Properties

Label 3025.2.a.ba.1.3
Level $3025$
Weight $2$
Character 3025.1
Self dual yes
Analytic conductor $24.155$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3025,2,Mod(1,3025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,6,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.792287\) of defining polynomial
Character \(\chi\) \(=\) 3025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.792287 q^{2} -2.52434 q^{3} -1.37228 q^{4} -2.00000 q^{6} +3.46410 q^{7} -2.67181 q^{8} +3.37228 q^{9} +3.46410 q^{12} +2.74456 q^{14} +0.627719 q^{16} -5.04868 q^{17} +2.67181 q^{18} -4.00000 q^{19} -8.74456 q^{21} +2.52434 q^{23} +6.74456 q^{24} -0.939764 q^{27} -4.75372 q^{28} +2.74456 q^{29} -2.37228 q^{31} +5.84096 q^{32} -4.00000 q^{34} -4.62772 q^{36} +11.0371 q^{37} -3.16915 q^{38} +2.74456 q^{41} -6.92820 q^{42} +3.46410 q^{43} +2.00000 q^{46} -6.63325 q^{47} -1.58457 q^{48} +5.00000 q^{49} +12.7446 q^{51} +3.16915 q^{53} -0.744563 q^{54} -9.25544 q^{56} +10.0974 q^{57} +2.17448 q^{58} -1.62772 q^{59} -10.7446 q^{61} -1.87953 q^{62} +11.6819 q^{63} +3.37228 q^{64} +0.644810 q^{67} +6.92820 q^{68} -6.37228 q^{69} +7.11684 q^{71} -9.01011 q^{72} -6.92820 q^{73} +8.74456 q^{74} +5.48913 q^{76} -12.7446 q^{79} -7.74456 q^{81} +2.17448 q^{82} -6.63325 q^{83} +12.0000 q^{84} +2.74456 q^{86} -6.92820 q^{87} -4.37228 q^{89} -3.46410 q^{92} +5.98844 q^{93} -5.25544 q^{94} -14.7446 q^{96} +4.10891 q^{97} +3.96143 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} - 8 q^{6} + 2 q^{9} - 12 q^{14} + 14 q^{16} - 16 q^{19} - 12 q^{21} + 4 q^{24} - 12 q^{29} + 2 q^{31} - 16 q^{34} - 30 q^{36} - 12 q^{41} + 8 q^{46} + 20 q^{49} + 28 q^{51} + 20 q^{54} - 60 q^{56}+ \cdots - 36 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.792287 0.560232 0.280116 0.959966i \(-0.409627\pi\)
0.280116 + 0.959966i \(0.409627\pi\)
\(3\) −2.52434 −1.45743 −0.728714 0.684819i \(-0.759881\pi\)
−0.728714 + 0.684819i \(0.759881\pi\)
\(4\) −1.37228 −0.686141
\(5\) 0 0
\(6\) −2.00000 −0.816497
\(7\) 3.46410 1.30931 0.654654 0.755929i \(-0.272814\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) −2.67181 −0.944629
\(9\) 3.37228 1.12409
\(10\) 0 0
\(11\) 0 0
\(12\) 3.46410 1.00000
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 2.74456 0.733515
\(15\) 0 0
\(16\) 0.627719 0.156930
\(17\) −5.04868 −1.22448 −0.612242 0.790671i \(-0.709732\pi\)
−0.612242 + 0.790671i \(0.709732\pi\)
\(18\) 2.67181 0.629753
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −8.74456 −1.90822
\(22\) 0 0
\(23\) 2.52434 0.526361 0.263180 0.964747i \(-0.415229\pi\)
0.263180 + 0.964747i \(0.415229\pi\)
\(24\) 6.74456 1.37673
\(25\) 0 0
\(26\) 0 0
\(27\) −0.939764 −0.180858
\(28\) −4.75372 −0.898369
\(29\) 2.74456 0.509652 0.254826 0.966987i \(-0.417982\pi\)
0.254826 + 0.966987i \(0.417982\pi\)
\(30\) 0 0
\(31\) −2.37228 −0.426074 −0.213037 0.977044i \(-0.568336\pi\)
−0.213037 + 0.977044i \(0.568336\pi\)
\(32\) 5.84096 1.03255
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) −4.62772 −0.771286
\(37\) 11.0371 1.81449 0.907245 0.420602i \(-0.138181\pi\)
0.907245 + 0.420602i \(0.138181\pi\)
\(38\) −3.16915 −0.514104
\(39\) 0 0
\(40\) 0 0
\(41\) 2.74456 0.428629 0.214314 0.976765i \(-0.431248\pi\)
0.214314 + 0.976765i \(0.431248\pi\)
\(42\) −6.92820 −1.06904
\(43\) 3.46410 0.528271 0.264135 0.964486i \(-0.414913\pi\)
0.264135 + 0.964486i \(0.414913\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) −6.63325 −0.967559 −0.483779 0.875190i \(-0.660736\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(48\) −1.58457 −0.228714
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 12.7446 1.78460
\(52\) 0 0
\(53\) 3.16915 0.435316 0.217658 0.976025i \(-0.430158\pi\)
0.217658 + 0.976025i \(0.430158\pi\)
\(54\) −0.744563 −0.101322
\(55\) 0 0
\(56\) −9.25544 −1.23681
\(57\) 10.0974 1.33743
\(58\) 2.17448 0.285523
\(59\) −1.62772 −0.211911 −0.105955 0.994371i \(-0.533790\pi\)
−0.105955 + 0.994371i \(0.533790\pi\)
\(60\) 0 0
\(61\) −10.7446 −1.37570 −0.687850 0.725853i \(-0.741445\pi\)
−0.687850 + 0.725853i \(0.741445\pi\)
\(62\) −1.87953 −0.238700
\(63\) 11.6819 1.47178
\(64\) 3.37228 0.421535
\(65\) 0 0
\(66\) 0 0
\(67\) 0.644810 0.0787761 0.0393880 0.999224i \(-0.487459\pi\)
0.0393880 + 0.999224i \(0.487459\pi\)
\(68\) 6.92820 0.840168
\(69\) −6.37228 −0.767133
\(70\) 0 0
\(71\) 7.11684 0.844614 0.422307 0.906453i \(-0.361220\pi\)
0.422307 + 0.906453i \(0.361220\pi\)
\(72\) −9.01011 −1.06185
\(73\) −6.92820 −0.810885 −0.405442 0.914121i \(-0.632883\pi\)
−0.405442 + 0.914121i \(0.632883\pi\)
\(74\) 8.74456 1.01653
\(75\) 0 0
\(76\) 5.48913 0.629646
\(77\) 0 0
\(78\) 0 0
