Properties

Label 3025.1.bq.a
Level $3025$
Weight $1$
Character orbit 3025.bq
Analytic conductor $1.510$
Analytic rank $0$
Dimension $8$
Projective image $D_{20}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3025,1,Mod(3,3025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([7, 16])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3025.3"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3025.bq (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50967166321\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{20}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{20} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{20}^{5} - \zeta_{20}^{2}) q^{3} + \zeta_{20}^{3} q^{4} - \zeta_{20}^{7} q^{5} + (\zeta_{20}^{7} + \zeta_{20}^{4} - 1) q^{9} + ( - \zeta_{20}^{8} - \zeta_{20}^{5}) q^{12} + (\zeta_{20}^{9} - \zeta_{20}^{2}) q^{15} + \cdots + ( - \zeta_{20}^{9} + \zeta_{20}^{6}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} - 10 q^{9} + 2 q^{12} - 2 q^{15} + 2 q^{16} + 8 q^{20} + 2 q^{23} + 2 q^{25} - 8 q^{36} - 8 q^{37} - 2 q^{45} - 2 q^{47} + 2 q^{48} + 2 q^{53} - 2 q^{60} - 2 q^{67} + 6 q^{71} + 2 q^{75} + 8 q^{81}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3025\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(2301\)
\(\chi(n)\) \(-\zeta_{20}^{7}\) \(-\zeta_{20}^{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
−0.951057 0.309017i
−0.587785 0.809017i
0.587785 + 0.809017i
0.951057 0.309017i
0.951057 + 0.309017i
−0.951057 + 0.309017i
0.587785 0.809017i
−0.587785 + 0.809017i
0 −0.809017 + 0.412215i −0.587785 0.809017i −0.587785 + 0.809017i 0 0 0 −0.103198 + 0.142040i 0
27.1 0 0.309017 1.95106i 0.951057 0.309017i 0.951057 + 0.309017i 0 0 0 −2.76007 0.896802i 0
148.1 0 0.309017 + 0.0489435i −0.951057 + 0.309017i −0.951057 0.309017i 0 0 0 −0.857960 0.278768i 0
1533.1 0 −0.809017 + 1.58779i 0.587785 0.809017i 0.587785 + 0.809017i 0 0 0 −1.27877 1.76007i 0
1697.1 0 −0.809017 1.58779i 0.587785 + 0.809017i 0.587785 0.809017i 0 0 0 −1.27877 + 1.76007i 0
2017.1 0 −0.809017 0.412215i −0.587785 + 0.809017i −0.587785 0.809017i 0 0 0 −0.103198 0.142040i 0
2187.1 0 0.309017 0.0489435i −0.951057 0.309017i −0.951057 + 0.309017i 0 0 0 −0.857960 + 0.278768i 0
2913.1 0 0.309017 + 1.95106i 0.951057 + 0.309017i 0.951057 0.309017i 0 0 0 −2.76007 + 0.896802i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
275.bg even 20 1 inner
275.bp odd 20 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3025.1.bq.a 8
11.b odd 2 1 CM 3025.1.bq.a 8
11.c even 5 1 3025.1.bf.a 8
11.c even 5 1 3025.1.bi.a 8
11.c even 5 1 3025.1.bj.a 8
11.c even 5 1 3025.1.bk.a 8
11.d odd 10 1 3025.1.bf.a 8
11.d odd 10 1 3025.1.bi.a 8
11.d odd 10 1 3025.1.bj.a 8
11.d odd 10 1 3025.1.bk.a 8
25.f odd 20 1 3025.1.bk.a 8
275.be odd 20 1 3025.1.bj.a 8
275.bf even 20 1 3025.1.bj.a 8
275.bg even 20 1 inner 3025.1.bq.a 8
275.bh odd 20 1 3025.1.bf.a 8
275.bj odd 20 1 3025.1.bi.a 8
275.bl even 20 1 3025.1.bf.a 8
275.bn even 20 1 3025.1.bi.a 8
275.bo even 20 1 3025.1.bk.a 8
275.bp odd 20 1 inner 3025.1.bq.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3025.1.bf.a 8 11.c even 5 1
3025.1.bf.a 8 11.d odd 10 1
3025.1.bf.a 8 275.bh odd 20 1
3025.1.bf.a 8 275.bl even 20 1
3025.1.bi.a 8 11.c even 5 1
3025.1.bi.a 8 11.d odd 10 1
3025.1.bi.a 8 275.bj odd 20 1
3025.1.bi.a 8 275.bn even 20 1
3025.1.bj.a 8 11.c even 5 1
3025.1.bj.a 8 11.d odd 10 1
3025.1.bj.a 8 275.be odd 20 1
3025.1.bj.a 8 275.bf even 20 1
3025.1.bk.a 8 11.c even 5 1
3025.1.bk.a 8 11.d odd 10 1
3025.1.bk.a 8 25.f odd 20 1
3025.1.bk.a 8 275.bo even 20 1
3025.1.bq.a 8 1.a even 1 1 trivial
3025.1.bq.a 8 11.b odd 2 1 CM
3025.1.bq.a 8 275.bg even 20 1 inner
3025.1.bq.a 8 275.bp odd 20 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(3025, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} - 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} + 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T + 2)^{4} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} + 2 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$53$ \( T^{8} - 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( (T^{4} + 5 T^{2} + 5)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} + 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( (T^{4} - 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} - 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{8} - 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
show more
show less