Properties

Label 304.4.a.j.1.2
Level $304$
Weight $4$
Character 304.1
Self dual yes
Analytic conductor $17.937$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [304,4,Mod(1,304)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("304.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(304, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 304.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.9365806417\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3221.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.66246\) of defining polynomial
Character \(\chi\) \(=\) 304.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.573746 q^{3} +5.92862 q^{5} +31.1522 q^{7} -26.6708 q^{9} +19.0761 q^{11} +27.3853 q^{13} -3.40152 q^{15} -27.5575 q^{17} -19.0000 q^{19} -17.8735 q^{21} +162.542 q^{23} -89.8514 q^{25} +30.7934 q^{27} -66.9561 q^{29} +127.424 q^{31} -10.9448 q^{33} +184.690 q^{35} +273.481 q^{37} -15.7122 q^{39} +228.663 q^{41} -198.111 q^{43} -158.121 q^{45} +573.403 q^{47} +627.461 q^{49} +15.8110 q^{51} +610.969 q^{53} +113.095 q^{55} +10.9012 q^{57} -202.690 q^{59} -774.773 q^{61} -830.855 q^{63} +162.357 q^{65} +589.121 q^{67} -93.2580 q^{69} -392.429 q^{71} +7.44178 q^{73} +51.5519 q^{75} +594.263 q^{77} -1010.77 q^{79} +702.444 q^{81} -209.297 q^{83} -163.378 q^{85} +38.4158 q^{87} +705.222 q^{89} +853.113 q^{91} -73.1093 q^{93} -112.644 q^{95} -94.8567 q^{97} -508.775 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 5 q^{3} + 2 q^{5} + 35 q^{7} + 48 q^{9} + 28 q^{11} - 109 q^{13} + 228 q^{15} - 123 q^{17} - 57 q^{19} + 25 q^{21} + 193 q^{23} + 187 q^{25} + 719 q^{27} - 297 q^{29} + 140 q^{31} + 30 q^{33} + 246 q^{35}+ \cdots - 86 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.573746 −0.110417 −0.0552087 0.998475i \(-0.517582\pi\)
−0.0552087 + 0.998475i \(0.517582\pi\)
\(4\) 0 0
\(5\) 5.92862 0.530272 0.265136 0.964211i \(-0.414583\pi\)
0.265136 + 0.964211i \(0.414583\pi\)
\(6\) 0 0
\(7\) 31.1522 1.68206 0.841031 0.540987i \(-0.181949\pi\)
0.841031 + 0.540987i \(0.181949\pi\)
\(8\) 0 0
\(9\) −26.6708 −0.987808
\(10\) 0 0
\(11\) 19.0761 0.522879 0.261439 0.965220i \(-0.415803\pi\)
0.261439 + 0.965220i \(0.415803\pi\)
\(12\) 0 0
\(13\) 27.3853 0.584255 0.292128 0.956379i \(-0.405637\pi\)
0.292128 + 0.956379i \(0.405637\pi\)
\(14\) 0 0
\(15\) −3.40152 −0.0585513
\(16\) 0 0
\(17\) −27.5575 −0.393158 −0.196579 0.980488i \(-0.562983\pi\)
−0.196579 + 0.980488i \(0.562983\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) −17.8735 −0.185729
\(22\) 0 0
\(23\) 162.542 1.47358 0.736791 0.676120i \(-0.236340\pi\)
0.736791 + 0.676120i \(0.236340\pi\)
\(24\) 0 0
\(25\) −89.8514 −0.718812
\(26\) 0 0
\(27\) 30.7934 0.219489
\(28\) 0 0
\(29\) −66.9561 −0.428739 −0.214369 0.976753i \(-0.568770\pi\)
−0.214369 + 0.976753i \(0.568770\pi\)
\(30\) 0 0
\(31\) 127.424 0.738262 0.369131 0.929377i \(-0.379655\pi\)
0.369131 + 0.929377i \(0.379655\pi\)
\(32\) 0 0
\(33\) −10.9448 −0.0577349
\(34\) 0 0
\(35\) 184.690 0.891950
\(36\) 0 0
\(37\) 273.481 1.21514 0.607568 0.794267i \(-0.292145\pi\)
0.607568 + 0.794267i \(0.292145\pi\)
\(38\) 0 0
\(39\) −15.7122 −0.0645120
\(40\) 0 0
\(41\) 228.663 0.871005 0.435503 0.900187i \(-0.356571\pi\)
0.435503 + 0.900187i \(0.356571\pi\)
\(42\) 0 0
\(43\) −198.111 −0.702597 −0.351298 0.936264i \(-0.614260\pi\)
−0.351298 + 0.936264i \(0.614260\pi\)
\(44\) 0 0
\(45\) −158.121 −0.523807
\(46\) 0 0
\(47\) 573.403 1.77956 0.889782 0.456387i \(-0.150857\pi\)
0.889782 + 0.456387i \(0.150857\pi\)
\(48\) 0 0
\(49\) 627.461 1.82933
\(50\) 0 0
\(51\) 15.8110 0.0434115
\(52\) 0 0
\(53\) 610.969 1.58345 0.791727 0.610875i \(-0.209182\pi\)
0.791727 + 0.610875i \(0.209182\pi\)
\(54\) 0 0
\(55\) 113.095 0.277268
\(56\) 0 0
\(57\) 10.9012 0.0253315
\(58\) 0 0
\(59\) −202.690 −0.447253 −0.223627 0.974675i \(-0.571790\pi\)
−0.223627 + 0.974675i \(0.571790\pi\)
\(60\) 0 0
\(61\) −774.773 −1.62622 −0.813111 0.582108i \(-0.802228\pi\)
−0.813111 + 0.582108i \(0.802228\pi\)
\(62\) 0 0
\(63\) −830.855 −1.66155
\(64\) 0 0
\(65\) 162.357 0.309814
\(66\) 0 0
\(67\) 589.121 1.07422 0.537109 0.843513i \(-0.319516\pi\)
0.537109 + 0.843513i \(0.319516\pi\)
\(68\) 0 0