\(79\) −12.7446 −1.43388 −0.716938 0.697137i \(-0.754457\pi\)
−0.716938 + 0.697137i \(0.754457\pi\)
\(80\) 0 0
\(81\) −7.74456 −0.860507
\(82\) 2.17448 0.240131
\(83\) −6.63325 −0.728094 −0.364047 0.931381i \(-0.618605\pi\)
−0.364047 + 0.931381i \(0.618605\pi\)
\(84\) 12.0000 1.30931
\(85\) 0 0
\(86\) 2.74456 0.295954
\(87\) −6.92820 −0.742781
\(88\) 0 0
\(89\) −4.37228 −0.463461 −0.231730 0.972780i \(-0.574439\pi\)
−0.231730 + 0.972780i \(0.574439\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −3.46410 −0.361158
\(93\) 5.98844 0.620972
\(94\) −5.25544 −0.542057
\(95\) 0 0
\(96\) −14.7446 −1.50486
\(97\) 4.10891 0.417197 0.208598 0.978001i \(-0.433110\pi\)
0.208598 + 0.978001i \(0.433110\pi\)
\(98\) 3.96143 0.400165
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 10.0974 0.999787
\(103\) 10.3923 1.02398 0.511992 0.858990i \(-0.328908\pi\)
0.511992 + 0.858990i \(0.328908\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.51087 0.243878
\(107\) 6.63325 0.641260 0.320630 0.947204i \(-0.396105\pi\)
0.320630 + 0.947204i \(0.396105\pi\)
\(108\) 1.28962 0.124094
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −27.8614 −2.64449
\(112\) 2.17448 0.205469
\(113\) −16.0858 −1.51322 −0.756612 0.653864i \(-0.773147\pi\)
−0.756612 + 0.653864i \(0.773147\pi\)
\(114\) 8.00000 0.749269
\(115\) 0 0
\(116\) −3.76631 −0.349693
\(117\) 0 0
\(118\) −1.28962 −0.118719
\(119\) −17.4891 −1.60323
\(120\) 0 0
\(121\) 0 0
\(122\) −8.51278 −0.770711
\(123\) −6.92820 −0.624695
\(124\) 3.25544 0.292347
\(125\) 0 0
\(126\) 9.25544 0.824540
\(127\) 11.6819 1.03660 0.518302 0.855198i \(-0.326564\pi\)
0.518302 + 0.855198i \(0.326564\pi\)
\(128\) −9.01011 −0.796389
\(129\) −8.74456 −0.769916
\(130\) 0 0
\(131\) −8.74456 −0.764016 −0.382008 0.924159i \(-0.624767\pi\)
−0.382008 + 0.924159i \(0.624767\pi\)
\(132\) 0 0
\(133\) −13.8564 −1.20150
\(134\) 0.510875 0.0441329
\(135\) 0 0
\(136\) 13.4891 1.15668
\(137\) 2.22938 0.190469 0.0952346 0.995455i \(-0.469640\pi\)
0.0952346 + 0.995455i \(0.469640\pi\)
\(138\) −5.04868 −0.429772
\(139\) −18.2337 −1.54656 −0.773281 0.634064i \(-0.781386\pi\)
−0.773281 + 0.634064i \(0.781386\pi\)
\(140\) 0 0
\(141\) 16.7446 1.41015
\(142\) 5.63858 0.473179
\(143\) 0 0
\(144\) 2.11684 0.176404
\(145\) 0 0
\(146\) −5.48913 −0.454283
\(147\) −12.6217 −1.04102
\(148\) −15.1460 −1.24500
\(149\) −11.4891 −0.941226 −0.470613 0.882340i \(-0.655967\pi\)
−0.470613 + 0.882340i \(0.655967\pi\)
\(150\) 0 0
\(151\) −22.2337 −1.80935 −0.904676 0.426100i \(-0.859887\pi\)
−0.904676 + 0.426100i \(0.859887\pi\)
\(152\) 10.6873 0.866851
\(153\) −17.0256 −1.37643
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.39853 −0.430850 −0.215425 0.976520i \(-0.569114\pi\)
−0.215425 + 0.976520i \(0.569114\pi\)
\(158\) −10.0974 −0.803302
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 8.74456 0.689168
\(162\) −6.13592 −0.482083
\(163\) 3.46410 0.271329 0.135665 0.990755i \(-0.456683\pi\)
0.135665 + 0.990755i \(0.456683\pi\)
\(164\) −3.76631 −0.294100
\(165\) 0 0
\(166\) −5.25544 −0.407901
\(167\) −22.3692 −1.73098 −0.865490 0.500927i \(-0.832993\pi\)
−0.865490 + 0.500927i \(0.832993\pi\)
\(168\) 23.3639 1.80256
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −13.4891 −1.03154
\(172\) −4.75372 −0.362468
\(173\) −1.87953 −0.142898 −0.0714489 0.997444i \(-0.522762\pi\)
−0.0714489 + 0.997444i \(0.522762\pi\)
\(174\) −5.48913 −0.416130
\(175\) 0 0
\(176\) 0 0
\(177\) 4.10891 0.308845
\(178\) −3.46410 −0.259645
\(179\) −15.8614 −1.18554 −0.592769 0.805373i \(-0.701965\pi\)
−0.592769 + 0.805373i \(0.701965\pi\)
\(180\) 0 0
\(181\) 6.88316 0.511621 0.255810 0.966727i \(-0.417658\pi\)
0.255810 + 0.966727i \(0.417658\pi\)
\(182\) 0 0
\(183\) 27.1229 2.00498
\(184\) −6.74456 −0.497216
\(185\) 0 0
\(186\) 4.74456 0.347888
\(187\) 0 0
\(188\) 9.10268 0.663881
\(189\) −3.25544 −0.236798
\(190\) 0 0
\(191\) −13.6277 −0.986067 −0.493034 0.870010i \(-0.664112\pi\)
−0.493034 + 0.870010i \(0.664112\pi\)
\(192\) −8.51278 −0.614357
\(193\) 23.3639 1.68177 0.840883 0.541216i \(-0.182036\pi\)
0.840883 + 0.541216i \(0.182036\pi\)
\(194\) 3.25544 0.233727
\(195\) 0 0
\(196\) −6.86141 −0.490100
\(197\) 1.87953 0.133911 0.0669554 0.997756i \(-0.478671\pi\)
0.0669554 + 0.997756i \(0.478671\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −1.62772 −0.114810
\(202\) −4.75372 −0.334471
\(203\) 9.50744 0.667292
\(204\) −17.4891 −1.22448
\(205\) 0 0
\(206\) 8.23369 0.573668
\(207\) 8.51278 0.591679
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 21.4891 1.47937 0.739686 0.672952i \(-0.234974\pi\)
0.739686 + 0.672952i \(0.234974\pi\)
\(212\) −4.34896 −0.298688
\(213\) −17.9653 −1.23096
\(214\) 5.25544 0.359254
