Properties

Label 304.2.a
Level $304$
Weight $2$
Character orbit 304.a
Rep. character $\chi_{304}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $7$
Sturm bound $80$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 304.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(80\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(304))\).

Total New Old
Modular forms 46 9 37
Cusp forms 35 9 26
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(19\)FrickeDim.
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(4\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(3\)
Minus space\(-\)\(6\)

Trace form

\( 9q - 2q^{5} - 2q^{7} + 9q^{9} + O(q^{10}) \) \( 9q - 2q^{5} - 2q^{7} + 9q^{9} + 2q^{11} - 2q^{13} + 12q^{15} + 2q^{17} + 3q^{19} - 8q^{21} - 4q^{23} + 3q^{25} - 2q^{29} - 8q^{33} + 18q^{35} - 2q^{37} + 4q^{39} + 2q^{41} - 14q^{43} - 18q^{45} + 14q^{47} + q^{49} + 4q^{51} + 6q^{53} - 18q^{55} - 16q^{59} - 10q^{61} - 30q^{63} + 12q^{65} - 20q^{67} - 24q^{69} + 4q^{71} + 2q^{73} - 4q^{75} - 8q^{77} - 8q^{79} + 17q^{81} + 4q^{83} - 12q^{85} + 12q^{87} + 18q^{89} - 40q^{91} + 8q^{93} - 8q^{95} + 10q^{97} + 42q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(304))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 19
304.2.a.a \(1\) \(2.427\) \(\Q\) None \(0\) \(-2\) \(-1\) \(3\) \(-\) \(-\) \(q-2q^{3}-q^{5}+3q^{7}+q^{9}-5q^{11}+\cdots\)
304.2.a.b \(1\) \(2.427\) \(\Q\) None \(0\) \(-1\) \(0\) \(-3\) \(+\) \(+\) \(q-q^{3}-3q^{7}-2q^{9}-2q^{11}+q^{13}+\cdots\)
304.2.a.c \(1\) \(2.427\) \(\Q\) None \(0\) \(-1\) \(0\) \(1\) \(-\) \(+\) \(q-q^{3}+q^{7}-2q^{9}+6q^{11}+5q^{13}+\cdots\)
304.2.a.d \(1\) \(2.427\) \(\Q\) None \(0\) \(1\) \(-4\) \(-3\) \(-\) \(-\) \(q+q^{3}-4q^{5}-3q^{7}-2q^{9}-2q^{11}+\cdots\)
304.2.a.e \(1\) \(2.427\) \(\Q\) None \(0\) \(2\) \(-1\) \(3\) \(+\) \(-\) \(q+2q^{3}-q^{5}+3q^{7}+q^{9}+3q^{11}+\cdots\)
304.2.a.f \(1\) \(2.427\) \(\Q\) None \(0\) \(2\) \(3\) \(1\) \(-\) \(+\) \(q+2q^{3}+3q^{5}+q^{7}+q^{9}-3q^{11}+\cdots\)
304.2.a.g \(3\) \(2.427\) 3.3.961.1 None \(0\) \(-1\) \(1\) \(-4\) \(+\) \(-\) \(q-\beta _{1}q^{3}-\beta _{2}q^{5}+(-2+\beta _{1}-\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(304))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(304)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 2}\)