\(69\) −93.2580 −0.162709
\(70\) 0 0
\(71\) −392.429 −0.655955 −0.327978 0.944686i \(-0.606367\pi\)
−0.327978 + 0.944686i \(0.606367\pi\)
\(72\) 0 0
\(73\) 7.44178 0.0119314 0.00596571 0.999982i \(-0.498101\pi\)
0.00596571 + 0.999982i \(0.498101\pi\)
\(74\) 0 0
\(75\) 51.5519 0.0793694
\(76\) 0 0
\(77\) 594.263 0.879514
\(78\) 0 0
\(79\) −1010.77 −1.43950 −0.719751 0.694232i \(-0.755744\pi\)
−0.719751 + 0.694232i \(0.755744\pi\)
\(80\) 0 0
\(81\) 702.444 0.963573
\(82\) 0 0
\(83\) −209.297 −0.276787 −0.138394 0.990377i \(-0.544194\pi\)
−0.138394 + 0.990377i \(0.544194\pi\)
\(84\) 0 0
\(85\) −163.378 −0.208481
\(86\) 0 0
\(87\) 38.4158 0.0473403
\(88\) 0 0
\(89\) 705.222 0.839926 0.419963 0.907541i \(-0.362043\pi\)
0.419963 + 0.907541i \(0.362043\pi\)
\(90\) 0 0
\(91\) 853.113 0.982753
\(92\) 0 0
\(93\) −73.1093 −0.0815170
\(94\) 0 0
\(95\) −112.644 −0.121653
\(96\) 0 0
\(97\) −94.8567 −0.0992912 −0.0496456 0.998767i \(-0.515809\pi\)
−0.0496456 + 0.998767i \(0.515809\pi\)
\(98\) 0 0
\(99\) −508.775 −0.516504
\(100\) 0 0
\(101\) −531.493 −0.523619 −0.261810 0.965120i \(-0.584319\pi\)
−0.261810 + 0.965120i \(0.584319\pi\)
\(102\) 0 0
\(103\) 1420.46 1.35885 0.679425 0.733745i \(-0.262229\pi\)
0.679425 + 0.733745i \(0.262229\pi\)
\(104\) 0 0
\(105\) −105.965 −0.0984869
\(106\) 0 0
\(107\) −514.719 −0.465044 −0.232522 0.972591i \(-0.574698\pi\)
−0.232522 + 0.972591i \(0.574698\pi\)
\(108\) 0 0
\(109\) −1882.00 −1.65379 −0.826893 0.562359i \(-0.809894\pi\)
−0.826893 + 0.562359i \(0.809894\pi\)
\(110\) 0 0
\(111\) −156.909 −0.134172
\(112\) 0 0
\(113\) −40.1054 −0.0333876 −0.0166938 0.999861i \(-0.505314\pi\)
−0.0166938 + 0.999861i \(0.505314\pi\)
\(114\) 0 0
\(115\) 963.652 0.781400
\(116\) 0 0
\(117\) −730.388 −0.577132
\(118\) 0 0
\(119\) −858.478 −0.661316
\(120\) 0 0
\(121\) −967.102 −0.726598
\(122\) 0 0
\(123\) −131.195 −0.0961742
\(124\) 0 0
\(125\) −1273.77 −0.911438
\(126\) 0 0
\(127\) −7.35102 −0.00513620 −0.00256810 0.999997i \(-0.500817\pi\)
−0.00256810 + 0.999997i \(0.500817\pi\)
\(128\) 0 0
\(129\) 113.665 0.0775790
\(130\) 0 0
\(131\) −1476.80 −0.984951 −0.492476 0.870326i \(-0.663908\pi\)
−0.492476 + 0.870326i \(0.663908\pi\)
\(132\) 0 0
\(133\) −591.892 −0.385892
\(134\) 0 0
\(135\) 182.562 0.116389
\(136\) 0 0
\(137\) −847.892 −0.528761 −0.264381 0.964418i \(-0.585168\pi\)
−0.264381 + 0.964418i \(0.585168\pi\)
\(138\) 0 0
\(139\) −1543.72 −0.941988 −0.470994 0.882136i \(-0.656105\pi\)
−0.470994 + 0.882136i \(0.656105\pi\)
\(140\) 0 0
\(141\) −328.988 −0.196495
\(142\) 0 0
\(143\) 522.405 0.305494
\(144\) 0 0
\(145\) −396.957 −0.227348
\(146\) 0 0
\(147\) −360.003 −0.201990
\(148\) 0 0
\(149\) −1324.76 −0.728382 −0.364191 0.931324i \(-0.618654\pi\)
−0.364191 + 0.931324i \(0.618654\pi\)
\(150\) 0 0
\(151\) 1509.91 0.813740 0.406870 0.913486i \(-0.366620\pi\)
0.406870 + 0.913486i \(0.366620\pi\)
\(152\) 0 0
\(153\) 734.982 0.388364
\(154\) 0 0
\(155\) 755.452 0.391480
\(156\) 0 0
\(157\) −1441.00 −0.732512 −0.366256 0.930514i \(-0.619360\pi\)
−0.366256 + 0.930514i \(0.619360\pi\)
\(158\) 0 0
\(159\) −350.541 −0.174841
\(160\) 0 0
\(161\) 5063.55 2.47866
\(162\) 0 0
\(163\) 790.260 0.379742 0.189871 0.981809i \(-0.439193\pi\)
0.189871 + 0.981809i \(0.439193\pi\)
\(164\) 0 0
\(165\) −64.8878 −0.0306152
\(166\) 0 0
\(167\) 3422.87 1.58605 0.793023 0.609192i \(-0.208506\pi\)
0.793023 + 0.609192i \(0.208506\pi\)
\(168\) 0 0
\(169\) −1447.05 −0.658646
\(170\) 0 0
\(171\) 506.745 0.226619
\(172\) 0 0
\(173\) −3925.10 −1.72497 −0.862485 0.506083i \(-0.831093\pi\)
−0.862485 + 0.506083i \(0.831093\pi\)
\(174\) 0 0
\(175\) −2799.07 −1.20909
\(176\) 0 0
\(177\) 116.292 0.0493846
\(178\) 0 0
\(179\) −2976.77 −1.24298 −0.621492 0.783421i \(-0.713473\pi\)
−0.621492 + 0.783421i \(0.713473\pi\)
\(180\) 0 0
\(181\) 1316.60 0.540674 0.270337 0.962766i \(-0.412865\pi\)
0.270337 + 0.962766i \(0.412865\pi\)
\(182\) 0 0
\(183\) 444.523 0.179563
\(184\) 0 0
\(185\) 1621.37 0.644353
\(186\) 0 0
\(187\) −525.690 −0.205574
\(188\) 0 0
\(189\) 959.283 0.369194
\(190\) 0 0
\(191\) 861.264 0.326277 0.163138 0.986603i \(-0.447838\pi\)
0.163138 + 0.986603i \(0.447838\pi\)
\(192\) 0 0