\(215\) 0 0
\(216\) 2.51087 0.170843
\(217\) −8.21782 −0.557862
\(218\) −7.92287 −0.536604
\(219\) 17.4891 1.18181
\(220\) 0 0
\(221\) 0 0
\(222\) −22.0742 −1.48153
\(223\) −7.57301 −0.507126 −0.253563 0.967319i \(-0.581603\pi\)
−0.253563 + 0.967319i \(0.581603\pi\)
\(224\) 20.2337 1.35192
\(225\) 0 0
\(226\) −12.7446 −0.847756
\(227\) −9.80240 −0.650608 −0.325304 0.945609i \(-0.605467\pi\)
−0.325304 + 0.945609i \(0.605467\pi\)
\(228\) −13.8564 −0.917663
\(229\) 20.3723 1.34624 0.673119 0.739534i \(-0.264954\pi\)
0.673119 + 0.739534i \(0.264954\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −7.33296 −0.481433
\(233\) −17.0256 −1.11538 −0.557691 0.830049i \(-0.688312\pi\)
−0.557691 + 0.830049i \(0.688312\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.23369 0.145401
\(237\) 32.1716 2.08977
\(238\) −13.8564 −0.898177
\(239\) 3.25544 0.210577 0.105288 0.994442i \(-0.466423\pi\)
0.105288 + 0.994442i \(0.466423\pi\)
\(240\) 0 0
\(241\) −5.25544 −0.338532 −0.169266 0.985570i \(-0.554140\pi\)
−0.169266 + 0.985570i \(0.554140\pi\)
\(242\) 0 0
\(243\) 22.3692 1.43498
\(244\) 14.7446 0.943924
\(245\) 0 0
\(246\) −5.48913 −0.349974
\(247\) 0 0
\(248\) 6.33830 0.402482
\(249\) 16.7446 1.06114
\(250\) 0 0
\(251\) −4.88316 −0.308222 −0.154111 0.988054i \(-0.549251\pi\)
−0.154111 + 0.988054i \(0.549251\pi\)
\(252\) −16.0309 −1.00985
\(253\) 0 0
\(254\) 9.25544 0.580738
\(255\) 0 0
\(256\) −13.8832 −0.867697
\(257\) −23.9538 −1.49419 −0.747097 0.664715i \(-0.768553\pi\)
−0.747097 + 0.664715i \(0.768553\pi\)
\(258\) −6.92820 −0.431331
\(259\) 38.2337 2.37573
\(260\) 0 0
\(261\) 9.25544 0.572897
\(262\) −6.92820 −0.428026
\(263\) 14.1514 0.872610 0.436305 0.899799i \(-0.356287\pi\)
0.436305 + 0.899799i \(0.356287\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −10.9783 −0.673120
\(267\) 11.0371 0.675460
\(268\) −0.884861 −0.0540515
\(269\) 11.4891 0.700504 0.350252 0.936655i \(-0.386096\pi\)
0.350252 + 0.936655i \(0.386096\pi\)
\(270\) 0 0
\(271\) 9.48913 0.576423 0.288212 0.957567i \(-0.406939\pi\)
0.288212 + 0.957567i \(0.406939\pi\)
\(272\) −3.16915 −0.192158
\(273\) 0 0
\(274\) 1.76631 0.106707
\(275\) 0 0
\(276\) 8.74456 0.526361
\(277\) 8.21782 0.493761 0.246881 0.969046i \(-0.420594\pi\)
0.246881 + 0.969046i \(0.420594\pi\)
\(278\) −14.4463 −0.866432
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 23.4891 1.40124 0.700622 0.713533i \(-0.252906\pi\)
0.700622 + 0.713533i \(0.252906\pi\)
\(282\) 13.2665 0.790009
\(283\) −4.75372 −0.282579 −0.141290 0.989968i \(-0.545125\pi\)
−0.141290 + 0.989968i \(0.545125\pi\)
\(284\) −9.76631 −0.579524
\(285\) 0 0
\(286\) 0 0
\(287\) 9.50744 0.561207
\(288\) 19.6974 1.16068
\(289\) 8.48913 0.499360
\(290\) 0 0
\(291\) −10.3723 −0.608034
\(292\) 9.50744 0.556381
\(293\) −10.0974 −0.589894 −0.294947 0.955514i \(-0.595302\pi\)
−0.294947 + 0.955514i \(0.595302\pi\)
\(294\) −10.0000 −0.583212
\(295\) 0 0
\(296\) −29.4891 −1.71402
\(297\) 0 0
\(298\) −9.10268 −0.527304
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) −17.6155 −1.01366
\(303\) 15.1460 0.870117
\(304\) −2.51087 −0.144009
\(305\) 0 0
\(306\) −13.4891 −0.771122
\(307\) −28.1176 −1.60475 −0.802377 0.596817i \(-0.796432\pi\)
−0.802377 + 0.596817i \(0.796432\pi\)
\(308\) 0 0
\(309\) −26.2337 −1.49238
\(310\) 0 0
\(311\) −17.4891 −0.991717 −0.495859 0.868403i \(-0.665147\pi\)
−0.495859 + 0.868403i \(0.665147\pi\)
\(312\) 0 0
\(313\) 31.8217 1.79867 0.899335 0.437260i \(-0.144051\pi\)
0.899335 + 0.437260i \(0.144051\pi\)
\(314\) −4.27719 −0.241376
\(315\) 0 0
\(316\) 17.4891 0.983840
\(317\) 3.51900 0.197647 0.0988235 0.995105i \(-0.468492\pi\)
0.0988235 + 0.995105i \(0.468492\pi\)
\(318\) −6.33830 −0.355434
\(319\) 0 0
\(320\) 0 0
\(321\) −16.7446 −0.934590
\(322\) 6.92820 0.386094
\(323\) 20.1947 1.12366
\(324\) 10.6277 0.590429
\(325\) 0 0
\(326\) 2.74456 0.152007
\(327\) 25.2434 1.39596
\(328\) −7.33296 −0.404895
\(329\) −22.9783 −1.26683
\(330\) 0 0
\(331\) 3.11684 0.171317 0.0856586 0.996325i \(-0.472701\pi\)
0.0856586 + 0.996325i \(0.472701\pi\)
\(332\) 9.10268 0.499575
\(333\) 37.2203 2.03966
\(334\) −17.7228 −0.969749
\(335\) 0 0
\(336\) −5.48913 −0.299456
\(337\) −12.5668 −0.684556 −0.342278 0.939599i \(-0.611199\pi\)
−0.342278 + 0.939599i \(0.611199\pi\)
\(338\) −10.2997 −0.560232
\(339\) 40.6060 2.20541
\(340\) 0 0
\(341\) 0 0
\(342\) −10.6873 −0.577901
\(343\) −6.92820 −0.374088
\(344\) −9.25544 −0.499020
\(345\) 0 0
\(346\) −1.48913 −0.0800559
\(347\) −29.2974 −1.57277 −0.786383 0.617739i \(-0.788049\pi\)
−0.786383 + 0.617739i \(0.788049\pi\)
\(348\) 9.50744 0.509652
\(349\) 7.48913 0.400884 0.200442 0.979706i \(-0.435762\pi\)
