 0.386055
\(800\) 0 0
\(801\) −1597.85 2767.55i −0.0704833 0.122081i
\(802\) 0 0
\(803\) 298.629 + 517.240i 0.0131238 + 0.0227310i
\(804\) 0 0
\(805\) 6765.93 0.296233
\(806\) 0 0
\(807\) −3070.33 + 5317.96i −0.133929 + 0.231972i
\(808\) 0 0
\(809\) −23140.8 −1.00567 −0.502834 0.864383i \(-0.667709\pi\)
−0.502834 + 0.864383i \(0.667709\pi\)
\(810\) 0 0
\(811\) −5554.38 + 9620.46i −0.240494 + 0.416548i −0.960855 0.277051i \(-0.910643\pi\)
0.720361 + 0.693599i \(0.243976\pi\)
\(812\) 0 0
\(813\) −1576.73 + 2730.97i −0.0680176 + 0.117810i
\(814\) 0 0
\(815\) −2232.78 3867.28i −0.0959641 0.166215i
\(816\) 0 0
\(817\) −13262.7 + 4280.24i −0.567937 + 0.183289i
\(818\) 0 0
\(819\) 6754.41 + 11699.0i 0.288178 + 0.499140i
\(820\) 0 0
\(821\) −6204.51 + 10746.5i −0.263750 + 0.456829i −0.967235 0.253881i \(-0.918293\pi\)
0.703485 + 0.710710i \(0.251626\pi\)
\(822\) 0 0
\(823\) −9536.05 + 16516.9i −0.403895 + 0.699567i −0.994192 0.107619i \(-0.965677\pi\)
0.590297 + 0.807186i \(0.299011\pi\)
\(824\) 0 0
\(825\) −33302.6 −1.40539
\(826\) 0 0
\(827\) 2143.56 3712.76i 0.0901317 0.156113i −0.817435 0.576021i \(-0.804605\pi\)
0.907566 + 0.419909i \(0.137938\pi\)
\(828\) 0 0
\(829\) −22544.9 −0.944533 −0.472266 0.881456i \(-0.656564\pi\)
−0.472266 + 0.881456i \(0.656564\pi\)
\(830\) 0 0
\(831\) −4890.00 8469.72i −0.204130 0.353564i
\(832\) 0 0
\(833\) −6178.29 10701.1i −0.256981 0.445104i
\(834\) 0 0
\(835\) −68785.3 −2.85080
\(836\) 0 0
\(837\) −10080.1 −0.416270
\(838\) 0 0
\(839\) 19298.9 + 33426.7i 0.794127 + 1.37547i 0.923392 + 0.383858i \(0.125405\pi\)
−0.129266 + 0.991610i \(0.541262\pi\)
\(840\) 0 0
\(841\) 9988.44 + 17300.5i 0.409547 + 0.709356i
\(842\) 0 0
\(843\) 80.7081 0.00329743
\(844\) 0 0
\(845\) 20358.3 35261.6i 0.828813 1.43555i
\(846\) 0 0
\(847\) −22214.1 −0.901164
\(848\) 0 0
\(849\) 5394.17 9342.98i 0.218054 0.377680i
\(850\) 0 0
\(851\) 3523.74 6103.30i 0.141942 0.245850i
\(852\) 0 0
\(853\) −1804.94 3126.25i −0.0724502 0.125488i 0.827524 0.561430i \(-0.189749\pi\)
−0.899975 + 0.435942i \(0.856415\pi\)
\(854\) 0 0
\(855\) −8599.72 + 40067.3i −0.343982 + 1.60266i
\(856\) 0 0
\(857\) 1209.06 + 2094.15i 0.0481921 + 0.0834711i 0.889115 0.457683i \(-0.151321\pi\)
−0.840923 + 0.541155i \(0.817987\pi\)
\(858\) 0 0
\(859\) 17426.1 30183.0i 0.692168 1.19887i −0.278958 0.960303i \(-0.589989\pi\)
0.971126 0.238567i \(-0.0766777\pi\)
\(860\) 0 0
\(861\) 1853.45 3210.28i 0.0733630 0.127068i
\(862\) 0 0
\(863\) 32080.0 1.26537 0.632685 0.774409i \(-0.281953\pi\)
0.632685 + 0.774409i \(0.281953\pi\)
\(864\) 0 0
\(865\) 15246.7 26408.1i 0.599311 1.03804i
\(866\) 0 0
\(867\) 4862.28 0.190463
\(868\) 0 0