\(193\) −1201.95 −0.448282 −0.224141 0.974557i \(-0.571958\pi\)
−0.224141 + 0.974557i \(0.571958\pi\)
\(194\) 0 0
\(195\) −93.1517 −0.0342089
\(196\) 0 0
\(197\) 1143.30 0.413485 0.206742 0.978395i \(-0.433714\pi\)
0.206742 + 0.978395i \(0.433714\pi\)
\(198\) 0 0
\(199\) −3776.93 −1.34542 −0.672711 0.739905i \(-0.734870\pi\)
−0.672711 + 0.739905i \(0.734870\pi\)
\(200\) 0 0
\(201\) −338.006 −0.118612
\(202\) 0 0
\(203\) −2085.83 −0.721166
\(204\) 0 0
\(205\) 1355.66 0.461870
\(206\) 0 0
\(207\) −4335.13 −1.45562
\(208\) 0 0
\(209\) −362.446 −0.119957
\(210\) 0 0
\(211\) 2328.89 0.759844 0.379922 0.925019i \(-0.375951\pi\)
0.379922 + 0.925019i \(0.375951\pi\)
\(212\) 0 0
\(213\) 225.155 0.0724289
\(214\) 0 0
\(215\) −1174.53 −0.372568
\(216\) 0 0
\(217\) 3969.56 1.24180
\(218\) 0 0
\(219\) −4.26969 −0.00131744
\(220\) 0 0
\(221\) −754.671 −0.229704
\(222\) 0 0
\(223\) 3393.00 1.01889 0.509445 0.860504i \(-0.329851\pi\)
0.509445 + 0.860504i \(0.329851\pi\)
\(224\) 0 0
\(225\) 2396.41 0.710048
\(226\) 0 0
\(227\) −55.0932 −0.0161087 −0.00805433 0.999968i \(-0.502564\pi\)
−0.00805433 + 0.999968i \(0.502564\pi\)
\(228\) 0 0
\(229\) −6838.40 −1.97334 −0.986669 0.162739i \(-0.947967\pi\)
−0.986669 + 0.162739i \(0.947967\pi\)
\(230\) 0 0
\(231\) −340.956 −0.0971137
\(232\) 0 0
\(233\) 5813.50 1.63457 0.817285 0.576234i \(-0.195478\pi\)
0.817285 + 0.576234i \(0.195478\pi\)
\(234\) 0 0
\(235\) 3399.49 0.943653
\(236\) 0 0
\(237\) 579.926 0.158946
\(238\) 0 0
\(239\) 85.3888 0.0231102 0.0115551 0.999933i \(-0.496322\pi\)
0.0115551 + 0.999933i \(0.496322\pi\)
\(240\) 0 0
\(241\) −193.112 −0.0516159 −0.0258079 0.999667i \(-0.508216\pi\)
−0.0258079 + 0.999667i \(0.508216\pi\)
\(242\) 0 0
\(243\) −1234.45 −0.325884
\(244\) 0 0
\(245\) 3719.98 0.970044
\(246\) 0 0
\(247\) −520.321 −0.134037
\(248\) 0 0
\(249\) 120.083 0.0305621
\(250\) 0 0
\(251\) 2272.68 0.571516 0.285758 0.958302i \(-0.407755\pi\)
0.285758 + 0.958302i \(0.407755\pi\)
\(252\) 0 0
\(253\) 3100.67 0.770505
\(254\) 0 0
\(255\) 93.7375 0.0230199
\(256\) 0 0
\(257\) 4319.19 1.04834 0.524170 0.851614i \(-0.324376\pi\)
0.524170 + 0.851614i \(0.324376\pi\)
\(258\) 0 0
\(259\) 8519.55 2.04394
\(260\) 0 0
\(261\) 1785.77 0.423512
\(262\) 0 0
\(263\) 684.056 0.160383 0.0801915 0.996779i \(-0.474447\pi\)
0.0801915 + 0.996779i \(0.474447\pi\)
\(264\) 0 0
\(265\) 3622.21 0.839662
\(266\) 0 0
\(267\) −404.618 −0.0927425
\(268\) 0 0
\(269\) 8416.86 1.90775 0.953876 0.300201i \(-0.0970539\pi\)
0.953876 + 0.300201i \(0.0970539\pi\)
\(270\) 0 0
\(271\) −1723.62 −0.386356 −0.193178 0.981164i \(-0.561880\pi\)
−0.193178 + 0.981164i \(0.561880\pi\)
\(272\) 0 0
\(273\) −489.470 −0.108513
\(274\) 0 0
\(275\) −1714.02 −0.375851
\(276\) 0 0
\(277\) −4546.96 −0.986284 −0.493142 0.869949i \(-0.664152\pi\)
−0.493142 + 0.869949i \(0.664152\pi\)
\(278\) 0 0
\(279\) −3398.52 −0.729261
\(280\) 0 0
\(281\) −5850.05 −1.24194 −0.620969 0.783835i \(-0.713261\pi\)
−0.620969 + 0.783835i \(0.713261\pi\)
\(282\) 0 0
\(283\) 5975.96 1.25524 0.627622 0.778518i \(-0.284028\pi\)
0.627622 + 0.778518i \(0.284028\pi\)
\(284\) 0 0
\(285\) 64.6289 0.0134326
\(286\) 0 0
\(287\) 7123.37 1.46509
\(288\) 0 0
\(289\) −4153.58 −0.845427
\(290\) 0 0
\(291\) 54.4237 0.0109635
\(292\) 0 0
\(293\) −4618.01 −0.920775 −0.460387 0.887718i \(-0.652289\pi\)
−0.460387 + 0.887718i \(0.652289\pi\)
\(294\) 0 0
\(295\) −1201.67 −0.237166
\(296\) 0 0
\(297\) 587.419 0.114766
\(298\) 0 0
\(299\) 4451.27 0.860948
\(300\) 0 0
\(301\) −6171.60 −1.18181
\(302\) 0 0
\(303\) 304.942 0.0578167
\(304\) 0 0
\(305\) −4593.34 −0.862340
\(306\) 0 0
\(307\) −3550.30 −0.660020 −0.330010 0.943977i \(-0.607052\pi\)
−0.330010 + 0.943977i \(0.607052\pi\)
\(308\) 0 0
\(309\) −814.980 −0.150041
\(310\) 0 0
\(311\) 7089.01 1.29254 0.646272 0.763107i \(-0.276327\pi\)
0.646272 + 0.763107i \(0.276327\pi\)
\(312\) 0 0
\(313\) −4505.14 −0.813564 −0.406782 0.913525i \(-0.633349\pi\)
−0.406782 + 0.913525i \(0.633349\pi\)
\(314\) 0 0
\(315\) −4925.83 −0.881076
\(316\) 0 0
\(317\) 4235.04 0.750358 0.375179 0.926952i \(-0.377581\pi\)
0.375179 + 0.926952i \(0.377581\pi\)
\(318\) 0 0
\(319\) −1277.26 −0.224178
\(320\) 0 0
\(321\) 295.318 0.0513490
\(322\) 0 0
