Properties

Label 304.2.n
Level $304$
Weight $2$
Character orbit 304.n
Rep. character $\chi_{304}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $20$
Newform subspaces $5$
Sturm bound $80$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 304.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 76 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(80\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(304, [\chi])\).

Total New Old
Modular forms 92 20 72
Cusp forms 68 20 48
Eisenstein series 24 0 24

Trace form

\( 20 q - 16 q^{9} + O(q^{10}) \) \( 20 q - 16 q^{9} + 12 q^{13} - 12 q^{17} + 12 q^{21} - 10 q^{25} - 18 q^{33} + 54 q^{41} - 4 q^{49} - 36 q^{53} + 28 q^{57} - 16 q^{61} - 22 q^{73} - 48 q^{77} - 70 q^{81} + 36 q^{85} - 72 q^{89} + 44 q^{93} + 18 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(304, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
304.2.n.a 304.n 76.f $2$ $2.427$ \(\Q(\sqrt{-3}) \) None 304.2.n.a \(0\) \(-1\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+\zeta_{6})q^{3}+(-3+3\zeta_{6})q^{5}+(2+\cdots)q^{7}+\cdots\)
304.2.n.b 304.n 76.f $2$ $2.427$ \(\Q(\sqrt{-3}) \) None 304.2.n.a \(0\) \(1\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\zeta_{6})q^{3}+(-3+3\zeta_{6})q^{5}+(-2+\cdots)q^{7}+\cdots\)
304.2.n.c 304.n 76.f $4$ $2.427$ \(\Q(\zeta_{12})\) None 304.2.n.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{5}-2\zeta_{12}^{3}q^{7}+\cdots\)
304.2.n.d 304.n 76.f $6$ $2.427$ 6.0.31726512.1 None 304.2.n.d \(0\) \(-1\) \(2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{3}+(1-\beta _{1}+\beta _{3})q^{5}+(-\beta _{4}+\cdots)q^{7}+\cdots\)
304.2.n.e 304.n 76.f $6$ $2.427$ 6.0.31726512.1 None 304.2.n.d \(0\) \(1\) \(2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{3}+(1-\beta _{1}+\beta _{3})q^{5}+(\beta _{4}-\beta _{5})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(304, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(304, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 2}\)