\(869\) −36577.4 63354.0i −1.42785 2.47311i
\(870\) 0 0
\(871\) −1272.89 2204.70i −0.0495179 0.0857675i
\(872\) 0 0
\(873\) −28594.9 −1.10858
\(874\) 0 0
\(875\) 32459.3 1.25409
\(876\) 0 0
\(877\) −21507.3 37251.7i −0.828107 1.43432i −0.899521 0.436877i \(-0.856084\pi\)
0.0714140 0.997447i \(-0.477249\pi\)
\(878\) 0 0
\(879\) −6517.51 11288.7i −0.250091 0.433171i
\(880\) 0 0
\(881\) 20270.3 0.775170 0.387585 0.921834i \(-0.373309\pi\)
0.387585 + 0.921834i \(0.373309\pi\)
\(882\) 0 0
\(883\) −9829.17 + 17024.6i −0.374607 + 0.648838i −0.990268 0.139173i \(-0.955556\pi\)
0.615661 + 0.788011i \(0.288889\pi\)
\(884\) 0 0
\(885\) −6788.90 −0.257860
\(886\) 0 0
\(887\) 22422.7 38837.3i 0.848795 1.47016i −0.0334891 0.999439i \(-0.510662\pi\)
0.882284 0.470717i \(-0.156005\pi\)
\(888\) 0 0
\(889\) −1217.02 + 2107.93i −0.0459138 + 0.0795251i
\(890\) 0 0
\(891\) −15140.6 26224.3i −0.569281 0.986023i
\(892\) 0 0
\(893\) 11540.7 + 10432.9i 0.432470 + 0.390955i
\(894\) 0 0
\(895\) −37007.2 64098.4i −1.38214 2.39394i
\(896\) 0 0
\(897\) −2120.12 + 3672.16i −0.0789173 + 0.136689i
\(898\) 0 0
\(899\) −3732.03 + 6464.07i −0.138454 + 0.239810i
\(900\) 0 0
\(901\) 5247.59 0.194032
\(902\) 0 0
\(903\) 1299.48 2250.77i 0.0478893 0.0829467i
\(904\) 0 0
\(905\) 60962.4 2.23918
\(906\) 0 0
\(907\) 3605.66 + 6245.18i 0.132000 + 0.228630i 0.924447 0.381310i \(-0.124527\pi\)
−0.792448 + 0.609940i \(0.791194\pi\)
\(908\) 0 0
\(909\) 10381.0 + 17980.3i 0.378784 + 0.656073i
\(910\) 0 0
\(911\) −29098.8 −1.05827 −0.529136 0.848537i \(-0.677484\pi\)
−0.529136 + 0.848537i \(0.677484\pi\)
\(912\) 0 0
\(913\) 16040.7 0.581456
\(914\) 0 0
\(915\) −5633.02 9756.68i −0.203521 0.352509i
\(916\) 0 0
\(917\) 7985.71 + 13831.7i 0.287581 + 0.498104i
\(918\) 0 0
\(919\) 15321.9 0.549972 0.274986 0.961448i \(-0.411327\pi\)
0.274986 + 0.961448i \(0.411327\pi\)
\(920\) 0 0
\(921\) 506.804 877.811i 0.0181322 0.0314059i
\(922\) 0 0
\(923\) −22595.8 −0.805796
\(924\) 0 0
\(925\) 28718.7 49742.2i 1.02083 1.76812i
\(926\) 0 0
\(927\) 17819.2 30863.7i 0.631346 1.09352i
\(928\) 0 0
\(929\) 10272.5 + 17792.4i 0.362787 + 0.628365i 0.988418 0.151754i \(-0.0484921\pi\)
−0.625632 + 0.780118i \(0.715159\pi\)
\(930\) 0 0
\(931\) 4626.80 21556.9i 0.162876 0.758861i
\(932\) 0 0
\(933\) 32.2936 + 55.9341i 0.00113317 + 0.00196270i
\(934\) 0 0
\(935\) −29883.6 + 51760.0i −1.04524 + 1.81041i
\(936\) 0 0
\(937\) −23917.7 + 41426.6i −0.833891 + 1.44434i 0.0610397 + 0.998135i \(0.480558\pi\)
−0.894930 + 0.446206i \(0.852775\pi\)
\(938\) 0 0
\(939\) 8608.00 0.299160
\(940\) 0 0
\(941\) 222.655 385.650i 0.00771344 0.0133601i −0.862143 0.506665i \(-0.830878\pi\)
0.869856 + 0.493305i \(0.164211\pi\)