\(323\) 523.593 0.0901966
\(324\) 0 0
\(325\) −2460.61 −0.419969
\(326\) 0 0
\(327\) 1079.79 0.182607
\(328\) 0 0
\(329\) 17862.8 2.99334
\(330\) 0 0
\(331\) −6789.23 −1.12740 −0.563701 0.825979i \(-0.690623\pi\)
−0.563701 + 0.825979i \(0.690623\pi\)
\(332\) 0 0
\(333\) −7293.97 −1.20032
\(334\) 0 0
\(335\) 3492.68 0.569628
\(336\) 0 0
\(337\) −10568.2 −1.70827 −0.854134 0.520053i \(-0.825912\pi\)
−0.854134 + 0.520053i \(0.825912\pi\)
\(338\) 0 0
\(339\) 23.0103 0.00368658
\(340\) 0 0
\(341\) 2430.76 0.386021
\(342\) 0 0
\(343\) 8861.60 1.39499
\(344\) 0 0
\(345\) −552.891 −0.0862802
\(346\) 0 0
\(347\) −7243.57 −1.12062 −0.560310 0.828283i \(-0.689318\pi\)
−0.560310 + 0.828283i \(0.689318\pi\)
\(348\) 0 0
\(349\) 5396.79 0.827746 0.413873 0.910335i \(-0.364176\pi\)
0.413873 + 0.910335i \(0.364176\pi\)
\(350\) 0 0
\(351\) 843.287 0.128237
\(352\) 0 0
\(353\) 5749.24 0.866859 0.433429 0.901188i \(-0.357303\pi\)
0.433429 + 0.901188i \(0.357303\pi\)
\(354\) 0 0
\(355\) −2326.57 −0.347835
\(356\) 0 0
\(357\) 492.548 0.0730208
\(358\) 0 0
\(359\) 7397.70 1.08756 0.543782 0.839226i \(-0.316992\pi\)
0.543782 + 0.839226i \(0.316992\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 554.871 0.0802291
\(364\) 0 0
\(365\) 44.1195 0.00632690
\(366\) 0 0
\(367\) −5354.32 −0.761562 −0.380781 0.924665i \(-0.624345\pi\)
−0.380781 + 0.924665i \(0.624345\pi\)
\(368\) 0 0
\(369\) −6098.64 −0.860386
\(370\) 0 0
\(371\) 19033.1 2.66347
\(372\) 0 0
\(373\) −10159.4 −1.41028 −0.705140 0.709068i \(-0.749116\pi\)
−0.705140 + 0.709068i \(0.749116\pi\)
\(374\) 0 0
\(375\) 730.822 0.100639
\(376\) 0 0
\(377\) −1833.61 −0.250493
\(378\) 0 0
\(379\) −11073.5 −1.50081 −0.750403 0.660980i \(-0.770141\pi\)
−0.750403 + 0.660980i \(0.770141\pi\)
\(380\) 0 0
\(381\) 4.21762 0.000567126 0
\(382\) 0 0
\(383\) −5530.71 −0.737875 −0.368937 0.929454i \(-0.620278\pi\)
−0.368937 + 0.929454i \(0.620278\pi\)
\(384\) 0 0
\(385\) 3523.16 0.466382
\(386\) 0 0
\(387\) 5283.79 0.694031
\(388\) 0 0
\(389\) −3375.27 −0.439931 −0.219965 0.975508i \(-0.570594\pi\)
−0.219965 + 0.975508i \(0.570594\pi\)
\(390\) 0 0
\(391\) −4479.26 −0.579350
\(392\) 0 0
\(393\) 847.308 0.108756
\(394\) 0 0
\(395\) −5992.48 −0.763328
\(396\) 0 0
\(397\) 5697.65 0.720295 0.360147 0.932895i \(-0.382726\pi\)
0.360147 + 0.932895i \(0.382726\pi\)
\(398\) 0 0
\(399\) 339.596 0.0426092
\(400\) 0 0
\(401\) −5261.73 −0.655258 −0.327629 0.944807i \(-0.606250\pi\)
−0.327629 + 0.944807i \(0.606250\pi\)
\(402\) 0 0
\(403\) 3489.56 0.431333
\(404\) 0 0
\(405\) 4164.53 0.510956
\(406\) 0 0
\(407\) 5216.96 0.635369
\(408\) 0 0
\(409\) 5749.47 0.695093 0.347546 0.937663i \(-0.387015\pi\)
0.347546 + 0.937663i \(0.387015\pi\)
\(410\) 0 0
\(411\) 486.475 0.0583845
\(412\) 0 0
\(413\) −6314.23 −0.752308
\(414\) 0 0
\(415\) −1240.84 −0.146773
\(416\) 0 0
\(417\) 885.702 0.104012
\(418\) 0 0
\(419\) −14185.2 −1.65392 −0.826962 0.562257i \(-0.809933\pi\)
−0.826962 + 0.562257i \(0.809933\pi\)
\(420\) 0 0
\(421\) 14324.4 1.65826 0.829129 0.559057i \(-0.188837\pi\)
0.829129 + 0.559057i \(0.188837\pi\)
\(422\) 0 0
\(423\) −15293.1 −1.75787
\(424\) 0 0
\(425\) 2476.08 0.282606
\(426\) 0 0
\(427\) −24135.9 −2.73541
\(428\) 0 0
\(429\) −299.728 −0.0337319
\(430\) 0 0
\(431\) −16299.3 −1.82160 −0.910801 0.412845i \(-0.864535\pi\)
−0.910801 + 0.412845i \(0.864535\pi\)
\(432\) 0 0
\(433\) −17412.0 −1.93248 −0.966242 0.257637i \(-0.917056\pi\)
−0.966242 + 0.257637i \(0.917056\pi\)
\(434\) 0 0
\(435\) 227.753 0.0251032
\(436\) 0 0
\(437\) −3088.30 −0.338063
\(438\) 0 0
\(439\) −3725.94 −0.405078 −0.202539 0.979274i \(-0.564919\pi\)
−0.202539 + 0.979274i \(0.564919\pi\)
\(440\) 0 0
\(441\) −16734.9 −1.80703
\(442\) 0 0
\(443\) 1037.83 0.111307 0.0556534 0.998450i \(-0.482276\pi\)
0.0556534 + 0.998450i \(0.482276\pi\)
\(444\) 0 0
\(445\) 4181.00 0.445389
\(446\) 0 0
\(447\) 760.078 0.0804260
\(448\) 0 0
\(449\) 17335.5 1.82208 0.911038 0.412322i \(-0.135282\pi\)
0.911038 + 0.412322i \(0.135282\pi\)
\(450\) 0 0
\(451\) 4362.01 0.455430
\(452\) 0 0
\(453\) −866.305 −0.0898511
\(454\) 0 0
\(455\) 5057.78 0.521127
\(456\) 0 0
\(457\) −13910.6 −1.42387 −0.711936 0.702244i \(-0.752182\pi\)