0.200442 + 0.979706i \(0.435762\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −21.7244 −1.15627 −0.578136 0.815941i \(-0.696220\pi\)
−0.578136 + 0.815941i \(0.696220\pi\)
\(354\) 3.25544 0.173025
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 44.1485 2.33658
\(358\) −12.5668 −0.664175
\(359\) −6.51087 −0.343631 −0.171815 0.985129i \(-0.554963\pi\)
−0.171815 + 0.985129i \(0.554963\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 5.45343 0.286626
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 21.4891 1.12325
\(367\) 24.0087 1.25324 0.626621 0.779324i \(-0.284437\pi\)
0.626621 + 0.779324i \(0.284437\pi\)
\(368\) 1.58457 0.0826016
\(369\) 9.25544 0.481819
\(370\) 0 0
\(371\) 10.9783 0.569962
\(372\) −8.21782 −0.426074
\(373\) 8.21782 0.425503 0.212751 0.977106i \(-0.431758\pi\)
0.212751 + 0.977106i \(0.431758\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 17.7228 0.913984
\(377\) 0 0
\(378\) −2.57924 −0.132662
\(379\) −6.37228 −0.327322 −0.163661 0.986517i \(-0.552330\pi\)
−0.163661 + 0.986517i \(0.552330\pi\)
\(380\) 0 0
\(381\) −29.4891 −1.51077
\(382\) −10.7971 −0.552426
\(383\) −5.69349 −0.290924 −0.145462 0.989364i \(-0.546467\pi\)
−0.145462 + 0.989364i \(0.546467\pi\)
\(384\) 22.7446 1.16068
\(385\) 0 0
\(386\) 18.5109 0.942179
\(387\) 11.6819 0.593826
\(388\) −5.63858 −0.286256
\(389\) −9.86141 −0.499993 −0.249997 0.968247i \(-0.580429\pi\)
−0.249997 + 0.968247i \(0.580429\pi\)
\(390\) 0 0
\(391\) −12.7446 −0.644520
\(392\) −13.3591 −0.674735
\(393\) 22.0742 1.11350
\(394\) 1.48913 0.0750210
\(395\) 0 0
\(396\) 0 0
\(397\) −23.3639 −1.17260 −0.586299 0.810095i \(-0.699416\pi\)
−0.586299 + 0.810095i \(0.699416\pi\)
\(398\) −6.33830 −0.317710
\(399\) 34.9783 1.75110
\(400\) 0 0
\(401\) 11.4891 0.573740 0.286870 0.957970i \(-0.407385\pi\)
0.286870 + 0.957970i \(0.407385\pi\)
\(402\) −1.28962 −0.0643204
\(403\) 0 0
\(404\) 8.23369 0.409641
\(405\) 0 0
\(406\) 7.53262 0.373838
\(407\) 0 0
\(408\) −34.0511 −1.68578
\(409\) −4.51087 −0.223048 −0.111524 0.993762i \(-0.535573\pi\)
−0.111524 + 0.993762i \(0.535573\pi\)
\(410\) 0 0
\(411\) −5.62772 −0.277595
\(412\) −14.2612 −0.702597
\(413\) −5.63858 −0.277457
\(414\) 6.74456 0.331477
\(415\) 0 0
\(416\) 0 0
\(417\) 46.0280 2.25400
\(418\) 0 0
\(419\) 22.9783 1.12256 0.561280 0.827626i \(-0.310309\pi\)
0.561280 + 0.827626i \(0.310309\pi\)
\(420\) 0 0
\(421\) 31.4891 1.53469 0.767343 0.641237i \(-0.221578\pi\)
0.767343 + 0.641237i \(0.221578\pi\)
\(422\) 17.0256 0.828791
\(423\) −22.3692 −1.08763
\(424\) −8.46738 −0.411212
\(425\) 0 0
\(426\) −14.2337 −0.689624
\(427\) −37.2203 −1.80121
\(428\) −9.10268 −0.439995
\(429\) 0 0
\(430\) 0 0
\(431\) −31.7228 −1.52803 −0.764017 0.645196i \(-0.776776\pi\)
−0.764017 + 0.645196i \(0.776776\pi\)
\(432\) −0.589907 −0.0283819
\(433\) 20.5446 0.987308 0.493654 0.869658i \(-0.335661\pi\)
0.493654 + 0.869658i \(0.335661\pi\)
\(434\) −6.51087 −0.312532
\(435\) 0 0
\(436\) 13.7228 0.657204
\(437\) −10.0974 −0.483022
\(438\) 13.8564 0.662085
\(439\) 1.48913 0.0710721 0.0355360 0.999368i \(-0.488686\pi\)
0.0355360 + 0.999368i \(0.488686\pi\)
\(440\) 0 0
\(441\) 16.8614 0.802924
\(442\) 0 0
\(443\) 15.0911 0.717001 0.358500 0.933530i \(-0.383288\pi\)
0.358500 + 0.933530i \(0.383288\pi\)
\(444\) 38.2337 1.81449
\(445\) 0 0
\(446\) −6.00000 −0.284108
\(447\) 29.0024 1.37177
\(448\) 11.6819 0.551919
\(449\) −21.8614 −1.03170 −0.515852 0.856678i \(-0.672524\pi\)
−0.515852 + 0.856678i \(0.672524\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 22.0742 1.03828
\(453\) 56.1253 2.63700
\(454\) −7.76631 −0.364491
\(455\) 0 0
\(456\) −26.9783 −1.26337
\(457\) −20.7846 −0.972263 −0.486132 0.873886i \(-0.661592\pi\)
−0.486132 + 0.873886i \(0.661592\pi\)
\(458\) 16.1407 0.754205
\(459\) 4.74456 0.221457
\(460\) 0 0
\(461\) 32.2337 1.50127 0.750636 0.660716i \(-0.229747\pi\)
0.750636 + 0.660716i \(0.229747\pi\)
\(462\) 0 0
\(463\) 20.1398 0.935976 0.467988 0.883735i \(-0.344979\pi\)
0.467988 + 0.883735i \(0.344979\pi\)
\(464\) 1.72281 0.0799796
\(465\) 0 0
\(466\) −13.4891 −0.624872
\(467\) 4.40387 0.203787 0.101893 0.994795i \(-0.467510\pi\)
0.101893 + 0.994795i \(0.467510\pi\)
\(468\) 0 0
\(469\) 2.23369 0.103142
\(470\) 0 0
\(471\) 13.6277 0.627932
\(472\) 4.34896 0.200177
\(473\) 0 0
\(474\) 25.4891 1.17075
\(475\) 0 0
\(476\) 24.0000 1.10004
\(477\) 10.6873 0.489336
\(478\) 2.57924 0.117972
\(479\) −17.4891 −0.799099 −0.399549 0.916712i \(-0.630833\pi\)
−0.399549 + 0.916712i \(0.630833\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −4.16381 −0.189657
\(483\) −22.0742 −1.00441
\(484\) 0 0
\(485\) 0 0
\(486\) 17.7228 0.803923
