Defining parameters
| Level: | \( N \) | \(=\) | \( 304 = 2^{4} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 304.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(80\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(304))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 46 | 9 | 37 |
| Cusp forms | 35 | 9 | 26 |
| Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(10\) | \(1\) | \(9\) | \(8\) | \(1\) | \(7\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(13\) | \(4\) | \(9\) | \(10\) | \(4\) | \(6\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(13\) | \(2\) | \(11\) | \(10\) | \(2\) | \(8\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(10\) | \(2\) | \(8\) | \(7\) | \(2\) | \(5\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(20\) | \(3\) | \(17\) | \(15\) | \(3\) | \(12\) | \(5\) | \(0\) | \(5\) | ||||
| Minus space | \(-\) | \(26\) | \(6\) | \(20\) | \(20\) | \(6\) | \(14\) | \(6\) | \(0\) | \(6\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(304))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 19 | |||||||
| 304.2.a.a | $1$ | $2.427$ | \(\Q\) | None | \(0\) | \(-2\) | \(-1\) | \(3\) | $-$ | $-$ | \(q-2q^{3}-q^{5}+3q^{7}+q^{9}-5q^{11}+\cdots\) | |
| 304.2.a.b | $1$ | $2.427$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-3\) | $+$ | $+$ | \(q-q^{3}-3q^{7}-2q^{9}-2q^{11}+q^{13}+\cdots\) | |
| 304.2.a.c | $1$ | $2.427$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | \(q-q^{3}+q^{7}-2q^{9}+6q^{11}+5q^{13}+\cdots\) | |
| 304.2.a.d | $1$ | $2.427$ | \(\Q\) | None | \(0\) | \(1\) | \(-4\) | \(-3\) | $-$ | $-$ | \(q+q^{3}-4q^{5}-3q^{7}-2q^{9}-2q^{11}+\cdots\) | |
| 304.2.a.e | $1$ | $2.427$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(3\) | $+$ | $-$ | \(q+2q^{3}-q^{5}+3q^{7}+q^{9}+3q^{11}+\cdots\) | |
| 304.2.a.f | $1$ | $2.427$ | \(\Q\) | None | \(0\) | \(2\) | \(3\) | \(1\) | $-$ | $+$ | \(q+2q^{3}+3q^{5}+q^{7}+q^{9}-3q^{11}+\cdots\) | |
| 304.2.a.g | $3$ | $2.427$ | 3.3.961.1 | None | \(0\) | \(-1\) | \(1\) | \(-4\) | $+$ | $-$ | \(q-\beta _{1}q^{3}-\beta _{2}q^{5}+(-2+\beta _{1}-\beta _{2})q^{7}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(304))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(304)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 2}\)