−0.711936 + 0.702244i \(0.752182\pi\)
\(458\) 0 0
\(459\) −848.590 −0.0862937
\(460\) 0 0
\(461\) 3352.50 0.338701 0.169351 0.985556i \(-0.445833\pi\)
0.169351 + 0.985556i \(0.445833\pi\)
\(462\) 0 0
\(463\) −6267.27 −0.629081 −0.314541 0.949244i \(-0.601850\pi\)
−0.314541 + 0.949244i \(0.601850\pi\)
\(464\) 0 0
\(465\) −433.437 −0.0432262
\(466\) 0 0
\(467\) 13761.7 1.36363 0.681815 0.731525i \(-0.261191\pi\)
0.681815 + 0.731525i \(0.261191\pi\)
\(468\) 0 0
\(469\) 18352.4 1.80690
\(470\) 0 0
\(471\) 826.768 0.0808821
\(472\) 0 0
\(473\) −3779.19 −0.367373
\(474\) 0 0
\(475\) 1707.18 0.164907
\(476\) 0 0
\(477\) −16295.1 −1.56415
\(478\) 0 0
\(479\) −7667.87 −0.731427 −0.365714 0.930727i \(-0.619175\pi\)
−0.365714 + 0.930727i \(0.619175\pi\)
\(480\) 0 0
\(481\) 7489.37 0.709950
\(482\) 0 0
\(483\) −2905.19 −0.273687
\(484\) 0 0
\(485\) −562.370 −0.0526513
\(486\) 0 0
\(487\) 15252.9 1.41925 0.709626 0.704579i \(-0.248864\pi\)
0.709626 + 0.704579i \(0.248864\pi\)
\(488\) 0 0
\(489\) −453.409 −0.0419302
\(490\) 0 0
\(491\) 5428.00 0.498905 0.249452 0.968387i \(-0.419749\pi\)
0.249452 + 0.968387i \(0.419749\pi\)
\(492\) 0 0
\(493\) 1845.14 0.168562
\(494\) 0 0
\(495\) −3016.34 −0.273887
\(496\) 0 0
\(497\) −12225.1 −1.10336
\(498\) 0 0
\(499\) −9828.19 −0.881704 −0.440852 0.897580i \(-0.645324\pi\)
−0.440852 + 0.897580i \(0.645324\pi\)
\(500\) 0 0
\(501\) −1963.86 −0.175127
\(502\) 0 0
\(503\) −9759.46 −0.865115 −0.432558 0.901606i \(-0.642389\pi\)
−0.432558 + 0.901606i \(0.642389\pi\)
\(504\) 0 0
\(505\) −3151.02 −0.277661
\(506\) 0 0
\(507\) 830.236 0.0727260
\(508\) 0 0
\(509\) 8668.77 0.754885 0.377442 0.926033i \(-0.376804\pi\)
0.377442 + 0.926033i \(0.376804\pi\)
\(510\) 0 0
\(511\) 231.828 0.0200694
\(512\) 0 0
\(513\) −585.075 −0.0503542
\(514\) 0 0
\(515\) 8421.34 0.720560
\(516\) 0 0
\(517\) 10938.3 0.930496
\(518\) 0 0
\(519\) 2252.01 0.190467
\(520\) 0 0
\(521\) −10423.1 −0.876473 −0.438237 0.898860i \(-0.644397\pi\)
−0.438237 + 0.898860i \(0.644397\pi\)
\(522\) 0 0
\(523\) −8623.79 −0.721017 −0.360509 0.932756i \(-0.617397\pi\)
−0.360509 + 0.932756i \(0.617397\pi\)
\(524\) 0 0
\(525\) 1605.96 0.133504
\(526\) 0 0
\(527\) −3511.50 −0.290253
\(528\) 0 0
\(529\) 14253.0 1.17145
\(530\) 0 0
\(531\) 5405.90 0.441800
\(532\) 0 0
\(533\) 6262.02 0.508889
\(534\) 0 0
\(535\) −3051.57 −0.246600
\(536\) 0 0
\(537\) 1707.91 0.137247
\(538\) 0 0
\(539\) 11969.5 0.956519
\(540\) 0 0
\(541\) 10370.4 0.824140 0.412070 0.911152i \(-0.364806\pi\)
0.412070 + 0.911152i \(0.364806\pi\)
\(542\) 0 0
\(543\) −755.393 −0.0596999
\(544\) 0 0
\(545\) −11157.7 −0.876957
\(546\) 0 0
\(547\) 15332.3 1.19847 0.599235 0.800573i \(-0.295472\pi\)
0.599235 + 0.800573i \(0.295472\pi\)
\(548\) 0 0
\(549\) 20663.8 1.60640
\(550\) 0 0
\(551\) 1272.17 0.0983595
\(552\) 0 0
\(553\) −31487.8 −2.42133
\(554\) 0 0
\(555\) −930.253 −0.0711478
\(556\) 0 0
\(557\) 5182.38 0.394227 0.197114 0.980381i \(-0.436843\pi\)
0.197114 + 0.980381i \(0.436843\pi\)
\(558\) 0 0
\(559\) −5425.33 −0.410496
\(560\) 0 0
\(561\) 301.613 0.0226989
\(562\) 0 0
\(563\) 18805.5 1.40774 0.703871 0.710328i \(-0.251453\pi\)
0.703871 + 0.710328i \(0.251453\pi\)
\(564\) 0 0
\(565\) −237.770 −0.0177045
\(566\) 0 0
\(567\) 21882.7 1.62079
\(568\) 0 0
\(569\) 108.440 0.00798951 0.00399476 0.999992i \(-0.498728\pi\)
0.00399476 + 0.999992i \(0.498728\pi\)
\(570\) 0 0
\(571\) 18908.5 1.38581 0.692903 0.721031i \(-0.256331\pi\)
0.692903 + 0.721031i \(0.256331\pi\)
\(572\) 0 0
\(573\) −494.147 −0.0360266
\(574\) 0 0
\(575\) −14604.7 −1.05923
\(576\) 0 0
\(577\) −1480.28 −0.106803 −0.0534013 0.998573i \(-0.517006\pi\)
−0.0534013 + 0.998573i \(0.517006\pi\)
\(578\) 0 0
\(579\) 689.615 0.0494981
\(580\) 0 0
\(581\) −6520.07 −0.465573
\(582\) 0 0
\(583\) 11654.9 0.827955
\(584\) 0 0
\(585\) −4330.20 −0.306037
\(586\) 0 0
\(587\) −21653.8 −1.52257 −0.761284 0.648418i \(-0.775431\pi\)
−0.761284 + 0.648418i \(0.775431\pi\)
\(588\) 0 0
\(589\) −2421.07 −0.169369
\(590\) 0 0
\(591\) −655.962 −0.0456560
\(592\) 0 0
\(593\) −25573.6 −1.77096 −0.885481 0.464676i \(-0.846171\pi\)
−0.885481 + 0.464676i \(0.846171\pi\)
\(594\) 0 0
\(595\) −5089.59 −0.350677
\(596\) 0 0