\(487\) −22.7190 −1.02950 −0.514749 0.857341i \(-0.672115\pi\)
−0.514749 + 0.857341i \(0.672115\pi\)
\(488\) 28.7075 1.29953
\(489\) −8.74456 −0.395443
\(490\) 0 0
\(491\) −29.4891 −1.33083 −0.665413 0.746476i \(-0.731744\pi\)
−0.665413 + 0.746476i \(0.731744\pi\)
\(492\) 9.50744 0.428629
\(493\) −13.8564 −0.624061
\(494\) 0 0
\(495\) 0 0
\(496\) −1.48913 −0.0668637
\(497\) 24.6535 1.10586
\(498\) 13.2665 0.594486
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 56.4674 2.52278
\(502\) −3.86886 −0.172676
\(503\) 0.294954 0.0131513 0.00657567 0.999978i \(-0.497907\pi\)
0.00657567 + 0.999978i \(0.497907\pi\)
\(504\) −31.2119 −1.39029
\(505\) 0 0
\(506\) 0 0
\(507\) 32.8164 1.45743
\(508\) −16.0309 −0.711256
\(509\) 28.3723 1.25758 0.628790 0.777575i \(-0.283551\pi\)
0.628790 + 0.777575i \(0.283551\pi\)
\(510\) 0 0
\(511\) −24.0000 −1.06170
\(512\) 7.02078 0.310277
\(513\) 3.75906 0.165966
\(514\) −18.9783 −0.837095
\(515\) 0 0
\(516\) 12.0000 0.528271
\(517\) 0 0
\(518\) 30.2921 1.33096
\(519\) 4.74456 0.208263
\(520\) 0 0
\(521\) 18.6060 0.815142 0.407571 0.913173i \(-0.366376\pi\)
0.407571 + 0.913173i \(0.366376\pi\)
\(522\) 7.33296 0.320955
\(523\) 9.10268 0.398033 0.199016 0.979996i \(-0.436225\pi\)
0.199016 + 0.979996i \(0.436225\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 11.2119 0.488864
\(527\) 11.9769 0.521721
\(528\) 0 0
\(529\) −16.6277 −0.722944
\(530\) 0 0
\(531\) −5.48913 −0.238208
\(532\) 19.0149 0.824400
\(533\) 0 0
\(534\) 8.74456 0.378414
\(535\) 0 0
\(536\) −1.72281 −0.0744142
\(537\) 40.0395 1.72783
\(538\) 9.10268 0.392445
\(539\) 0 0
\(540\) 0 0
\(541\) 0.233688 0.0100470 0.00502351 0.999987i \(-0.498401\pi\)
0.00502351 + 0.999987i \(0.498401\pi\)
\(542\) 7.51811 0.322930
\(543\) −17.3754 −0.745650
\(544\) −29.4891 −1.26434
\(545\) 0 0
\(546\) 0 0
\(547\) −9.10268 −0.389203 −0.194601 0.980882i \(-0.562341\pi\)
−0.194601 + 0.980882i \(0.562341\pi\)
\(548\) −3.05934 −0.130689
\(549\) −36.2337 −1.54642
\(550\) 0 0
\(551\) −10.9783 −0.467689
\(552\) 17.0256 0.724656
\(553\) −44.1485 −1.87738
\(554\) 6.51087 0.276621
\(555\) 0 0
\(556\) 25.0217 1.06116
\(557\) 32.1716 1.36315 0.681577 0.731747i \(-0.261295\pi\)
0.681577 + 0.731747i \(0.261295\pi\)
\(558\) −6.33830 −0.268321
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 18.6101 0.785021
\(563\) −12.2718 −0.517196 −0.258598 0.965985i \(-0.583261\pi\)
−0.258598 + 0.965985i \(0.583261\pi\)
\(564\) −22.9783 −0.967559
\(565\) 0 0
\(566\) −3.76631 −0.158310
\(567\) −26.8280 −1.12667
\(568\) −19.0149 −0.797847
\(569\) 38.7446 1.62426 0.812128 0.583479i \(-0.198309\pi\)
0.812128 + 0.583479i \(0.198309\pi\)
\(570\) 0 0
\(571\) 21.4891 0.899292 0.449646 0.893207i \(-0.351550\pi\)
0.449646 + 0.893207i \(0.351550\pi\)
\(572\) 0 0
\(573\) 34.4010 1.43712
\(574\) 7.53262 0.314406
\(575\) 0 0
\(576\) 11.3723 0.473845
\(577\) −31.8217 −1.32476 −0.662378 0.749170i \(-0.730453\pi\)
−0.662378 + 0.749170i \(0.730453\pi\)
\(578\) 6.72582 0.279757
\(579\) −58.9783 −2.45105
\(580\) 0 0
\(581\) −22.9783 −0.953298
\(582\) −8.21782 −0.340640
\(583\) 0 0
\(584\) 18.5109 0.765985
\(585\) 0 0
\(586\) −8.00000 −0.330477
\(587\) 28.0078 1.15600 0.578002 0.816035i \(-0.303833\pi\)
0.578002 + 0.816035i \(0.303833\pi\)
\(588\) 17.3205 0.714286
\(589\) 9.48913 0.390993
\(590\) 0 0
\(591\) −4.74456 −0.195165
\(592\) 6.92820 0.284747
\(593\) 43.5586 1.78874 0.894368 0.447333i \(-0.147626\pi\)
0.894368 + 0.447333i \(0.147626\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 15.7663 0.645813
\(597\) 20.1947 0.826514
\(598\) 0 0
\(599\) −34.9783 −1.42917 −0.714586 0.699547i \(-0.753385\pi\)
−0.714586 + 0.699547i \(0.753385\pi\)
\(600\) 0 0
\(601\) −30.4674 −1.24279 −0.621395 0.783497i \(-0.713434\pi\)
−0.621395 + 0.783497i \(0.713434\pi\)
\(602\) 9.50744 0.387494
\(603\) 2.17448 0.0885517
\(604\) 30.5109 1.24147
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) 3.46410 0.140604 0.0703018 0.997526i \(-0.477604\pi\)
0.0703018 + 0.997526i \(0.477604\pi\)
\(608\) −23.3639 −0.947529
\(609\) −24.0000 −0.972529
\(610\) 0 0
\(611\) 0 0
\(612\) 23.3639 0.944428
\(613\) −44.1485 −1.78314 −0.891570 0.452883i \(-0.850395\pi\)
−0.891570 + 0.452883i \(0.850395\pi\)
\(614\) −22.2772 −0.899034
\(615\) 0 0
\(616\) 0 0
\(617\) 3.75906 0.151334 0.0756669 0.997133i \(-0.475891\pi\)
0.0756669 + 0.997133i \(0.475891\pi\)
\(618\) −20.7846 −0.836080
\(619\) −3.11684 −0.125277 −0.0626383 0.998036i \(-0.519951\pi\)
−0.0626383 + 0.998036i \(0.519951\pi\)
\(620\) 0 0
\(621\) −2.37228 −0.0951964
\(622\) −13.8564 −0.555591
\(623\) −15.1460 −0.606813
\(624\) 0 0
\(625\) 0 0
\(626\) 25.2119 1.00767
\(627\) 0 0
\(628\) 7.40830 0.295624
\(629\) −55.7228 −2.22181
