Defining parameters
Level: | \( N \) | \(=\) | \( 304 = 2^{4} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 304.n (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 76 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(304, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 92 | 20 | 72 |
Cusp forms | 68 | 20 | 48 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(304, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
304.2.n.a | $2$ | $2.427$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(-3\) | \(0\) | \(q+(-1+\zeta_{6})q^{3}+(-3+3\zeta_{6})q^{5}+(2+\cdots)q^{7}+\cdots\) |
304.2.n.b | $2$ | $2.427$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(1\) | \(-3\) | \(0\) | \(q+(1-\zeta_{6})q^{3}+(-3+3\zeta_{6})q^{5}+(-2+\cdots)q^{7}+\cdots\) |
304.2.n.c | $4$ | $2.427$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{5}-2\zeta_{12}^{3}q^{7}+\cdots\) |
304.2.n.d | $6$ | $2.427$ | 6.0.31726512.1 | None | \(0\) | \(-1\) | \(2\) | \(0\) | \(q-\beta _{1}q^{3}+(1-\beta _{1}+\beta _{3})q^{5}+(-\beta _{4}+\cdots)q^{7}+\cdots\) |
304.2.n.e | $6$ | $2.427$ | 6.0.31726512.1 | None | \(0\) | \(1\) | \(2\) | \(0\) | \(q+\beta _{1}q^{3}+(1-\beta _{1}+\beta _{3})q^{5}+(\beta _{4}-\beta _{5})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(304, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(304, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 2}\)