\(597\) 2167.00 0.148558
\(598\) 0 0
\(599\) 19638.0 1.33955 0.669773 0.742566i \(-0.266392\pi\)
0.669773 + 0.742566i \(0.266392\pi\)
\(600\) 0 0
\(601\) 4867.13 0.330340 0.165170 0.986265i \(-0.447183\pi\)
0.165170 + 0.986265i \(0.447183\pi\)
\(602\) 0 0
\(603\) −15712.3 −1.06112
\(604\) 0 0
\(605\) −5733.58 −0.385295
\(606\) 0 0
\(607\) 12459.9 0.833166 0.416583 0.909098i \(-0.363228\pi\)
0.416583 + 0.909098i \(0.363228\pi\)
\(608\) 0 0
\(609\) 1196.74 0.0796293
\(610\) 0 0
\(611\) 15702.8 1.03972
\(612\) 0 0
\(613\) −22281.6 −1.46810 −0.734051 0.679094i \(-0.762373\pi\)
−0.734051 + 0.679094i \(0.762373\pi\)
\(614\) 0 0
\(615\) −777.804 −0.0509985
\(616\) 0 0
\(617\) 22452.8 1.46502 0.732508 0.680759i \(-0.238350\pi\)
0.732508 + 0.680759i \(0.238350\pi\)
\(618\) 0 0
\(619\) −7314.16 −0.474929 −0.237464 0.971396i \(-0.576316\pi\)
−0.237464 + 0.971396i \(0.576316\pi\)
\(620\) 0 0
\(621\) 5005.23 0.323435
\(622\) 0 0
\(623\) 21969.2 1.41281
\(624\) 0 0
\(625\) 3679.71 0.235502
\(626\) 0 0
\(627\) 207.952 0.0132453
\(628\) 0 0
\(629\) −7536.47 −0.477740
\(630\) 0 0
\(631\) −21331.4 −1.34578 −0.672892 0.739741i \(-0.734948\pi\)
−0.672892 + 0.739741i \(0.734948\pi\)
\(632\) 0 0
\(633\) −1336.19 −0.0839000
\(634\) 0 0
\(635\) −43.5814 −0.00272358
\(636\) 0 0
\(637\) 17183.2 1.06880
\(638\) 0 0
\(639\) 10466.4 0.647958
\(640\) 0 0
\(641\) −6385.58 −0.393472 −0.196736 0.980457i \(-0.563034\pi\)
−0.196736 + 0.980457i \(0.563034\pi\)
\(642\) 0 0
\(643\) −6668.66 −0.408999 −0.204499 0.978867i \(-0.565557\pi\)
−0.204499 + 0.978867i \(0.565557\pi\)
\(644\) 0 0
\(645\) 673.880 0.0411380
\(646\) 0 0
\(647\) 32039.4 1.94683 0.973415 0.229050i \(-0.0735620\pi\)
0.973415 + 0.229050i \(0.0735620\pi\)
\(648\) 0 0
\(649\) −3866.53 −0.233859
\(650\) 0 0
\(651\) −2277.52 −0.137117
\(652\) 0 0
\(653\) 7067.12 0.423519 0.211759 0.977322i \(-0.432081\pi\)
0.211759 + 0.977322i \(0.432081\pi\)
\(654\) 0 0
\(655\) −8755.39 −0.522292
\(656\) 0 0
\(657\) −198.478 −0.0117860
\(658\) 0 0
\(659\) −12722.0 −0.752013 −0.376007 0.926617i \(-0.622703\pi\)
−0.376007 + 0.926617i \(0.622703\pi\)
\(660\) 0 0
\(661\) 27275.7 1.60499 0.802497 0.596656i \(-0.203504\pi\)
0.802497 + 0.596656i \(0.203504\pi\)
\(662\) 0 0
\(663\) 432.989 0.0253634
\(664\) 0 0
\(665\) −3509.11 −0.204627
\(666\) 0 0
\(667\) −10883.2 −0.631782
\(668\) 0 0
\(669\) −1946.72 −0.112503
\(670\) 0 0
\(671\) −14779.7 −0.850317
\(672\) 0 0
\(673\) 32696.1 1.87273 0.936363 0.351035i \(-0.114170\pi\)
0.936363 + 0.351035i \(0.114170\pi\)
\(674\) 0 0
\(675\) −2766.83 −0.157771
\(676\) 0 0
\(677\) 6789.23 0.385423 0.192711 0.981255i \(-0.438272\pi\)
0.192711 + 0.981255i \(0.438272\pi\)
\(678\) 0 0
\(679\) −2955.00 −0.167014
\(680\) 0 0
\(681\) 31.6095 0.00177868
\(682\) 0 0
\(683\) 26262.7 1.47133 0.735663 0.677348i \(-0.236871\pi\)
0.735663 + 0.677348i \(0.236871\pi\)
\(684\) 0 0
\(685\) −5026.83 −0.280387
\(686\) 0 0
\(687\) 3923.51 0.217891
\(688\) 0 0
\(689\) 16731.6 0.925141
\(690\) 0 0
\(691\) 26306.0 1.44823 0.724114 0.689680i \(-0.242249\pi\)
0.724114 + 0.689680i \(0.242249\pi\)
\(692\) 0 0
\(693\) −15849.5 −0.868791
\(694\) 0 0
\(695\) −9152.12 −0.499510
\(696\) 0 0
\(697\) −6301.40 −0.342442
\(698\) 0 0
\(699\) −3335.47 −0.180485
\(700\) 0 0
\(701\) 1698.09 0.0914922 0.0457461 0.998953i \(-0.485433\pi\)
0.0457461 + 0.998953i \(0.485433\pi\)
\(702\) 0 0
\(703\) −5196.14 −0.278771
\(704\) 0 0
\(705\) −1950.44 −0.104196
\(706\) 0 0
\(707\) −16557.2 −0.880760
\(708\) 0 0
\(709\) 22627.0 1.19856 0.599278 0.800541i \(-0.295454\pi\)
0.599278 + 0.800541i \(0.295454\pi\)
\(710\) 0 0
\(711\) 26958.1 1.42195
\(712\) 0 0
\(713\) 20711.9 1.08789
\(714\) 0 0
\(715\) 3097.14 0.161995
\(716\) 0 0
\(717\) −48.9915 −0.00255177
\(718\) 0 0
\(719\) −9824.54 −0.509587 −0.254794 0.966995i \(-0.582008\pi\)
−0.254794 + 0.966995i \(0.582008\pi\)
\(720\) 0 0
\(721\) 44250.3 2.28567
\(722\) 0 0
\(723\) 110.797 0.00569929
\(724\) 0 0
\(725\) 6016.10 0.308183
\(726\) 0 0
\(727\) −4969.04 −0.253496 −0.126748 0.991935i \(-0.540454\pi\)
−0.126748 + 0.991935i \(0.540454\pi\)
\(728\) 0 0
\(729\) −18257.7 −0.927589
\(730\) 0 0
\(731\) 5459.45 0.276231
\(732\) 0 0
\(733\) −27512.0 −1.38633 −0.693164 0.720780i \(-0.743784\pi\)