\(630\) 0 0
\(631\) −16.6060 −0.661073 −0.330537 0.943793i \(-0.607230\pi\)
−0.330537 + 0.943793i \(0.607230\pi\)
\(632\) 34.0511 1.35448
\(633\) −54.2458 −2.15608
\(634\) 2.78806 0.110728
\(635\) 0 0
\(636\) 10.9783 0.435316
\(637\) 0 0
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) 0 0
\(641\) −19.6277 −0.775248 −0.387624 0.921818i \(-0.626704\pi\)
−0.387624 + 0.921818i \(0.626704\pi\)
\(642\) −13.2665 −0.523587
\(643\) −39.1547 −1.54411 −0.772055 0.635556i \(-0.780771\pi\)
−0.772055 + 0.635556i \(0.780771\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 16.0000 0.629512
\(647\) −41.0342 −1.61322 −0.806611 0.591083i \(-0.798701\pi\)
−0.806611 + 0.591083i \(0.798701\pi\)
\(648\) 20.6920 0.812860
\(649\) 0 0
\(650\) 0 0
\(651\) 20.7446 0.813044
\(652\) −4.75372 −0.186170
\(653\) −25.5932 −1.00154 −0.500770 0.865580i \(-0.666950\pi\)
−0.500770 + 0.865580i \(0.666950\pi\)
\(654\) 20.0000 0.782062
\(655\) 0 0
\(656\) 1.72281 0.0672646
\(657\) −23.3639 −0.911511
\(658\) −18.2054 −0.709719
\(659\) −32.7446 −1.27555 −0.637774 0.770224i \(-0.720144\pi\)
−0.637774 + 0.770224i \(0.720144\pi\)
\(660\) 0 0
\(661\) 35.3505 1.37498 0.687488 0.726196i \(-0.258713\pi\)
0.687488 + 0.726196i \(0.258713\pi\)
\(662\) 2.46943 0.0959773
\(663\) 0 0
\(664\) 17.7228 0.687779
\(665\) 0 0
\(666\) 29.4891 1.14268
\(667\) 6.92820 0.268261
\(668\) 30.6968 1.18770
\(669\) 19.1168 0.739100
\(670\) 0 0
\(671\) 0 0
\(672\) −51.0767 −1.97033
\(673\) −1.28962 −0.0497112 −0.0248556 0.999691i \(-0.507913\pi\)
−0.0248556 + 0.999691i \(0.507913\pi\)
\(674\) −9.95650 −0.383510
\(675\) 0 0
\(676\) 17.8397 0.686141
\(677\) 43.4487 1.66987 0.834935 0.550348i \(-0.185505\pi\)
0.834935 + 0.550348i \(0.185505\pi\)
\(678\) 32.1716 1.23554
\(679\) 14.2337 0.546239
\(680\) 0 0
\(681\) 24.7446 0.948214
\(682\) 0 0
\(683\) −44.4434 −1.70058 −0.850290 0.526314i \(-0.823573\pi\)
−0.850290 + 0.526314i \(0.823573\pi\)
\(684\) 18.5109 0.707781
\(685\) 0 0
\(686\) −5.48913 −0.209576
\(687\) −51.4265 −1.96204
\(688\) 2.17448 0.0829013
\(689\) 0 0
\(690\) 0 0
\(691\) 16.1386 0.613941 0.306971 0.951719i \(-0.400685\pi\)
0.306971 + 0.951719i \(0.400685\pi\)
\(692\) 2.57924 0.0980480
\(693\) 0 0
\(694\) −23.2119 −0.881113
\(695\) 0 0
\(696\) 18.5109 0.701653
\(697\) −13.8564 −0.524849
\(698\) 5.93354 0.224588
\(699\) 42.9783 1.62559
\(700\) 0 0
\(701\) 35.4891 1.34041 0.670203 0.742178i \(-0.266207\pi\)
0.670203 + 0.742178i \(0.266207\pi\)
\(702\) 0 0
\(703\) −44.1485 −1.66509
\(704\) 0 0
\(705\) 0 0
\(706\) −17.2119 −0.647780
\(707\) −20.7846 −0.781686
\(708\) −5.63858 −0.211911
\(709\) 41.1168 1.54418 0.772088 0.635516i \(-0.219213\pi\)
0.772088 + 0.635516i \(0.219213\pi\)
\(710\) 0 0
\(711\) −42.9783 −1.61181
\(712\) 11.6819 0.437799
\(713\) −5.98844 −0.224269
\(714\) 34.9783 1.30903
\(715\) 0 0
\(716\) 21.7663 0.813445
\(717\) −8.21782 −0.306900
\(718\) −5.15848 −0.192513
\(719\) 21.3505 0.796240 0.398120 0.917333i \(-0.369663\pi\)
0.398120 + 0.917333i \(0.369663\pi\)
\(720\) 0 0
\(721\) 36.0000 1.34071
\(722\) −2.37686 −0.0884576
\(723\) 13.2665 0.493386
\(724\) −9.44563 −0.351044
\(725\) 0 0
\(726\) 0 0
\(727\) 15.7908 0.585650 0.292825 0.956166i \(-0.405405\pi\)
0.292825 + 0.956166i \(0.405405\pi\)
\(728\) 0 0
\(729\) −33.2337 −1.23088
\(730\) 0 0
\(731\) −17.4891 −0.646859
\(732\) −37.2203 −1.37570
\(733\) 30.2921 1.11886 0.559431 0.828877i \(-0.311020\pi\)
0.559431 + 0.828877i \(0.311020\pi\)
\(734\) 19.0217 0.702106
\(735\) 0 0
\(736\) 14.7446 0.543492
\(737\) 0 0
\(738\) 7.33296 0.269930
\(739\) −0.744563 −0.0273892 −0.0136946 0.999906i \(-0.504359\pi\)
−0.0136946 + 0.999906i \(0.504359\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 8.69793 0.319311
\(743\) −21.7793 −0.799004 −0.399502 0.916732i \(-0.630817\pi\)
−0.399502 + 0.916732i \(0.630817\pi\)
\(744\) −16.0000 −0.586588
\(745\) 0 0
\(746\) 6.51087 0.238380
\(747\) −22.3692 −0.818446
\(748\) 0 0
\(749\) 22.9783 0.839607
\(750\) 0 0
\(751\) 21.6277 0.789207 0.394603 0.918852i \(-0.370882\pi\)
0.394603 + 0.918852i \(0.370882\pi\)
\(752\) −4.16381 −0.151839
\(753\) 12.3267 0.449211
\(754\) 0 0
\(755\) 0 0
\(756\) 4.46738 0.162477
\(757\) 39.7995 1.44654 0.723269 0.690567i \(-0.242639\pi\)
0.723269 + 0.690567i \(0.242639\pi\)
\(758\) −5.04868 −0.183376
\(759\) 0 0
\(760\) 0 0
\(761\) −21.2554 −0.770509 −0.385255 0.922810i \(-0.625886\pi\)
−0.385255 + 0.922810i \(0.625886\pi\)
\(762\) −23.3639 −0.846383
\(763\) −34.6410 −1.25409
\(764\) 18.7011 0.676581
\(765\) 0 0
\(766\) −4.51087 −0.162985
\(767\) 0 0
\(768\) 35.0458 1.26461
\(769\) 51.2119 1.84675 0.923375 0.383900i \(-0.125419\pi\)
0.923375 + 0.383900i \(0.125419\pi\)
\(770\) 0 0
