Newspace parameters
Level: | \( N \) | \(=\) | \( 304 = 2^{4} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 304.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(17.9365806417\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{73}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x - 18 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 38) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{73})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −8.77200 | 0 | −17.3160 | 0 | 26.0880 | 0 | 49.9480 | 0 | ||||||||||||||||||||||||
1.2 | 0 | −0.227998 | 0 | 8.31601 | 0 | −8.08801 | 0 | −26.9480 | 0 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 304.4.a.c | 2 | |
4.b | odd | 2 | 1 | 38.4.a.c | ✓ | 2 | |
8.b | even | 2 | 1 | 1216.4.a.p | 2 | ||
8.d | odd | 2 | 1 | 1216.4.a.g | 2 | ||
12.b | even | 2 | 1 | 342.4.a.h | 2 | ||
20.d | odd | 2 | 1 | 950.4.a.e | 2 | ||
20.e | even | 4 | 2 | 950.4.b.i | 4 | ||
28.d | even | 2 | 1 | 1862.4.a.e | 2 | ||
76.d | even | 2 | 1 | 722.4.a.f | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
38.4.a.c | ✓ | 2 | 4.b | odd | 2 | 1 | |
304.4.a.c | 2 | 1.a | even | 1 | 1 | trivial | |
342.4.a.h | 2 | 12.b | even | 2 | 1 | ||
722.4.a.f | 2 | 76.d | even | 2 | 1 | ||
950.4.a.e | 2 | 20.d | odd | 2 | 1 | ||
950.4.b.i | 4 | 20.e | even | 4 | 2 | ||
1216.4.a.g | 2 | 8.d | odd | 2 | 1 | ||
1216.4.a.p | 2 | 8.b | even | 2 | 1 | ||
1862.4.a.e | 2 | 28.d | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 9T_{3} + 2 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(304))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 9T + 2 \)
$5$
\( T^{2} + 9T - 144 \)
$7$
\( T^{2} - 18T - 211 \)
$11$
\( T^{2} - 17T + 54 \)
$13$
\( T^{2} - 17T - 3012 \)
$17$
\( T^{2} + 80T + 1527 \)
$19$
\( (T + 19)^{2} \)
$23$
\( T^{2} + 73T - 1752 \)
$29$
\( T^{2} - 3T - 8046 \)
$31$
\( T^{2} + 212T - 24096 \)
$37$
\( T^{2} - 192T - 5092 \)
$41$
\( T^{2} + 50T - 1200 \)
$43$
\( T^{2} + 677T + 113688 \)
$47$
\( T^{2} - 389T - 54168 \)
$53$
\( T^{2} + 1219 T + 366216 \)
$59$
\( T^{2} - 287T + 9186 \)
$61$
\( T^{2} - 313T - 200366 \)
$67$
\( T^{2} + 1223 T + 265728 \)
$71$
\( T^{2} + 200T - 235572 \)
$73$
\( T^{2} - 378T - 582151 \)
$79$
\( T^{2} + 1350 T + 394232 \)
$83$
\( T^{2} - 670T - 574632 \)
$89$
\( T^{2} + 236T - 631104 \)
$97$
\( T^{2} - 1294 T + 228736 \)
show more
show less