−0.693164 + 0.720780i \(0.743784\pi\)
\(734\) 0 0
\(735\) −2134.32 −0.107110
\(736\) 0 0
\(737\) 11238.1 0.561686
\(738\) 0 0
\(739\) 8175.74 0.406968 0.203484 0.979078i \(-0.434774\pi\)
0.203484 + 0.979078i \(0.434774\pi\)
\(740\) 0 0
\(741\) 298.532 0.0148001
\(742\) 0 0
\(743\) −3518.94 −0.173751 −0.0868757 0.996219i \(-0.527688\pi\)
−0.0868757 + 0.996219i \(0.527688\pi\)
\(744\) 0 0
\(745\) −7854.02 −0.386240
\(746\) 0 0
\(747\) 5582.12 0.273413
\(748\) 0 0
\(749\) −16034.6 −0.782233
\(750\) 0 0
\(751\) −7506.56 −0.364738 −0.182369 0.983230i \(-0.558377\pi\)
−0.182369 + 0.983230i \(0.558377\pi\)
\(752\) 0 0
\(753\) −1303.94 −0.0631053
\(754\) 0 0
\(755\) 8951.69 0.431504
\(756\) 0 0
\(757\) 17229.2 0.827222 0.413611 0.910454i \(-0.364267\pi\)
0.413611 + 0.910454i \(0.364267\pi\)
\(758\) 0 0
\(759\) −1779.00 −0.0850772
\(760\) 0 0
\(761\) 6430.58 0.306318 0.153159 0.988202i \(-0.451055\pi\)
0.153159 + 0.988202i \(0.451055\pi\)
\(762\) 0 0
\(763\) −58628.4 −2.78177
\(764\) 0 0
\(765\) 4357.43 0.205939
\(766\) 0 0
\(767\) −5550.72 −0.261310
\(768\) 0 0
\(769\) −18106.8 −0.849087 −0.424544 0.905407i \(-0.639565\pi\)
−0.424544 + 0.905407i \(0.639565\pi\)
\(770\) 0 0
\(771\) −2478.12 −0.115755
\(772\) 0 0
\(773\) 1139.92 0.0530401 0.0265201 0.999648i \(-0.491557\pi\)
0.0265201 + 0.999648i \(0.491557\pi\)
\(774\) 0 0
\(775\) −11449.3 −0.530671
\(776\) 0 0
\(777\) −4888.06 −0.225686
\(778\) 0 0
\(779\) −4344.60 −0.199822
\(780\) 0 0
\(781\) −7486.03 −0.342985
\(782\) 0 0
\(783\) −2061.81 −0.0941034
\(784\) 0 0
\(785\) −8543.14 −0.388430
\(786\) 0 0
\(787\) −26478.1 −1.19929 −0.599645 0.800266i \(-0.704691\pi\)
−0.599645 + 0.800266i \(0.704691\pi\)
\(788\) 0 0
\(789\) −392.475 −0.0177091
\(790\) 0 0
\(791\) −1249.37 −0.0561601
\(792\) 0 0
\(793\) −21217.4 −0.950129
\(794\) 0 0
\(795\) −2078.23 −0.0927133
\(796\) 0 0
\(797\) 37952.0 1.68674 0.843368 0.537337i \(-0.180570\pi\)
0.843368 + 0.537337i \(0.180570\pi\)
\(798\) 0 0
\(799\) −15801.6 −0.699649
\(800\) 0 0
\(801\) −18808.9 −0.829686
\(802\) 0 0
\(803\) 141.960 0.00623869
\(804\) 0 0
\(805\) 30019.9 1.31436
\(806\) 0 0
\(807\) −4829.14 −0.210649
\(808\) 0 0
\(809\) 4455.38 0.193625 0.0968126 0.995303i \(-0.469135\pi\)
0.0968126 + 0.995303i \(0.469135\pi\)
\(810\) 0 0
\(811\) −11239.3 −0.486639 −0.243319 0.969946i \(-0.578236\pi\)
−0.243319 + 0.969946i \(0.578236\pi\)
\(812\) 0 0
\(813\) 988.921 0.0426605
\(814\) 0 0
\(815\) 4685.16 0.201367
\(816\) 0 0
\(817\) 3764.11 0.161187
\(818\) 0 0
\(819\) −22753.2 −0.970772
\(820\) 0 0
\(821\) −36910.1 −1.56903 −0.784515 0.620110i \(-0.787088\pi\)
−0.784515 + 0.620110i \(0.787088\pi\)
\(822\) 0 0
\(823\) 19625.1 0.831213 0.415607 0.909544i \(-0.363569\pi\)
0.415607 + 0.909544i \(0.363569\pi\)
\(824\) 0 0
\(825\) 983.410 0.0415005
\(826\) 0 0
\(827\) 43857.2 1.84409 0.922047 0.387078i \(-0.126516\pi\)
0.922047 + 0.387078i \(0.126516\pi\)
\(828\) 0 0
\(829\) −1531.44 −0.0641607 −0.0320803 0.999485i \(-0.510213\pi\)
−0.0320803 + 0.999485i \(0.510213\pi\)
\(830\) 0 0
\(831\) 2608.80 0.108903
\(832\) 0 0
\(833\) −17291.3 −0.719216
\(834\) 0 0
\(835\) 20292.9 0.841035
\(836\) 0 0
\(837\) 3923.84 0.162040
\(838\) 0 0
\(839\) −9312.73 −0.383207 −0.191604 0.981472i \(-0.561369\pi\)
−0.191604 + 0.981472i \(0.561369\pi\)
\(840\) 0 0
\(841\) −19905.9 −0.816183
\(842\) 0 0
\(843\) 3356.44 0.137132
\(844\) 0 0
\(845\) −8578.98 −0.349262
\(846\) 0 0
\(847\) −30127.4 −1.22218
\(848\) 0 0
\(849\) −3428.68 −0.138601
\(850\) 0 0
\(851\) 44452.3 1.79060
\(852\) 0 0
\(853\) −38161.3 −1.53179 −0.765895 0.642965i \(-0.777704\pi\)
−0.765895 + 0.642965i \(0.777704\pi\)
\(854\) 0 0
\(855\) 3004.30 0.120170
\(856\) 0 0
\(857\) 27799.4 1.10806 0.554031 0.832496i \(-0.313089\pi\)
0.554031 + 0.832496i \(0.313089\pi\)
\(858\) 0 0
\(859\) −23218.5 −0.922239 −0.461120 0.887338i \(-0.652552\pi\)
−0.461120 + 0.887338i \(0.652552\pi\)
\(860\) 0 0
\(861\) −4087.01 −0.161771
\(862\) 0 0
\(863\) −20440.3 −0.806252 −0.403126 0.915144i \(-0.632076\pi\)
−0.403126 + 0.915144i \(0.632076\pi\)
\(864\) 0 0
\(865\) −23270.4 −0.914703
\(866\) 0 0
\(867\) 2383.10 0.0933499
\(868\) 0 0
\(869\) −19281.6 −0.752685
\(870\) 0 0