\(771\) 60.4674 2.17768
\(772\) −32.0618 −1.15393
\(773\) 30.8820 1.11075 0.555373 0.831601i \(-0.312575\pi\)
0.555373 + 0.831601i \(0.312575\pi\)
\(774\) 9.25544 0.332680
\(775\) 0 0
\(776\) −10.9783 −0.394096
\(777\) −96.5147 −3.46245
\(778\) −7.81306 −0.280112
\(779\) −10.9783 −0.393337
\(780\) 0 0
\(781\) 0 0
\(782\) −10.0974 −0.361081
\(783\) −2.57924 −0.0921745
\(784\) 3.13859 0.112093
\(785\) 0 0
\(786\) 17.4891 0.623816
\(787\) 4.75372 0.169452 0.0847259 0.996404i \(-0.472999\pi\)
0.0847259 + 0.996404i \(0.472999\pi\)
\(788\) −2.57924 −0.0918816
\(789\) −35.7228 −1.27177
\(790\) 0 0
\(791\) −55.7228 −1.98128
\(792\) 0 0
\(793\) 0 0
\(794\) −18.5109 −0.656926
\(795\) 0 0
\(796\) 10.9783 0.389114
\(797\) 31.2318 1.10629 0.553144 0.833086i \(-0.313428\pi\)
0.553144 + 0.833086i \(0.313428\pi\)
\(798\) 27.7128 0.981023
\(799\) 33.4891 1.18476
\(800\) 0 0
\(801\) −14.7446 −0.520974
\(802\) 9.10268 0.321427
\(803\) 0 0
\(804\) 2.23369 0.0787761
\(805\) 0 0
\(806\) 0 0
\(807\) −29.0024 −1.02093
\(808\) 16.0309 0.563965
\(809\) 21.2554 0.747301 0.373651 0.927569i \(-0.378106\pi\)
0.373651 + 0.927569i \(0.378106\pi\)
\(810\) 0 0
\(811\) −34.2337 −1.20211 −0.601054 0.799209i \(-0.705252\pi\)
−0.601054 + 0.799209i \(0.705252\pi\)
\(812\) −13.0469 −0.457856
\(813\) −23.9538 −0.840095
\(814\) 0 0
\(815\) 0 0
\(816\) 8.00000 0.280056
\(817\) −13.8564 −0.484774
\(818\) −3.57391 −0.124959
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) −4.45877 −0.155517
\(823\) 33.5161 1.16830 0.584149 0.811646i \(-0.301428\pi\)
0.584149 + 0.811646i \(0.301428\pi\)
\(824\) −27.7663 −0.967285
\(825\) 0 0
\(826\) −4.46738 −0.155440
\(827\) −18.0202 −0.626624 −0.313312 0.949650i \(-0.601439\pi\)
−0.313312 + 0.949650i \(0.601439\pi\)
\(828\) −11.6819 −0.405975
\(829\) 31.3505 1.08885 0.544424 0.838810i \(-0.316748\pi\)
0.544424 + 0.838810i \(0.316748\pi\)
\(830\) 0 0
\(831\) −20.7446 −0.719621
\(832\) 0 0
\(833\) −25.2434 −0.874631
\(834\) 36.4674 1.26276
\(835\) 0 0
\(836\) 0 0
\(837\) 2.22938 0.0770588
\(838\) 18.2054 0.628894
\(839\) 7.11684 0.245701 0.122850 0.992425i \(-0.460796\pi\)
0.122850 + 0.992425i \(0.460796\pi\)
\(840\) 0 0
\(841\) −21.4674 −0.740254
\(842\) 24.9484 0.859779
\(843\) −59.2945 −2.04221
\(844\) −29.4891 −1.01506
\(845\) 0 0
\(846\) −17.7228 −0.609323
\(847\) 0 0
\(848\) 1.98933 0.0683140
\(849\) 12.0000 0.411839
\(850\) 0 0
\(851\) 27.8614 0.955077
\(852\) 24.6535 0.844614
\(853\) −24.6535 −0.844119 −0.422059 0.906568i \(-0.638693\pi\)
−0.422059 + 0.906568i \(0.638693\pi\)
\(854\) −29.4891 −1.00910
\(855\) 0 0
\(856\) −17.7228 −0.605753
\(857\) −10.6873 −0.365070 −0.182535 0.983199i \(-0.558430\pi\)
−0.182535 + 0.983199i \(0.558430\pi\)
\(858\) 0 0
\(859\) 11.1168 0.379302 0.189651 0.981852i \(-0.439264\pi\)
0.189651 + 0.981852i \(0.439264\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) −25.1336 −0.856053
\(863\) −23.6588 −0.805355 −0.402678 0.915342i \(-0.631920\pi\)
−0.402678 + 0.915342i \(0.631920\pi\)
\(864\) −5.48913 −0.186744
\(865\) 0 0
\(866\) 16.2772 0.553121
\(867\) −21.4294 −0.727781
\(868\) 11.2772 0.382772
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 26.7181 0.904791
\(873\) 13.8564 0.468968
\(874\) −8.00000 −0.270604
\(875\) 0 0
\(876\) −24.0000 −0.810885
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 1.17981 0.0398168
\(879\) 25.4891 0.859727
\(880\) 0 0
\(881\) 21.8614 0.736530 0.368265 0.929721i \(-0.379952\pi\)
0.368265 + 0.929721i \(0.379952\pi\)
\(882\) 13.3591 0.449823
\(883\) −24.2487 −0.816034 −0.408017 0.912974i \(-0.633780\pi\)
−0.408017 + 0.912974i \(0.633780\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 11.9565 0.401687
\(887\) −14.1514 −0.475156 −0.237578 0.971368i \(-0.576354\pi\)
−0.237578 + 0.971368i \(0.576354\pi\)
\(888\) 74.4405 2.49806
\(889\) 40.4674 1.35723
\(890\) 0 0
\(891\) 0 0
\(892\) 10.3923 0.347960
\(893\) 26.5330 0.887893
\(894\) 22.9783 0.768508
\(895\) 0 0
\(896\) −31.2119 −1.04272
\(897\) 0 0
\(898\) −17.3205 −0.577993
\(899\) −6.51087 −0.217150
\(900\) 0 0
\(901\) −16.0000 −0.533037
\(902\) 0 0
\(903\) −30.2921 −1.00806
\(904\) 42.9783 1.42944
\(905\) 0 0
\(906\) 44.4674 1.47733
\(907\) −19.8997 −0.660760 −0.330380 0.943848i \(-0.607177\pi\)
−0.330380 + 0.943848i \(0.607177\pi\)
\(908\) 13.4516 0.446409
\(909\) −20.2337 −0.671109
\(910\) 0 0
\(911\) −30.5109 −1.01087 −0.505435 0.862865i \(-0.668668\pi\)
−0.505435 + 0.862865i \(0.668668\pi\)
\(912\) 6.33830 0.209882
\(913\) 0 0
\(914\) −16.4674 −0.544692
\(915\) 0 0
\(916\) −27.9565 −0.923709
\(917\) −30.2921 −1.00033
\(918\) 3.75906 0.124067
\(919\) −6.23369 −0.205630 −0.102815 0.994700i \(-0.532785\pi\)
