Properties

Label 3025.2.i
Level $3025$
Weight $2$
Character orbit 3025.i
Rep. character $\chi_{3025}(606,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $1052$
Sturm bound $660$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.i (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(660\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3025, [\chi])\).

Total New Old
Modular forms 1368 1124 244
Cusp forms 1272 1052 220
Eisenstein series 96 72 24

Trace form

\( 1052 q + 4 q^{2} + q^{3} - 250 q^{4} + 9 q^{5} - 3 q^{6} + 2 q^{7} - 7 q^{8} - 242 q^{9} + 2 q^{10} - 33 q^{12} + 7 q^{13} + 19 q^{14} - 21 q^{15} - 222 q^{16} + 20 q^{17} + 5 q^{19} - 25 q^{20} + 14 q^{21}+ \cdots + 159 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3025, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3025, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3025, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)