Properties

Label 3025.2.a.j
Level $3025$
Weight $2$
Character orbit 3025.a
Self dual yes
Analytic conductor $24.155$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3025,2,Mod(1,3025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-4,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 605)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 2 q^{3} + q^{4} - 2 \beta q^{6} + 2 \beta q^{7} - \beta q^{8} + q^{9} - 2 q^{12} + 6 q^{14} - 5 q^{16} - 4 \beta q^{17} + \beta q^{18} + 4 \beta q^{19} - 4 \beta q^{21} - 6 q^{23} + 2 \beta q^{24} + \cdots + 5 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 2 q^{4} + 2 q^{9} - 4 q^{12} + 12 q^{14} - 10 q^{16} - 12 q^{23} + 8 q^{27} + 8 q^{31} - 24 q^{34} + 2 q^{36} - 20 q^{37} + 24 q^{38} - 24 q^{42} + 12 q^{47} + 20 q^{48} + 10 q^{49} + 12 q^{53}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−1.73205 −2.00000 1.00000 0 3.46410 −3.46410 1.73205 1.00000 0
1.2 1.73205 −2.00000 1.00000 0 −3.46410 3.46410 −1.73205 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3025.2.a.j 2
5.b even 2 1 605.2.a.f 2
11.b odd 2 1 inner 3025.2.a.j 2
15.d odd 2 1 5445.2.a.r 2
20.d odd 2 1 9680.2.a.bg 2
55.d odd 2 1 605.2.a.f 2
55.h odd 10 4 605.2.g.h 8
55.j even 10 4 605.2.g.h 8
165.d even 2 1 5445.2.a.r 2
220.g even 2 1 9680.2.a.bg 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
605.2.a.f 2 5.b even 2 1
605.2.a.f 2 55.d odd 2 1
605.2.g.h 8 55.h odd 10 4
605.2.g.h 8 55.j even 10 4
3025.2.a.j 2 1.a even 1 1 trivial
3025.2.a.j 2 11.b odd 2 1 inner
5445.2.a.r 2 15.d odd 2 1
5445.2.a.r 2 165.d even 2 1
9680.2.a.bg 2 20.d odd 2 1
9680.2.a.bg 2 220.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3025))\):

\( T_{2}^{2} - 3 \) Copy content Toggle raw display
\( T_{3} + 2 \) Copy content Toggle raw display
\( T_{19}^{2} - 48 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3 \) Copy content Toggle raw display
$3$ \( (T + 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 12 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 48 \) Copy content Toggle raw display
$19$ \( T^{2} - 48 \) Copy content Toggle raw display
$23$ \( (T + 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( (T + 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 48 \) Copy content Toggle raw display
$43$ \( T^{2} - 12 \) Copy content Toggle raw display
$47$ \( (T - 6)^{2} \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 48 \) Copy content Toggle raw display
$67$ \( (T + 10)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 48 \) Copy content Toggle raw display
$79$ \( T^{2} - 48 \) Copy content Toggle raw display
$83$ \( T^{2} - 300 \) Copy content Toggle raw display
$89$ \( (T + 6)^{2} \) Copy content Toggle raw display
$97$ \( (T - 10)^{2} \) Copy content Toggle raw display
show more
show less