\(871\) 16133.3 0.627617
\(872\) 0 0
\(873\) 2529.91 0.0980806
\(874\) 0 0
\(875\) −39680.9 −1.53309
\(876\) 0 0
\(877\) −948.929 −0.0365371 −0.0182686 0.999833i \(-0.505815\pi\)
−0.0182686 + 0.999833i \(0.505815\pi\)
\(878\) 0 0
\(879\) 2649.56 0.101670
\(880\) 0 0
\(881\) 21701.4 0.829897 0.414948 0.909845i \(-0.363800\pi\)
0.414948 + 0.909845i \(0.363800\pi\)
\(882\) 0 0
\(883\) 32250.2 1.22911 0.614556 0.788873i \(-0.289335\pi\)
0.614556 + 0.788873i \(0.289335\pi\)
\(884\) 0 0
\(885\) 689.453 0.0261872
\(886\) 0 0
\(887\) −1895.59 −0.0717561 −0.0358781 0.999356i \(-0.511423\pi\)
−0.0358781 + 0.999356i \(0.511423\pi\)
\(888\) 0 0
\(889\) −229.000 −0.00863940
\(890\) 0 0
\(891\) 13399.9 0.503831
\(892\) 0 0
\(893\) −10894.7 −0.408260
\(894\) 0 0
\(895\) −17648.1 −0.659119
\(896\) 0 0
\(897\) −2553.90 −0.0950637
\(898\) 0 0
\(899\) −8531.84 −0.316522
\(900\) 0 0
\(901\) −16836.8 −0.622547
\(902\) 0 0
\(903\) 3540.93 0.130493
\(904\) 0 0
\(905\) 7805.61 0.286704
\(906\) 0 0
\(907\) 24616.4 0.901186 0.450593 0.892730i \(-0.351213\pi\)
0.450593 + 0.892730i \(0.351213\pi\)
\(908\) 0 0
\(909\) 14175.4 0.517235
\(910\) 0 0
\(911\) 2259.34 0.0821682 0.0410841 0.999156i \(-0.486919\pi\)
0.0410841 + 0.999156i \(0.486919\pi\)
\(912\) 0 0
\(913\) −3992.57 −0.144726
\(914\) 0 0
\(915\) 2635.41 0.0952174
\(916\) 0 0
\(917\) −46005.6 −1.65675
\(918\) 0 0
\(919\) 13807.0 0.495595 0.247798 0.968812i \(-0.420293\pi\)
0.247798 + 0.968812i \(0.420293\pi\)
\(920\) 0 0
\(921\) 2036.97 0.0728778
\(922\) 0 0
\(923\) −10746.8 −0.383245
\(924\) 0 0
\(925\) −24572.7 −0.873454
\(926\) 0 0
\(927\) −37884.7 −1.34228
\(928\) 0 0
\(929\) −29318.1 −1.03541 −0.517705 0.855559i \(-0.673214\pi\)
−0.517705 + 0.855559i \(0.673214\pi\)
\(930\) 0 0
\(931\) −11921.8 −0.419678
\(932\) 0 0
\(933\) −4067.29 −0.142719
\(934\) 0 0
\(935\) −3116.62 −0.109010
\(936\) 0 0
\(937\) 3320.96 0.115785 0.0578927 0.998323i \(-0.481562\pi\)
0.0578927 + 0.998323i \(0.481562\pi\)
\(938\) 0 0
\(939\) 2584.80 0.0898316
\(940\) 0 0
\(941\) 23508.3 0.814399 0.407200 0.913339i \(-0.366505\pi\)
0.407200 + 0.913339i \(0.366505\pi\)
\(942\) 0 0
\(943\) 37167.5 1.28350
\(944\) 0 0
\(945\) 5687.23 0.195773
\(946\) 0 0
\(947\) 7784.67 0.267126 0.133563 0.991040i \(-0.457358\pi\)
0.133563 + 0.991040i \(0.457358\pi\)
\(948\) 0 0
\(949\) 203.795 0.00697100
\(950\) 0 0
\(951\) −2429.84 −0.0828526
\(952\) 0 0
\(953\) 30032.6 1.02083 0.510415 0.859928i \(-0.329492\pi\)
0.510415 + 0.859928i \(0.329492\pi\)
\(954\) 0 0
\(955\) 5106.11 0.173015
\(956\) 0 0
\(957\) 732.824 0.0247532
\(958\) 0 0
\(959\) −26413.7 −0.889409
\(960\) 0 0
\(961\) −13554.0 −0.454970
\(962\) 0 0
\(963\) 13728.0 0.459374
\(964\) 0 0
\(965\) −7125.91 −0.237711
\(966\) 0 0
\(967\) 41844.9 1.39156 0.695781 0.718254i \(-0.255059\pi\)
0.695781 + 0.718254i \(0.255059\pi\)
\(968\) 0 0
\(969\) −300.409 −0.00995928
\(970\) 0 0
\(971\) −9767.47 −0.322815 −0.161407 0.986888i \(-0.551603\pi\)
−0.161407 + 0.986888i \(0.551603\pi\)
\(972\) 0 0
\(973\) −48090.2 −1.58448
\(974\) 0 0
\(975\) 1411.76 0.0463719
\(976\) 0 0
\(977\) −34528.2 −1.13066 −0.565331 0.824864i \(-0.691251\pi\)
−0.565331 + 0.824864i \(0.691251\pi\)
\(978\) 0 0
\(979\) 13452.9 0.439179
\(980\) 0 0
\(981\) 50194.4 1.63362
\(982\) 0 0
\(983\) −37096.6 −1.20366 −0.601830 0.798625i \(-0.705561\pi\)
−0.601830 + 0.798625i \(0.705561\pi\)
\(984\) 0 0
\(985\) 6778.18 0.219260
\(986\) 0 0
\(987\) −10248.7 −0.330517
\(988\) 0 0
\(989\) −32201.4 −1.03533
\(990\) 0 0
\(991\) 44556.2 1.42823 0.714114 0.700029i \(-0.246830\pi\)
0.714114 + 0.700029i \(0.246830\pi\)
\(992\) 0 0
\(993\) 3895.29 0.124485
\(994\) 0 0
\(995\) −22392.0 −0.713440
\(996\) 0 0
\(997\) −53251.1 −1.69156 −0.845778 0.533536i \(-0.820863\pi\)
−0.845778 + 0.533536i \(0.820863\pi\)
\(998\) 0 0
\(999\) 8421.42 0.266709
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.4.a.j.1.2 3
4.3 odd 2 152.4.a.b.1.2 3
8.3 odd 2 1216.4.a.x.1.2 3
8.5 even 2 1216.4.a.q.1.2 3
12.11 even 2 1368.4.a.e.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.a.b.1.2 3 4.3 odd 2
304.4.a.j.1.2 3 1.1 even 1 trivial
1216.4.a.q.1.2 3 8.5 even 2
1216.4.a.x.1.2 3 8.3 odd 2
1368.4.a.e.1.2 3 12.11 even 2