\(942\) 0 0
\(943\) −8948.70 −0.309024
\(944\) 0 0
\(945\) −8139.12 14097.4i −0.280175 0.485278i
\(946\) 0 0
\(947\) 22023.0 + 38145.0i 0.755705 + 1.30892i 0.945023 + 0.327004i \(0.106039\pi\)
−0.189318 + 0.981916i \(0.560628\pi\)
\(948\) 0 0
\(949\) 619.775 0.0211999
\(950\) 0 0
\(951\) 10341.6 0.352629
\(952\) 0 0
\(953\) −1758.66 3046.10i −0.0597783 0.103539i 0.834588 0.550875i \(-0.185706\pi\)
−0.894366 + 0.447336i \(0.852373\pi\)
\(954\) 0 0
\(955\) 7251.95 + 12560.7i 0.245725 + 0.425609i
\(956\) 0 0
\(957\) 7279.66 0.245891
\(958\) 0 0
\(959\) 2895.87 5015.80i 0.0975105 0.168893i
\(960\) 0 0
\(961\) −17163.9 −0.576144
\(962\) 0 0
\(963\) 19236.2 33318.1i 0.643696 1.11491i
\(964\) 0 0
\(965\) −620.257 + 1074.32i −0.0206910 + 0.0358378i
\(966\) 0 0
\(967\) −7621.77 13201.3i −0.253464 0.439012i 0.711013 0.703179i \(-0.248237\pi\)
−0.964477 + 0.264166i \(0.914903\pi\)
\(968\) 0 0
\(969\) −5026.20 4543.70i −0.166630 0.150634i
\(970\) 0 0
\(971\) 1633.51 + 2829.33i 0.0539876 + 0.0935092i 0.891756 0.452516i \(-0.149474\pi\)
−0.837769 + 0.546025i \(0.816140\pi\)
\(972\) 0 0
\(973\) 5458.87 9455.05i 0.179860 0.311526i
\(974\) 0 0
\(975\) −17279.1 + 29928.2i −0.567562 + 0.983047i
\(976\) 0 0
\(977\) 40038.2 1.31109 0.655545 0.755156i \(-0.272439\pi\)
0.655545 + 0.755156i \(0.272439\pi\)
\(978\) 0 0
\(979\) 4158.11 7202.06i 0.135744 0.235116i
\(980\) 0 0
\(981\) 1219.09 0.0396763
\(982\) 0 0
\(983\) 11127.2 + 19272.9i 0.361040 + 0.625340i 0.988132 0.153605i \(-0.0490885\pi\)
−0.627092 + 0.778945i \(0.715755\pi\)
\(984\) 0 0
\(985\) −3876.58 6714.43i −0.125399 0.217197i
\(986\) 0 0
\(987\) −2901.28 −0.0935652
\(988\) 0 0
\(989\) −6274.06 −0.201722
\(990\) 0 0
\(991\) 7389.74 + 12799.4i 0.236875 + 0.410279i 0.959816 0.280630i \(-0.0905435\pi\)
−0.722941 + 0.690910i \(0.757210\pi\)
\(992\) 0 0
\(993\) 7813.60 + 13533.6i 0.249705 + 0.432502i
\(994\) 0 0
\(995\) 95340.5 3.03768
\(996\) 0 0
\(997\) −14444.2 + 25018.1i −0.458829 + 0.794716i −0.998899 0.0469043i \(-0.985064\pi\)
0.540070 + 0.841620i \(0.318398\pi\)
\(998\) 0 0
\(999\) −16955.6 −0.536990
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.4.i.e.273.2 6
4.3 odd 2 38.4.c.c.7.2 6
12.11 even 2 342.4.g.f.235.1 6
19.11 even 3 inner 304.4.i.e.49.2 6
76.7 odd 6 722.4.a.j.1.2 3
76.11 odd 6 38.4.c.c.11.2 yes 6
76.31 even 6 722.4.a.k.1.2 3
228.11 even 6 342.4.g.f.163.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.c.c.7.2 6 4.3 odd 2
38.4.c.c.11.2 yes 6 76.11 odd 6
304.4.i.e.49.2 6 19.11 even 3 inner
304.4.i.e.273.2 6 1.1 even 1 trivial
342.4.g.f.163.1 6 228.11 even 6
342.4.g.f.235.1 6 12.11 even 2
722.4.a.j.1.2 3 76.7 odd 6
722.4.a.k.1.2 3 76.31 even 6