−0.102815 + 0.994700i \(0.532785\pi\)
\(920\) 0 0
\(921\) 70.9783 2.33881
\(922\) 25.5383 0.841060
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 15.9565 0.524363
\(927\) 35.0458 1.15105
\(928\) 16.0309 0.526240
\(929\) −52.9783 −1.73816 −0.869080 0.494672i \(-0.835288\pi\)
−0.869080 + 0.494672i \(0.835288\pi\)
\(930\) 0 0
\(931\) −20.0000 −0.655474
\(932\) 23.3639 0.765308
\(933\) 44.1485 1.44536
\(934\) 3.48913 0.114168
\(935\) 0 0
\(936\) 0 0
\(937\) −25.9431 −0.847524 −0.423762 0.905774i \(-0.639291\pi\)
−0.423762 + 0.905774i \(0.639291\pi\)
\(938\) 1.76972 0.0577835
\(939\) −80.3288 −2.62143
\(940\) 0 0
\(941\) −10.4674 −0.341227 −0.170613 0.985338i \(-0.554575\pi\)
−0.170613 + 0.985338i \(0.554575\pi\)
\(942\) 10.7971 0.351787
\(943\) 6.92820 0.225613
\(944\) −1.02175 −0.0332551
\(945\) 0 0
\(946\) 0 0
\(947\) −56.1802 −1.82561 −0.912806 0.408393i \(-0.866089\pi\)
−0.912806 + 0.408393i \(0.866089\pi\)
\(948\) −44.1485 −1.43388
\(949\) 0 0
\(950\) 0 0
\(951\) −8.88316 −0.288056
\(952\) 46.7277 1.51445
\(953\) −41.6790 −1.35012 −0.675058 0.737765i \(-0.735881\pi\)
−0.675058 + 0.737765i \(0.735881\pi\)
\(954\) 8.46738 0.274141
\(955\) 0 0
\(956\) −4.46738 −0.144485
\(957\) 0 0
\(958\) −13.8564 −0.447680
\(959\) 7.72281 0.249383
\(960\) 0 0
\(961\) −25.3723 −0.818461
\(962\) 0 0
\(963\) 22.3692 0.720837
\(964\) 7.21194 0.232281
\(965\) 0 0
\(966\) −17.4891 −0.562703
\(967\) −46.3229 −1.48965 −0.744823 0.667262i \(-0.767466\pi\)
−0.744823 + 0.667262i \(0.767466\pi\)
\(968\) 0 0
\(969\) −50.9783 −1.63766
\(970\) 0 0
\(971\) 54.0951 1.73599 0.867997 0.496569i \(-0.165407\pi\)
0.867997 + 0.496569i \(0.165407\pi\)
\(972\) −30.6968 −0.984601
\(973\) −63.1633 −2.02492
\(974\) −18.0000 −0.576757
\(975\) 0 0
\(976\) −6.74456 −0.215888
\(977\) 27.3630 0.875419 0.437709 0.899117i \(-0.355790\pi\)
0.437709 + 0.899117i \(0.355790\pi\)
\(978\) −6.92820 −0.221540
\(979\) 0 0
\(980\) 0 0
\(981\) −33.7228 −1.07669
\(982\) −23.3639 −0.745570
\(983\) 8.16292 0.260357 0.130178 0.991491i \(-0.458445\pi\)
0.130178 + 0.991491i \(0.458445\pi\)
\(984\) 18.5109 0.590105
\(985\) 0 0
\(986\) −10.9783 −0.349619
\(987\) 58.0049 1.84632
\(988\) 0 0
\(989\) 8.74456 0.278061
\(990\) 0 0
\(991\) −26.9783 −0.856992 −0.428496 0.903544i \(-0.640956\pi\)
−0.428496 + 0.903544i \(0.640956\pi\)
\(992\) −13.8564 −0.439941
\(993\) −7.86797 −0.249682
\(994\) 19.5326 0.619537
\(995\) 0 0
\(996\) −22.9783 −0.728094
\(997\) 22.0742 0.699098 0.349549 0.936918i \(-0.386335\pi\)
0.349549 + 0.936918i \(0.386335\pi\)
\(998\) −15.8457 −0.501588
\(999\) −10.3723 −0.328164
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3025.2.a.ba.1.3 4
5.2 odd 4 605.2.b.c.364.3 4
5.3 odd 4 605.2.b.c.364.2 4
5.4 even 2 inner 3025.2.a.ba.1.2 4
11.10 odd 2 275.2.a.h.1.2 4
33.32 even 2 2475.2.a.bi.1.3 4
44.43 even 2 4400.2.a.cc.1.4 4
55.2 even 20 605.2.j.i.444.2 16
55.3 odd 20 605.2.j.j.9.2 16
55.7 even 20 605.2.j.i.269.3 16
55.8 even 20 605.2.j.i.9.3 16
55.13 even 20 605.2.j.i.444.3 16
55.17 even 20 605.2.j.i.124.3 16
55.18 even 20 605.2.j.i.269.2 16
55.27 odd 20 605.2.j.j.124.2 16
55.28 even 20 605.2.j.i.124.2 16
55.32 even 4 55.2.b.a.34.2 4
55.37 odd 20 605.2.j.j.269.2 16
55.38 odd 20 605.2.j.j.124.3 16
55.42 odd 20 605.2.j.j.444.3 16
55.43 even 4 55.2.b.a.34.3 yes 4
55.47 odd 20 605.2.j.j.9.3 16
55.48 odd 20 605.2.j.j.269.3 16
55.52 even 20 605.2.j.i.9.2 16
55.53 odd 20 605.2.j.j.444.2 16
55.54 odd 2 275.2.a.h.1.3 4
165.32 odd 4 495.2.c.a.199.3 4
165.98 odd 4 495.2.c.a.199.2 4
165.164 even 2 2475.2.a.bi.1.2 4
220.43 odd 4 880.2.b.h.529.4 4
220.87 odd 4 880.2.b.h.529.1 4
220.219 even 2 4400.2.a.cc.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.2 4 55.32 even 4
55.2.b.a.34.3 yes 4 55.43 even 4
275.2.a.h.1.2 4 11.10 odd 2
275.2.a.h.1.3 4 55.54 odd 2
495.2.c.a.199.2 4 165.98 odd 4
495.2.c.a.199.3 4 165.32 odd 4
605.2.b.c.364.2 4 5.3 odd 4
605.2.b.c.364.3 4 5.2 odd 4
605.2.j.i.9.2 16 55.52 even 20
605.2.j.i.9.3 16 55.8 even 20
605.2.j.i.124.2 16 55.28 even 20
605.2.j.i.124.3 16 55.17 even 20
605.2.j.i.269.2 16 55.18 even 20
605.2.j.i.269.3 16 55.7 even 20
605.2.j.i.444.2 16 55.2 even 20
605.2.j.i.444.3 16 55.13 even 20
605.2.j.j.9.2 16 55.3 odd 20
605.2.j.j.9.3 16 55.47 odd 20
605.2.j.j.124.2 16 55.27 odd 20
605.2.j.j.124.3 16 55.38 odd 20
605.2.j.j.269.2 16 55.37 odd 20
605.2.j.j.269.3 16 55.48 odd 20
605.2.j.j.444.2 16 55.53 odd 20
605.2.j.j.444.3 16 55.42 odd 20
880.2.b.h.529.1 4 220.87 odd 4
880.2.b.h.529.4 4 220.43 odd 4
2475.2.a.bi.1.2 4 165.164 even 2
2475.2.a.bi.1.3 4 33.32 even 2
3025.2.a.ba.1.2 4 5.4 even 2 inner
3025.2.a.ba.1.3 4 1.1 even 1 trivial
4400.2.a.cc.1.1 4 220.219 even 2
4400.2.a.cc.1.4 4 44.43 even 2